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Abstract. The Atlantic Forest is a biome rich in biodiversity but highly
threatened by deforestation. The study addresses the challenges of monitoring
deforestation in the PRODES Mata Atlantica monitoring system and its
innovations in remote sensing techniques. We highlight the benefits of the
transition from Landsat series to high spatial resolution Sentinel-2 images, as
well as the challenges with the adoption of semi-automatic classification
algorithms to process image time series. This work reviews existing approaches
for automated deforestation detection, including the fusion of optical and SAR
data. We stressed the need to consider local and seasonal factors for accurately
detecting forest removal in the Atlantic Forest.

1. Introduction

The Brazilian Atlantic Forest is a biodiversity hotspot composed of forest and non-forest
ecosystems, characterized by high endemism and 1,923 species at risk of extinction
[Mittermeier et al. 2011]. It occupies 15% of the national territory, 17 states, and
3,249 municipalities, and is the only biome in Brazil whose predominant land cover class
is not original vegetation [IBGE, 2019; SOS Mata Atlantica, 2022]. Less than 8% of the
biome has remained untouched since deforestation began more than 500 years ago [ CEPF
2001]. When considering intermediate secondary vegetation and fragments smaller than
100 ha, the estimated natural vegetation coverage ranges from 11.4% to 16% [Ribeiro et
al. 2009]. Despite ongoing efforts to restore the Atlantic Forest [Melo et al. 2013;
Romanelli et al. 2022; Shennan-Farpén et al. 2022], more than 1,300 km? of biome
fragments have been deforested annually on average over the last 10 years [TerraBrasilis
2023]. Furthermore, due to its vast geographic extent and the resulting diverse
phytophysiognomies, monitoring deforestation in the Atlantic Forest is challenging for
remote sensing systems.

In 1978, the National Institute for Space Research - INPE demonstrated the
feasibility of using orbital remote sensing to map deforestation [Tardinet al., 1979 and
Tardinet al., 1978], which led to the Monitoring of Deforestation in the Legal Amazon by
Satellite Project - PRODES. From 1988 to 2000, deforestation was mapped by visual
interpretation on photographic paper and, later, by digital methods [Shimabukuro et al.
2000]. Since 2002, the mapping has been carried out by photointerpretation in the
TerraAmazon computer system [Terraamazon, 2021], and its results published online.
PRODES uses Landsat 8 or similar images to map clear-cut areas, with more than
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6.25 hectares, compatible with minimum and maximum scales, respectively, 1:125,000
and 1:75,000.

In 1990, the SOS Mata Atlantica Foundation and INPE began mapping the forest
remnants of the Atlantic Forest, also using Landsat images [SOS & INPE, 1998]. In 2015,
the Ministry of the Environment established the Biome Environmental Monitoring
Program (PMABB) via satellite, including the monitoring of deforestation in the Atlantic
Forest. With the PMABB, deforestation was mapped bi-annually, between 2000 and
2016, and annually from 2017 to 2022, giving rise to the PRODES Mata Atlantica Project
(PRODES-MA) which will continue the monitoring task [Amaral et al. 2023]. A
challenge that arose from all these years of digital mapping was the analysis of large time
series to automatically detect deforestation. The possibility of using time series, mosaics,
data cubes, and better-resolution images offers promising alternatives for improving
PRODES-MA. However, this methodological transition must preserve the quality of
monitoring.

In recent years, the expansion and free access to satellite image collections have
expanded the potential for monitoring forest cover globally [Hansen et al. 2013].
However, the automatic classification of these datasets to monitor deforestation in
Brazilian biomes is still inaccurate when compared to the efficiency of human
interpretation. Furthermore, large data sets require storage, processing, dissemination,
and analysis technologies. Approaches that have used remote sensing images in time
series have advanced in the development of algorithms to access, process, evaluate data
quality, and analyze the results of automatic classifications related to changes in land use
and cover [Ferreira et al. 2020; Gomes et al. 2020; Gomez et al. 2016; Woodcock et al.
2020].

Automatic classification algorithms, such as those available in the package
Satellite Image Time Series (SITS), have assisted automatic classification in the
systematic mapping of land use and cover, as carried out by INPE in the TerraClass
project [Terrabrasilis, 2023]. To facilitate this type of analysis, recent initiatives have
produced and made available time series as Analysis Ready Data in data cubes [Killough
2019; Lewis et al. 2017]. Specifically, the Brazil Data Cube (BDC) has built a valuable
source of data for monitoring Brazilian biomes [Ferreira et al. 2020; Picoli et al. 2020;
Simoes et al. 2021].

A commonly used way to detect deforestation is by comparing temporal maps of
land use and cover. The MapBiomas project, for example, uses the Random Forest
algorithm to classify land use and cover, annually. The classifier is trained with reference
samples collected with the aid of maps, historical series, and visual interpretation of
satellite images. Then, the MapBiomas automatically classify images into forest, field,
agriculture, pasture, urban area, and other classes. The deforestation mapping in this case
is attributed to the difference between land cover classes in the maps across the years
[Souza et al. 2020].

However, to date, there is no completely automatic and direct mapping of
deforestation in Brazil based on the spectro-temporal pattern of a given area, especially
in the Atlantic Forest biome. It is believed that such a system would bring greater
precision in detecting the limits of deforestation, reproducibility, and agility in data
production. For that, this article aims to discuss methodological alternatives for the
automatic detection of deforestation in the Atlantic Forest to assist the digital transition
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to PRODES-MA. Two guiding questions are: 1) What are the main methodological
challenges for automatic mapping of deforestation? 2) How can image time series
classification help the automatic detection of deforestation?

Initially, the current methodology and the main challenges faced by the team in
PRODES-MA and by other projects at INPE are presented. These aspects may be relevant
in the process of automatic detection of deforestation. Next, articles on detecting
deforestation based on image time series analysis are discussed, regardless of the biome.
Finally, the methodological possibilities for automatically detecting deforestation are
summarized, considering the geographic extent, heterogeneity, and other particularities
of the Atlantic Forest.

2. The existing methodology and initial testing for PRODES-MA

The mapping of deforestation in the Atlantic Forest up to 2022 followed the methodology
developed and used in the PRODES-Amazodnia [INPE, 2023a] and PRODES-Cerrado
[INPE, 2023b] Projects. This methodology is based on: visual analysis at 1:75,000 scale;
manual vectorization of deforestation polygons larger than 1 ha; use of the biome limit of
the Brazilian Atlantic Forest [IBGE, 2019]; use of Landsat images with 30m spatial
resolution.

Since 2022, PRODES-MA has been carried out at INPE with MSI/ Sentinel-2
images (10 m spatial resolution). A series of tests were conducted to assess the impact of
replacing OLI/Landsat 8 with MSI/Sentinel-2 images for deforestation mapping and
estimation. [Passos ef al., 2023] considered deforestation data mapped with the PRODES-
MA historical series and methodology in 13 cells, 758 km? each. The enhanced spatial
resolution of Sentinel images facilitated a more accurate delineation of deforested
fragments, allowing for better differentiation of various land types, such as agricultural
areas, and reforested regions, and the identification of a greater number of polygons
compared to Landsat images.

The increase in resolution was confirmed by the PRODES-MA team through a
second experiment conducted in 275 cells, representing 15% of the biome and distributed
across various phytophysiognomies within the Atlantic Forest. Sentinel images facilitated
the detection of 158% of the deforestation area observed with Landsat images. When
analyzing deforestation by phytophysiognomies, the following areas were mapped using
Landsat and Sentinel, respectively: 38.27 km? and 72.66 km? (189.8%) in the
Ombrophylous Forests (Mixed, Open, and Dense); 56.72 km? and 78.03 km? (137.57%)
in Seasonal Deciduous and Semideciduous Forests; and 38.77 km? and 54.49 km?
(140.54%) in non-forest areas. These results are being prepared for submission.

The wide gradient ranging from approximately 5° to 30° South Latitude in the
Atlantic Forest results in climatic and phytophysiognomic variability, making it
challenging to establish a single automated procedure for the entire biome. Subdividing
the area into homogeneous units, such as ecoregions, can be a strategy to facilitate local
adjustments in classification models [Silva ef al., 2022]. This significant difference in
latitude also affects the optimal period for detecting cloud-free images. For the northern
region, the preferred time is from October to December, while for the central-southern
region, it is from June to August [Almeida ef al., 2022]. However, in some northern
regions, cloud-free images are scarce. To address this issue, tests were conducted using
temporal mosaics of Sentinel-2 images, produced by BDC, the preferred times for the
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north and central-southern regions. The obtained mosaics had undesired effects related to
cloud detection and relief removal procedures, which posed challenges for visual
interpretation of deforestation. Thus far, it has been concluded that the usefulness of
mosaics for automatic deforestation monitoring depends on further tests that consider
alternative production methods and different time frames.

Studies involving automatic classification through the fusion of optical (Sentinel-
2) and synthetic aperture radar (SAR) (Sentinel-1) data have also been explored to
enhance deforestation detection under various cloud conditions [Ferrari ef al. 2023]. In
this study, convolutional neural network (FCN) architectures were chosen for the
classification task. In scenarios with a low probability of cloud cover (< 5%), the models
utilizing optical data achieved an average accuracy of 0.71, while the radar models, 0.61.
However, in other scenarios (> 5%), the optical models exhibited accuracy generally
below 0.50. The fusion of optical data and SAR consistently demonstrated an advantage
in all scenarios. In most tests, deforestation detected by optical and SAR fusion had at
least 0.04 higher accuracy than those by a single data type.

Related to all the above challenges, the results' accuracy prevents the migration to
a semi-automatic detection methodology. According to the technical note issued by
[INPE, 2022], the accuracies of the PRODES 2022 mapping results for 108 priority
scenes in the Legal Amazon and for the Cerrado biome as a whole were 98.8% and 94.3%,
respectively. These values are much higher than those found when evaluating automatic
classification, such as the study by [Braga, 2023], which showed an accuracy of 66% for
an area in the municipality of Campina do Monte Alegre. Another study that also
compared the two methodologies was conducted by [Correia, Batista, and Araujo, 2011],
in which manual mapping was more viable than automatic mapping. Even though the
former took longer time it was easier to identify the features, allowing for greater
precision in the interpretation of deforested areas. The automatic mapping was faster but
had confusing results specifically for anthropic areas (e.g., deforested areas).

Therefore, some methodological challenges to be considered in the process of
automating deforestation detection are the following: processing and analyzing images
with adequate spatial resolution to capture small fragments of deforestation; subdividing
the biome into ecoregions or phytophysiognomic groups; and developing strategies to
map more cloud-prone regions when needed (e.g., temporal mosaics and optical/SAR
data fusion). Related to all these challenges, the ultimate concern is the results' accuracy.
Finally, a more current challenge but a promising opportunity for improving deforestation
mapping accuracy is the classification of time series, which will be discussed in more
detail below.

3. Deforestation detection using time series of images

For the analysis of large Earth observation data sets, [Camara, 2020] proposes a
theoretical support based on event recognition. Time series analysis encompasses aspects
such as pattern matching, trend analysis, change detection, and time series classification,
all of which are considered subtypes of event recognition. In contrast to traditional
approaches that assign static labels to land use classes in an area, events are identified,
such as site-specific temporal transformations. However, adapting machine learning
algorithms to handle the time series of satellite images is crucial. This entails developing
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methods that integrate ecosystem models for a deeper understanding of landscape
dynamics and the extraction of information from extensive Earth observation datasets.

In this context, deforestation is considered an event that occurs in a specific time
and space, associated with the complete removal of the original vegetation cover. Unlike
different land use and cover classes, which may exhibit unique signatures in a time series
of images, the deforestation event manifests as a disruption in the primary vegetation time
series pattern. Initially, this event is followed by exposed soil, which is later replaced by
various patterns of land use and cover. The subsequent cover will generally depend on
the local economic activities. In the Atlantic Forest biome, agricultural use predominates
in the south, while silviculture prevails in some regions in Bahia and Minas Gerais states;
and near metropolises and cities, urban uses are noticed [Bolfe et al. 2020].

Despite their potential to classify land use and cover, few studies discuss the limits
and advantages of using time series classification to map deforestation. Specifically in
forest ecosystems with pronounced seasonal variation, identifying changes in vegetation
cover is complex: some forests show notable seasonality in their photosynthetic rate
[Gamon ef al. 1995], making it difficult to accurately detect small-scale disturbances and
forest changes [Milodowski ef al. 2017]. Several studies have investigated forest cover
changes, employing locally calibrated algorithms for analysis [Brandt et al. 2018;
DeVries et al. 2015; Hall et al. 2009; Hamunyela et al. 2017]. However, monitoring
deforestation in the tropical zone requires collecting, comprehensive processing, and
analyzing remote sensing data to achieve high accuracy. This requires a significant
allocation of financial resources and working time to ensure broad coverage and reliable
results [Stehman 2005].

For the detection of disturbances in the forest and savanna vegetation of the
Cerrado in Maranhdo state, [Campanharo ef al., 2023] utilized the BFASTmonitor
algorithm on NDVT index calculated from Landsat-8 data cubes spanning from 2016 to
2020, available in BDC. The authors compared their results with the 2020 MapBiomas
deforestation product and identified a commission error of 99% for the deforestation
class. In other words, they observed a much higher number of deforestation than
MapBiomas. The algorithm may be highly sensitive to NDVI values calculated for
Cerrado physiognomies. Therefore, conducting additional tests with other spectral indices
and performing separate analyses for each physiognomy could be valuable, as these
ecosystems may exhibit different seasonal dynamics.

Deforestation and degradation of forest landscapes in the state of Rondonia were
detected using spectral mixture analysis and a time series of Landsat images spanning
from 1990 to 2013, as reported by [Bullock et al., 2020]. Spectrally unmixed data, derived
from spectral fractions and the Normalized Degradation Fraction Index (NDFI), were
employed for disturbance monitoring and land cover classification. The Random Forest
algorithm was used for this purpose. The results showed that degradation and
deforestation were mapped, respectively, with 88.0% and 93.3% user accuracy, and
68.1% and 85.3% producer accuracy. Time series analyses proved to be efficient in
differentiating deforestation from degradation and highlighted spatio-temporal patterns
that can serve as a baseline for identifying sudden changes in the landscape.

Additionally, in two distinct regions of the Amazon, [Milodowski et al. 2017]
conducted a comparative analysis of the accuracy of three forest loss products: GFW,
PRODES, and FORMA, concerning high-resolution imagery (RapidEye). The results
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reveal that the spatial patterns of change detected by GFW and PRODES products align
with the changes observed in the high-resolution images. However, they exhibit a
significant negative bias, especially when dealing with smaller deforested areas. For
instance, in Acre, where smaller clearings predominate, both products fail to detect a
substantial amount of forest loss (approximately -27% for GFW and -49% for PRODES).

Ten years of deforestation data, detected by the Global Forest Change (GFC)
initiative and SOS Mata Atlantica, were validated by [Andreacci and Marenzi, 2020] in
the municipality of Araquari (384 km?), Santa Catarina. The GFC uses Landsat temporal
reflectance metrics and classifies as loss year the pixels that lose forest vegetation from
the year 2000 onwards [Hansen ef al. 2013]. SOS Mata Atlantica classifies biannual or
annual deforestation greater than 3 ha via visual interpretation. It was found that 55% of
GFC forest loss was associated with classification errors (i.e., the removal of non-forest
cover), 24% with the removal of forest plantations, and only 21% with the removal of
native forest cover. Automating classification based on optical data faces the significant
challenge of distinguishing native forests from forest plantations established before the
base year of the analysis. SOS MA, on the other hand, did not exhibit a classification error
but correctly identified only 31% of the native forest deforestation correctly mapped by
the GFC. This evidence underscores the importance of complementing automated
deforestation detection with visual inspection routines of high-resolution images to
validate the results.

In the Atlantic Forest, [ Tramontina and Pereira, 2019] investigated the time series
of the NDVI and EVI vegetation indices across different types of land cover. They
observed a direct relationship between climate seasonality and vegetation, characterized
by distinct seasonal patterns in the time series. These patterns were marked by higher
peaks during the rainy season and lower values during the dry season. Deforestation
polygons were determined by comparing the time series thresholds for NDVI (0.77) and
EVI(0.40), which served as a reference for forest cover between the years 2013 and 2016.
While NDVI facilitated the visualization of deforestation, the EVI index exhibited greater
annual variability and sensitivity to changes.

4. Recommendations

To further analyze the implications of automatic mapping deforestation in the Atlantic
Forest, Table 1 summarizes how some biome’s particularities relates to methodological
aspects, opportunities, and challenges presented so far, as well as possible
recommendation for the PRODES-MA digital transition. This emphasizes the importance
of considering the biome's complexities considering the methodological opportunities and
limitations in automatically detecting deforestation.
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Table 1. Summary of perspectives, challenges and recommendations for automatic
detection of deforestation in the Atlantic

Atlantic Methodoloaical Opportunities/
Forest as ectg possibilities/ Challenges Recommendations Reference
Issues P perspectives
Detecting many Noisy map,
Automatic more confusing loss
Land Use detection of deforestation of native To cross-validate the [Andreacci &
and Land forest removal fragments non- forests with results by ateam that  Marenzi,
Cover year-by-year from  observed by forestry (25%) has local experts 2020]
a base year manual mapping  or non-forest
initiatives areas (55%)
Indices
Determining sensitive to .
o To analyze in other
thresholds of seasonality: .
. study areas the [Tramontina
Vegetation Index  NDVIand EVIto  values are L : i
. . o sensibility of optimal & Pereira,
thresholds differentiate high in the
- thresholds to detect 2019]
forests from non-  rainy and low .
. deforestation
forests. in the dry
season
New studies
o are required to
P_art|t|o_n of the Locallyadjusting divide the To study automatic .
biome into A . e [Silva et al.,
classification by biome or test classification after the
homogenous ; . o ; 2022]
ecoregions previous and partition of the biome
areas .
established
Seasonality division
Providing A mosaic in To investigate how
: . some seasonally
analysis ready time can mask .
. ; affected [Simoes et
Data cubes data for regional  seasonality : .
physiognomies of the  al., 2021]
and local effects on X
) Atlantic Forest would
analyses vegetation : :
benefit from mosaics
: High . To evaluate the
Mapping commission oo
. sensitivity of the
deforestation error observed alaorithm to other [Campanharo
BFAST algorithm  based on breaks ~ using NDVlas ~ 2.9o1"™m o P
oo X spectral indices and et al., 2023]
in time series the S
in different
trend explanatory hvtophvsiognomies
variable phytopnysiog
A combination
Search for cloud-  of
Partition of the fr.ee images in methodologies To S'[l-,I.dy gutomaﬂc [Silva et al.,
biome different regions should be classification after the 2022]
of the Atlantic created to map  partition of the biome
forest the whole
Atlantic Forest
Undesired
Providing effects from .
analysis ready cloud masking T.O run new tes_ts with
: L different mosaics and  PRODES-
Cloud Data cubes data with minimal  procedure can .
! . time frames are MA Team
cover cloud interfere with
needed

contamination

visual
interpretation

Fusion optic/SAR

Facilitating better
detection of
deforestation in
scenarios with
cloud cover
greater than 5%

A study carried
out based on a
Convolutional
Network
trained and
tested by not
homogeneous
tiles

To test fusion with
other classifiers like
RandomForest, being
careful with sample
quality

[Ferrari et al.,
2023]
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Small
fragments

Spatial resolution
to detect
deforestation
fragments

Increasing
spatial resolution
allows from 37%
to 89% more
deforested
fragments
detection. This
was noticed
when comparing
maps from
Sentinel-2 and
Landsat 8
images

The remaining
fragments are
very small and
changes
detected in the
landscape can
be minimal

To prioritize satellite
images with the
highest available
spatial resolution to
ensure accurate
detection and precise
delineation of
landscape changes

[Passos et
al., 2023]
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4. Conclusion

Automatic deforestation detection in the Atlantic Forest presents many methodological
challenges. The transition to Sentinel-2 images has brought improvements in spatial
resolution for mapping deforested areas, as well as for distinguishing different types of
land use, such as agricultural areas and reforestation. However, the region's climatic and
phytophysiognomic variability requires adaptive approaches, such as subdivision into
ecoregions. Combining Sentinel-2 and Sentinel-1 data has been promised for detecting
deforestation under cloud cover conditions that exceed 5%. Overcoming these challenges
is essential to enhance the accuracy of deforestation detection in the Atlantic Forest.

Classifying image time series for deforestation detection is a valuable approach,
as it involves identifying breaks in landscape composition trends. However, identifying
deforestation in forest ecosystems is challenging due to the seasonality and complexity
of vegetation changes, which are not necessarily related to the removal of vegetation
cover. Algorithms like BFASTmonitor have demonstrated sensitivity to these seasonal
variations, leading to overestimated deforestation detection. Therefore, conducting more
tests with this and other algorithms is essential to overcome the challenges associated
with analyzing time series data. While temporal analysis reveals significant spatial and
temporal patterns, visual inspection of high-resolution images remains crucial for
validation.

The PRODES-MA represents an important step in enhancing the process of
monitoring deforestation in this biodiversity hotspot. Two important recommendations to
consider are (1) employing high spatial resolution images and (2) improving and testing
algorithms for automated deforestation detection based on time series images. However,
methodological challenges such as accounting for seasonality, addressing the diversity of
phytophysiognomies, and making precise distinctions between deforestation,
degradation, and other land uses still require further discussion and in-depth study to
enhance mapping accuracy and overall quality.
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