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Abstract. A surface fire spread model based on stochastic cellular automata is 

proposed and its dynamics is characterized and analyzed. The model attempts 

to model the dynamics of the fire surface spread in vegetation fires that occur 

under flat terrain and no-wind conditions. Each cell is characterized by one of 

the three states that are: vegetation cell, burning cell and burnt cell. The 

dynamics of fire spread is modeled as a stochastic event with an effective fire 

spread probability S which is a function of three probabilities: the proportion 

of vegetation cells across the lattice, the probability of a burning cell become 

burnt, and the probability of the fire spread from a burning cell to a neighbor 

vegetation cell. A set of simulation experiments are performed to analyze the 

effects of different values of the three probabilities on the final fire pattern. 
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1. Introduction 

The wildland fire spread is a combustion reaction where the ingredients necessary for its 

occurrence are: the vegetation, which provides the combustible source for the reaction; 

the oxygen in the air, which actuate as an oxidizing agent; and a heat source responsible 

by the initiation and the self-sustainability of the reaction [Pyne et. al 1996]. The fire 

spreads across the landscape consuming the vegetation and this process can be 

decomposed into four combustion phases, the so called: pre-heating, ignition, 

combustion and extinction [Pyne et. al 1996]. The fire front is the region of intense 

flaming combustion where a large quantity of heat released. Part of this heat released is 

transmitted to the vegetation that yet is not burning, heating it until reaches the ignition 

temperature. When the vegetation reaches the ignition temperature, the flames rise and 

the fire front occupies a new position ahead. The flames remain as the vegetation is 

burnt out. 

 In this work a simple model for wildland fire dynamics under flat terrain and no-

wind conditions is proposed and its dynamics is analysed. The model formulation is 

based on stochastic cellular automata and its dynamics is analyzed qualitatively and 

quantitatively. Cellular automata are models which assume space, state and time 



discrete [Schiff 2007]. The space is represented by a square lattice and each element 

that constitutes the lattice is called cell. Each cell has a neighborhood, set of internal 

states variables, and a set of rules, called state transition functions, that describes the 

evolution of their states and define the future state as a function of the cell present state 

and the neighborhood present states. In stochastic cellular automata the state transition 

function is performed by means of probabilities. The transition functions of the 

proposed model are defined stochastic with the intention to represent the vegetation 

heterogeneity and to include random component in the dynamics of the vegetation 

combustion and ignition process during the fire spread.  

 The paper is structured as follow. In the Section 2 de modeling approach and the 

model parameters are described. In the section 3 the model dynamics is characterized 

and analyzed. Finally, in the last section, the model relevance is discussed. 

2. Model description 

The model is based on the spatially explicit representation and the landscape is depicted 

as a square and two-dimensional lattice   of dimensions      . Each cell is defined 

by:  

 its discrete position       in the lattice, where          is the column and 

         is the row; 

 the finite set of internal states variables that describes the possible behavior of 

the cells in a given time step t which are       
  {       } where:   is an 

empty cell, which denotes unburnable cells or without vegetation;   is a 

vegetation cell, with denote cells with potential to burn;   is burning cell, which 

denotes a cell whose the vegetation in its inside is burning; and   is burnt cell, 

which denote vegetation cell that is burned by the fire; 

 the set of finite neighborhood cells       , where the Moore neighborhood, as 

illustrated in the Figure 1(a), represents the neighborhood relations in the model 

and comprises the eight cells surrounding         of a central cell       

according with the definition        {                         }; 
 the transition function that calculate the future cell state as a function of the 

present cell state and present neighborhood cell states         
          

      
   , 

where the time   is also represented by discrete values or time steps. Thus, the 

time evolution of the model is driven by the interaction between the cell states 

and the cell neighborhood states. Starting from a given configuration of cells 

initial states, the cellular automaton self-replicates the sequent cell states. The 

cellular automata model is stochastic because the state transition function is 

performed according to probabilities values. 

 The fire spread is governed by the heat transfer from burning regions to non-

burning regions. Thus the fire spread is modeled as a set of ignitions of non-burning 

regions as the burning regions persist. Stochasticity is used to include the heterogeneity 

of spatial conditions present in real vegetation patterns and to include random 

component in the dynamics of combustion and ignition process [Hargrove et. al 2000, 

Nahmias et. al 2000, Favier 2004]. Thus, the dynamics of fire spread is modeled as a 

stochastic event with an effective fire spread probability   which is as a function three 

probabilities, which are:  



1. the probability  , that determine the proportion of cells with vegetation across the 

lattice in the model initialization. Thus, for each cell, there is a probability   to its 

state is vegetation cell and the probability     to it is empty cell. 

2. the probability  , that models the combustion, where, in each time step, a burning 

cell has a probability   to change its state to burnt cell. 

3. the probability  , that models the ignition, where, there is a probability   for the fire 

spreads from a burning cell to a neighbor vegetation cell. 

 The transition functions between the states are performed according to these 

probabilities values. The cell state transition diagram is showed in the Figure 1(b). An 

empty cell is unchangeable and always remains in this state. The fire spread is 

considered a diffusion contagious process and the fire can spreads only from a burning 

cell to a neighbor vegetation cell. Thus, the transition     is conditioned for a 

vegetation cell that has at least one burning cell neighbor. Given two neighbors cells, 

one burning cell and the other a vegetation cell, in each time step, there is a probability   
for the burning cell ignites the neighbor vegetation cell. Once ignited, in each time step, 

there is a probability     for the burning cell remain burning, otherwise its state 

changes to burnt cell, which is the transition     . 

 The model input parameters are the probabilities  ,   and  , the lattice size, and 

the maximum time step       . A complete visit to all cells of the lattice is called a 

sweep. A simple simulation is performed in the two stages: initialization and fire 

spreading algorithm. A complete visit to all cells of the lattice is called a sweep. The 

initialization stage includes: (1) define the model input parameters; (2) execute a sweep 

and for each cell and change its state to vegetation cell with probability   or empty cell 

with probability    ; and (3) select one or more vegetation cells and change its state 

to burning cell. In the fire spreading algorithm, for each time step              

execute a sweep and: (1) for each burning cell, evaluate the transition    ; (2) for 

each neighbor of a burning cell evaluate the transition    . In the end of each time 

step count the number of burning cells. Time simulation stop if          or if there 

are none burning cell in a given time step. 

 
 

(a) Moore neighborhood (b) Cell state transition diagram 

Figure 1. (a) The Moore neighborhood comprises eight cells (yellow cells) 

which surround the central cell (black cells). (b) In the cell state transition 

diagram, arrows indicate the state transitions paths. The double arrow 

indicates that the transition depends on the neighbor cell state. The round 

dashed arrows indicate that the state transitions are conditioned by the values 

of other probabilities. 

4. Simulation and results 

3.1. Qualitative analysis of the fire patterns 

The effective fire spread probability   describes the fire behavior across the lattice as an 

function of the probabilities  ,   and  . Different fire patterns, with different size and 



shape, can be obtained varying the values of these probabilities. The Figure 2 

characterizes some fire patterns using different values of  ,   and  , for a lattice of size 

        and the fire starting from a cell at the middle of the lattice           
   . 

Each cell state along the lattice is represented by colors that which are, empty cell 

(black), vegetation cell (green), burning cell (red) and burnt cell (gray).   
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Figure 2. Different fire patterns for t=100 using a lattice with size         and the 

fire starting from the middle cell positioned at                . The parameters 

values are showed immediately bellow the figures. 

 The proportion of cells with vegetation across the lattice determines the spatial 

distribution of available fuel along the lattice. Higher values of   implies in more 

quantity of available fuel along the landscape and therefore the fire propagates with 

more facility. This effect can be observed comparing the Figures 2(f) and 2(d), when in 

the Figure 2(f) the burned area is larger than in the Figure 2(d).  

 The probability   asserts the combustion latency for a burning cell (     is a 

conception for the mean reaction time). A burning cell with a high value of   burns 

most quickly (i.e., in less time steps) than those that have a low value. This behavior can 

be observed comparing the Figures 2(e) and 2(f). Furthermore, how smaller is the 

values of  , more high is the probability of the fire spread from the burning cell to 

neighbors vegetation cells, because the cells remain burning in more time steps. This 

effect can be observed comparing the Figure 2(c) and 2(d).  

 The ignition probability   determines how lightly the fire spreads along the 

lattice. The effects of different fire rates of spread can be observed by the different 

burned areas comparing the Figures 2(a), 2(b) and 2(c). Higher values of   are related 

with fire fronts which spread most quickly. 



3.2. Monte-Carlo simulations 

Because the natural model stochasticity, a same set of parameters values can generate 

fire patterns slightly different, according showed in the Figure 3(a), 3(b) and 3(c). Thus, 

is necessary to obtain the mean behavior computed during   simulations based on 

different sequence of generated random number. This is the objective of the Monte-

Carlo simulations (MCS). For a given set of model input parameters, a large quantity of 

simulations are carried out and for each cell is computed the number of times that it 

burns. The number of time that a cell burn divided by the total number of MCS is the 

estimative of the cell burning risk. The Figure 3(d) shows the cell burning risk 

computed by a MCS for      ,      ,       and      . 
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Figure 3. (a)-(c) Fire patterns slightly different for a lattice with size        , 

     ,      ,      ,       and the fire starting from the middle cell 

positioned at                . (d) Burning risk for         Monte-Carlo 

simulation. The color map in the figure varies from 0 (black) to 1 (white), and the cells 

that not burn (green cells). 

4. Final considerations 

Although the model formulation include only fire spread dynamics under flat terrain 

and no-wind conditions, the qualitative and quantitative analysis performed in this paper 

indicate that this model constitutes a qualitative framework for wildland fire spread 

dynamics simulation. However, for further ecological applications of this model, the 

relation of the model parameters with meteorological, vegetation and topographical 

factors remain to be quantitatively established.  

The effects of wind and slope on ignition process can be represented according to the 

incorporation of a directional bias that proportions an anisotropic diffusive process 

across the lattice [Favier 2004]. Different values of vegetation density D can be used to 

represent several phyto-physiognomy vegetation clusters. The probability B can be 



adjusted to include different values of fuel load over the surface and different fuel 

moisture conditions. This model parameterization consists in finding an explicit 

expression between the model parameters and the environmental conditions of historical 

and documented forest fires. 
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