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Abstract. Community detection in spatial networks is a critical research area
that explores the complex relationship between network structures and spatial
contexts. Understanding the structure and evolution of these networks is es-
sential across various disciplines. To address this, a comprehensive System-
atic Literature Review (SLR) was conducted following the PRISMA protocol
[Page et al. 2021], ensuring a rigorous and transparent process for identifying,
categorizing, and analyzing relevant studies. The review examines key themes,
including spatial network characterization, empirical observations, models, and
processes. Findings indicate that most studies rely on real-world data, with
China and the United States being the most analyzed regions. However, there is
limited availability of source code and a lack of research on dynamic or tempo-
ral aspects. This review introduces a novel classification for spatial community
detection, encompassing network perturbations, modularity index, and detec-
tion algorithms. By integrating insights from multiple disciplines, it enhances
the understanding of spatial constraints and network dynamics, providing valu-
able contributions to various applications and fields.

1. Introduction
Complex systems are composed of interacting parts whose behavior is more than the
simple sum of their parts, like ants in colonies or the interplay of neurons in a brain
[Newman 2011]. Complex networks correspond to graphs representing such systems



[Barabási and Pósfai 2016]. The Graph theory dates back to the 18th century when Leon-
hard Euler proposed a mathematical framework to investigate the well-known problem of
the seven bridges of Königsberg. Important authors like Paul Erdős and Alfréd Rényi,
with their investigation on random networks [Erdös and Rényi 1959], and M. S. Gra-
novetter with the discussion about the strength of weak ties [Granovetter 1973] paved the
way for the network science as we know. However, only at the turn of the 20th century
to the 21st the area gained momentum, with essential contributions of A. Barabasi and R.
Albert on scale-free networks [Barabási and Albert 1999], and D. Watts and S. Strogatz
on small worlds [Watts and Strogatz 1998], in addition to the availability of different net-
work maps such as Protein-Protein Interactions, Hollywood actors, the WWW and others
[Barabási and Pósfai 2016]. Nowadays, networks are ubiquitous, being studied in various
disciplines like computer science, sociology, biology, and transportation, to name a few.

A graph (G) is a set of vertices (V) and edges (E) [Bollobás 1998], where vertices
can form groups, known as communities or clusters, that reveal underlying network struc-
tures. Community detection algorithms generally assume that groups emerge from the
network itself, with denser connections within a community, a path between any pair of
nodes, and links exceeding random expectations (modularity) [Barabási and Pósfai 2016].
Key algorithms include Infomap, Louvain, Girvan-Newman, Walktrap, and Ravasz,
which may be agglomerative, divisive, and/or based on random walks. Fortunato
[Fortunato 2010] reviews the field, noting that besides modularity, methods like Stochas-
tic Block Models and random walks are used to evaluate graph partitions, with recent
approaches utilizing embeddings to identify community structures.

Geoinformatics is a multidisciplinary field that integrates geography, computer
science, and technology for data acquisition, analysis, and visualization, using tools
like satellite imagery, GPS, and digital mapping platforms [Awange and Kiema 2013,
Karimi 2014]. Within this field, geoprocessing focuses on practical techniques for han-
dling geographic data [Upton et al. 1985, Burrough et al. 2015]. Spatial networks, a sub-
set of complex networks, have nodes with positions in 2D or 3D space and edges that
represent real, physical connections with location, length, and sometimes weight. The
topological aspects of these networks are linked to spatial features like node positions or
edge sizes [Barthelemy 2010, Crucitti et al. 2006, Dale et al. 2010].

[Santos et al. 2017] introduced the concept of (geo)graphs, where nodes are as-
signed geographical coordinates and edges display spatial dependence, allowing for the
effective representation and analysis of geographical networks. These graphs are com-
patible with GIS, where vertices are represented as points and edges as line shapefiles,
enabling seamless manipulation within GIS environments. [Barthelemy 2010] conducted
a review of the relationship between networks and spatial dynamics, discussing top-
ics such as spatial network characterization, empirical models, and processes like dis-
ease spread and resilience. This work highlights how spatial constraints influence net-
work structures and provides an interdisciplinary understanding of complex systems. In
[Boguna et al. 2021], the role of geometry in understanding complex networks is exam-
ined, focusing on how analytical tools from statistical physics have revealed network self-
similarity and latent hyperbolic geometry. These insights have led to new methodologies
for analyzing complex systems and have significantly contributed to their modeling.

In this study, we conducted a Systematic Literature Review (SLR), which involves



identifying, categorizing, and analyzing relevant literature on a specific research topic,
as detailed by [Tranfield et al. 2003]. Here, we collected studies in the field of spatial
networks exploring community detection. To the best of the authors’ knowledge, it is the
first SLR on this topic.

2. Method
To ensure transparency and replicability, this review followed the methodology of
[Okoli and Schabram 2010] and the PRISMA guidelines [Moher et al. 2015]. Okoli
and Schabram’s approach provides a pragmatic, step-by-step process for con-
ducting systematic reviews in information systems, while PRISMA, though de-
signed for health-related reviews, has been widely adopted across disciplines
[Liao et al. 2017] [Ansyori et al. 2018] [Larsson and Brostr”̈om 2019]. According to
[Okoli and Schabram 2010], a comprehensive Systematic Literature Review (SLR) in-
volves eight steps: defining the review’s purpose, protocol and training, literature search,
practical screening, quality appraisal, data extraction, study synthesis, and review writing.

Broadly, this review aimed to assess the advancement in research directed towards
enhancing spatial networks. Specifically, this review aimed to: (i) identify studies using
real-world data; (ii) identify the most frequently studied regions; (iii) examine studies
utilizing dynamic data; (iv) identify the most commonly used community detection algo-
rithms; (v) explore the most prevalent application domains; (vi) determine the percentage
of studies providing accessible artifacts; and (vii) identify journals with the highest num-
ber of publications on spatial networks.

3. Protocol
3.1. Search Strategy
The search was carried out on the CAPES Journals Portal 1 on November 9, 2023. After
applying filters based on the authors’ formulated query, 34 papers were retrieved. The
query employed in this research was: (“geographical network” OR “spatial network”
OR “geographical graph” OR “spatial graph” OR “geospatial graph”) AND (“community
detection”).

3.2. Criteria and procedures
The review included only peer-reviewed English articles published up to November 2023,
sourced from the CAPES Journal Portal database. Articles were selected based on inclu-
sion criteria, excluding those without community detection. The data extraction process
involved recording relevant information from each study in a spreadsheet or database
[Petticrew and Roberts 2008]. The fields for article analysis include title, actual data us-
age, community detection methods, dynamic data, domain, public code/artifacts, public
data, study area, journal, publication year, and geographical network (whether networks
used geographic nodes).

4. Results of the Review
This section specifies the fields employed in the systematic review, statistical description,
and review outcomes.

1https://www-periodicos-capes-gov-br.ezl.periodicos.capes.gov.br/



4.1. Search Results

Figure 1. Word cloud formed by the words found in the titles of the works.

The research was conducted using a query based on keywords from the search
strategy, and Figure 1 shows the most frequent words in the paper titles, including net-
work, spatial, structure, data, analysis, and communities. Guided by the search strategy
outlined in Section 3.1 and detailed in Section 3.2, the database exploration resulted in 58
findings. After screening titles and abstracts, 24 articles were excluded for not meeting
the research objectives, leaving 34 articles for in-depth analysis.

Figure 2 illustrates a collaboration network of authors in spatial networks, where
each node represents an author, and edges indicate jointly published works. The node
size reflects the total number of publications, and edge thickness shows the number of
shared works. Node color represents the average appearance year (AAY), with a gradient
displayed in the lower right corner. Several disconnected components are visible, with
isolated nodes representing individual publications. The largest connected component, in
yellow, consists of 12 authors from the paper [Clipman et al. 2022]. Six authors appear
in two papers, shown as larger nodes, while the rest are featured in only one.

The co-citation network in Figure 3 links articles by citations, arranged chrono-
logically. Each node is labeled with the first author’s last name, and first names are added
for clarity if needed. Articles with one citation are green, two are blue, three are yellow,
and more than three are red, while articles with no citations are gray. Most articles are
from 2022, with [Expert et al. 2011] being the most cited. This paper, which introduced
a distance decay factor to the modularity model, also ranks highest in external citations.
The second most cited article, [Evans and Lambiotte 2010], presents a method for detect-
ing overlapping communities in weighted graphs. [Clipman et al. 2022] corresponds to
the largest connected component in Figure 2.

4.2. Analyses - Descriptive Insights

In this section, descriptive statistics are presented through charts constructed using the
columns of the table containing information about the articles.



Figure 2. Co-authorship network using the VOSviewer
(https://www.vosviewer.com/) tool [Van Eck and Waltman 2010]. In
this graph, each node represents an author, and the edges connecting the
nodes represent works developed with co-authorship.

Figure 3. Co-citation network among the papers returned in the search. In this
graph, each node represents an article, labeled with the name of the first
author, and the directed edges represent a citation from one work to an-
other.



4.2.1. Domain

Figure 4. Domains of study chosen to categorize the papers.

The domain of application refers to the specific field where research addresses
real-world problems, helping to identify the target audience and guide the implementa-
tion of solutions. The study domains are categorized into: “mobility” (human mobil-
ity), “transport” (networks for transportation of people/goods), “social” (social sciences),
“health”, “urban structure” (organization of urban areas), “communication” (mobile net-
works), “ecology”, “social media”, “theory” (theoretical network studies), “language”,
and “visualization” (network visualization), with these categories reflecting the focus of
the respective studies. Broader studies on transportation and mobility address issues such
as designing more efficient transportation networks and making transportation more ac-
cessible and affordable for all, as shown in Figure 4. This prevalence highlights the im-
portance of the field in shaping cities, economies, and the environment.

Among the set of examined studies, no works about the subject of rainfall, hydrol-
ogy, and related topics were identified. Nevertheless, for discussion, we have included
two studies that explore the interplay of spatial networks with the aforementioned themes.
[Ceron et al. 2019] presents a study on detecting communities within high-resolution me-
teorological networks using a (geo)graph approach. The authors apply this approach to
model a dataset derived from radar-based precipitation and analyze the topological prop-
erties of the network. They discover a spatially well-defined community structure that
aligns with topographic and land-use data. [Jorge et al. 2023] presents Graph4GIS, a tool
designed for constructing geographical graphs from spatially gridded data, with a spe-
cific emphasis on weather radar datasets. Utilizing graph-based networks facilitates the
identification of inherent relationships and structural patterns in natural systems such as
weather and climate. Through node representation of time series and the establishment
of links based on predefined similarity criteria, the tool offers diverse similarity measures
and criteria for network construction, as demonstrated by the results obtained from apply-
ing different network structures to a watershed.



4.2.2. Real Data and Study Area

Using real data enhances the reliability and credibility of studies, enabling meaningful
conclusions and the application of findings in real-world situations. It also allows for
result verification and replication, ensuring the validity of scientific discoveries. Among
the 34 papers reviewed, only one explicitly stated it did not use real geographical data.
The studies primarily focused on China and the United States, each featured in 9 papers.
Belgium appeared in 3 works, while Canada and the United Kingdom were referenced
in 2 papers each. Additionally, Greece, India, Italy, Japan, and Portugal were cited once,
with some studies considering multiple countries, and 2 papers not specifying a country
of focus.

4.2.3. Dynamic Data

Dynamic data in geographical networks refers to the variation of attributes associated
with nodes and edges over time. This type of data provides valuable insights into network
behavior, enabling the identification of temporal patterns and a deeper understanding of
spatiotemporal dynamics. It facilitates the analysis of temporal dependencies, and the
identification of temporal communities, and clusters. The incorporation of dynamic data
enhances decision-making processes by enabling the assessment of changes, prediction
of future states, and development of adaptive strategies in dynamic spatial networks

Approximately 76% of the selected papers employed temporally varying data.
However, only 11% of the papers explored the data through temporal analyses.

4.2.4. Public Code / Artifacts

When authors make their developed code publicly available in articles, they promote
transparency, reproducibility, and research collaboration. Code sharing facilitates vali-
dation, learning, and improvement of their work. Publicizing the code fosters open sci-
ence, enabling replication, extension, and the growth of a strong scientific community.
Six out of the 34 papers explicitly declared the availability of the codes and artifacts pro-
duced in their respective studies. Regarding the studies utilizing public data or publishing
independently collected data, there are 18 papers, contrasting with 16 that did not.

4.2.5. Papers by Journals

The pie chart in Figure 5 shows the distribution of articles by journal. The Applied Net-
work Science Journal had the highest number of articles. Additionally, there are 21 ar-
ticles labeled as ”Others,” each from different journals, including titles like “American
Journal of Physical Anthropology”, “Cancer Research Communications”, “Ecological
Modelling”, and many more.

It is worth mentioning that there are publications in traditional Geoinformatics
journals, such as “International Journal of Geographical Information Science: IJGIS” and



Figure 5. Pie chart illustrating the distribution of papers within the study sample
across different journals.

“Transactions in GIS”, as well as papers in journals from different application areas, rang-
ing from “Cities” to “Cancer Research Communications” and “Ecology and Evolution”.

4.2.6. Community Detection

Community detection is crucial in geographical networks, as it helps uncover
structures and patterns that provide valuable insights. Modularity, introduced by
[Newman and Girvan 2004, Justel et al. 2014], quantifies the strength of division within
networks, assessing their structure in terms of communities. Higher modularity values in-
dicate better network partitioning, reflecting a more effective division into communities,
whose formula is described as follows:

Q =
1

2m

∑
ij

(Aij − Pij)δ(Ci, Cj), (1)

where, m (number of edges); Aij (indicates the existence of edges between nodes
i and j); Pij (number of edges existing between nodes i and j in the null model); δ = 1 if
Ci and Cj (communities of nodes i and j) are the same, or 0 otherwise.

Among the Community Detection algorithms cited and employed in the studies,
the most frequently mentioned are Infomap (12%) and Louvain (19%), followed by Lei-
den and Fast-Greedy.

[Expert et al. 2011] discussed the concept of geographic consistency in the con-
text of spatial networks. They argue that modularity optimization in spatial networks is
often blind to spatial anomalies and fails to uncover modules determined by factors other
than mere physical proximity. Therefore, they propose a method to detect patterns that are
not solely due to space and go beyond standard network methodology to uncover signifi-
cant information from spatial networks. [Austwick et al. 2013] describe how basic spatial
models can be used to highlight the most frequently used routes. They also use commu-
nity detection techniques to identify networks that are more strongly connected than what
would be expected based on spatial proximity.

Considering original contributions to community detection in spatial networks,
we propose a classification considering three classes: Network (Perturbating the network



itself); Modularity (Perturbating the index of modularity); Community Detection (Pertur-
bating the algorithm for community detection).

Figure 6. Classifications regarding contributions to community detection in the
context of Spatial Networks.

In the first scenario, it is possible to directly incorporate spatial dependency. For
instance, this can be achieved by considering spatial connectivity (where polygons touch
each other), spatial proximity constrained within a specified distance, or by employing
functions that decay with distance, such as gravity models. [Odell et al. 2022] exemplify
this approach by utilizing the disparity between actual flows and gravity model-based flow
estimations to construct residual networks, facilitating community detection within these
networks. In the second case, gravitational models can once again be employed, this time
for proposing spatial null models. [Liu et al. 2021] introduces a novel modularity mea-
sure based on the difference between actual and gravity model-based flow estimations.
[Expert et al. 2011] integrated a distance decay factor into the original modularity model.
In the third scenario, key aspects may include, for instance, the utilization of Spatial
Constraints, Community Size Constraints, Connectivity Constraints, which will now be
applied in the construction of the community detection algorithm, as opposed to the net-
work construction, as is the case in scenario 1. [Wan and Liu 2018] present DASSCAN,
which employs shared similarity among nodes’ neighbors as clustering criteria, extending
the analysis beyond mere consideration of direct connections.

It is noteworthy that each study may adopt more than one approach, as seen in
the work of [Qiao et al. 2019], who propose both new weights (based on gravitational
models) and include spatial contiguity constraints in the community detection method (in
this case, DBSCAN). Furthermore, some methods detect communities without calculating
modularity, such as an algorithm based on the evolution of a Markov process on the
graph [Jiang et al. 2017] and the Clique Percolation Method, an overlapping community
detection algorithm [Zhou 2016].

5. Conclusion
We conducted a systematic literature review of studies on community detection in geo-
graphical networks, published up to November 2023, focusing on high-impact journals



and conferences. This review offers a comprehensive insight into the research, methods,
and progression in the field of spatial networks, and contributes to the development and
evaluation of spatial network studies by categorizing and structuring previous work.

The Systematic Literature Review (SLR) focused on papers concerning commu-
nity detection in spatial networks. In the collaboration and co-citation networks derived
from these papers, a notable emphasis emerged on mobility and transport networks, un-
derlining their significance in shaping cities, economies, and the environment. It was
observed that the majority of papers relied on real data, with a particular emphasis on
data from China and the USA. Intriguingly, 76% of these papers incorporated temporal
data, yet only 11% conducted any form of temporal analysis. Moreover, out of the 34 ar-
ticles analyzed, six made their source code available, contributing to the transparency and
reproducibility of the research. This synthesis sheds light on the prevalence of mobility
networks and the relatively limited exploration of temporal aspects.

Finally, considering original contributions to community detection in spatial net-
works, we proposed a classification considering three classes: Network - perturbating the
network itself, Modularity - Perturbating the index of modularity, and Community De-
tection - Perturbating the algorithm for community detection. Our analysis shows that
most of the papers used gravitational methods, some of them to change the edges of the
network and several to reformulate the null model for spacial interactions.

In future works, we intend to consider additional databases and similar terms on
the query and promote topological analysis of the co-citation network, looking for the
most relevant research and researchers.
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