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Transfer Learning!



Transfer Learning
❖ Improve the performance of target learners on target 

domains by transferring the knowledge contained in 
related source domains.



Transfer Learning
❖ Homogeneous Transfer Learning: 

❖ Heterogeneous Transfer Learning: 

𝒳SOURCE = 𝒳TARGET

𝒳SOURCE ≠ 𝒳TARGET
Source: K. Weiss, T. M. Khoshgoftaar, and D. Wang. 2016. A survey of transfer learning.

Journal of Big Data 3 (2016), 9.
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Project IDeepS
❖ Classificação de imagens via redes neurais profundas e 

grandes bases de dados para aplicações aeroespaciais.

Source: https://github.com/vsantjr/IDeepS



IDeepS: Objective 1
❖ Large-scale investigation, deep neural networks 

(DNNs), satellite image classification.



IDeepS: Objective 2
❖ Best DNNs, drones, autonomy.



IDeepS: Higher Objective

Remote Sensing

Drones

Recommendations/Suggestions



Scientific Software Testing
❖ Scientific software: non-trivial outputs such as 2D, 3D.

❖ Testing is not straightforward: non-deterministic 
behaviour, non-trivial outputs, test automation (oracle).

Medicine Software
(CT scan)

Social/Biological Modelling 
(COVID-19)



Motivation
❖ Deep convolutional neural network (CNN).

Source: https://vinodsblog.com/2018/10/15/everything-you-need-to-know-about-convolutional-neural-networks/



Motivation



This Study: Main Contributions
❖ Method: Test Oracle based on CNN (TOrC).

❖ Technique: Feature and Neighbourhood-based 
Analysis (FNA).



The TOrC Method
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TOrC: OIG
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Oracle Information Generation
(OIG).

CIT = Combinatorial interaction testing.



TOrC: Generating Images
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Scientific Model
Image

Correct codes (correct class) and 
second-order mutants (mutant class).

PS: Binary classification problem.



TOrC: Select Data
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Ranking based on image similarity 
metrics (get more dissimilar images).



TOrC: Data Augmentation
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Decreasing the errors (image misclassifications) due to
the ML models by reducing overfitting.



TOrC: Data Augmentation

Data-augmented image
(horizontal flip + cutout transformations)

Original image

PS: Fire spreading model (cellular space).



TOrC: Oracle Procedure
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A CNN is the Oracle Procedure (OP). 



TOrC: Oracle Procedure
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Transfer learning (pretrained models). 



TOrC: Transfer Learning
❖ Fine-tuning: Instead of random initialisation, the model 

is initialised with a pretrained model. Layers: unfrozen.

ImageNet

TerraME



TOrC: Transfer Learning
❖ Fine-tuning and Heterogenous Transfer Learning.

ImageNet

TerraME



TOrC: Inference Phase
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Test set is created based on the outputs of programs completely different
from the ones used to create the training and validation sets.



TOrC: Transfer Learning
❖ It is possible that we have a third domain?

Training Set Test Set



Experimental Design
❖ Research Question 1 (RQ_1):

❖ Does a deeper CNN (more layers) always have better 
performance compared to a shallower (less layers) one?

❖ Research Question 2 (RQ_2):

❖ If we do not change the architecture of a predefined model/
network, is pure transfer learning able to get the same or 
better performances compared to extended architectures of 
the model?



Scientific Models
❖ Second-order mutants.



Samples

SIR model: mutantSIR model: correct

PS: Susceptible, Infected and Recovered (SIR) model (plot). 
COVID-19.



CNNs



CNNs
Architecture configurations.



CNNs
Number of millions (M) of trainable parameters.



Architecture Configurations
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Architecture Configurations
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Pure Transfer Learning (TL): as-is configuration.



Architecture Configurations
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TLE1L: one extra layer. 

Feature detector and description algorithm Oriented FAST and 
Rotated BRIEF (ORB): 1,024 elements. 



Architecture Configurations
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TLE2L: TLE1L + another extra layer. 

256 neurons. 



Results and Discussion



Results and Discussion
Within TD with TL.



Results and Discussion
Within TD with all architecture configurations.



RQ_1: Weighted Ranking
❖ 1. DenseNet-161.

❖ 2. ResNet-18 and Inception v3 (tie).

❖ 4. ResNet-34.

❖ 5. ResNeXt-50-32x4d.

❖ 6. Wide ResNet-50-2.

❖ 7. ResNet-152. 



Answering RQ_1
❖ Does a deeper CNN (more layers) always have better 

performance compared to a shallower (less layers) one?

❖ R: A deeper CNN does not necessarily have better 
performance than a shallower one. When reusing pretrained 
models to address a new problem (as the test oracle task we 
did here), it is recommended to eventually start with 
shallower networks, which usually have smaller number of 
trainable parameters and usually demand less powerful 
computational infrastructure.



Possible Recommendation
❖ DenseNet-161 was also the best here (classification, Cerrado images, 11 

DNNs):

❖ M. S. Miranda, L. F. A. Silva, S. F. dos Santos, V. A. Santiago Júnior, 
T. S. Körting, and J. Almeida. A High-Spatial Resolution Dataset 
and Few-shot Deep Learning Benchmark for Image Classification. 
In: The 35th Conference on Graphics, Patterns and Images 
(SIBGRAPI 2022), 2022, Natal, RN, Brazil. Accepted for publication.

Source: https://github.com/ai4luc/CerraData-code-data



RQ_2: Transfer Learning
TL X max(TLE1L, TLE2L): Only in two out of 14 situations 

there was a decrease in the accuracy.



RQ_2: Transfer Learning
TD, TLE1L, Inception v3: increase of 36.62% in the accuracy.



Answering RQ_2
❖ If we do not change the architecture of a predefined 

model/network, is pure transfer learning able to get the 
same or better performances compared to extended 
architectures of the model?

❖ R: Pure transfer learning is a valuable technique within 
DNNs but eventually we have to extend previous 
model’s architectures to get better results. Moreover, the 
related domain requirement seems to be crucial.



Richard Feynman
❖ Nobel Prize in Physics  (1965): “What I cannot create, I 

do not understand”.

Explainability!



Responsible AI

Source: https://h2o.ai/insights/responsible-ai/



Explainable AI (XAI)

Source: https://h2o.ai/insights/responsible-ai/



XAI: DARPA

Source: https://www.darpa.mil/program/explainable-artificial-intelligence



TOrC: Evaluate Classification
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The FNA Technique
❖ FNA: straightforward and black-box approach relying 

only on the images of the training and test sets.

❖ FNA: based on the K-nearest neighbours (KNN) ML 
algorithm.

Source: https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/



The FNA Technique

As for FNA, we define six classes: 
tr_cor; 
tr_mut;
mi_cor; 
mi_mut;
co_cor;
co_mut.



The FNA Technique

Define the number of nearest neighbours, ,
for each image  of the test set, where each 
image  is viewed as a centroid of a cluster.

n
is

is



The FNA Technique



The FNA Technique



The FNA Technique

If an image of the correct class of the
test set was misclassified (mi_cor), we would expect 

that the corresponding element in  is tr_mut.P



FNA: Evaluation
❖ Three best models: DenseNet-161, ResNet-18, and Inception v3. 

❖ Entire training set of both profiles (TD and SS) and the 29 
corner case images of the test set.

❖ Five of these test images: misclassified by all 18 
combinations of model, dataset profile, and architecture 
configuration;

❖ Remaining 24 images: correctly classified by all 18 
combinations.



FNA: Evaluation
❖ Image features: mean, Shannon entropy, contrast, 

dissimilarity, homogeneity, correlation, and angular 
second-moment. 

❖ Number of neighbours, , in TD is 93 and 99 in SS. n



FNA: Evaluation
❖ For both profiles, TD and SS, we got the same result. In 

only one (same image) out of the 29 corner case images 
FNA failed.

❖ FNA’s accuracy: . 28/29 = 0.9655



To sum up
❖ Fields, techniques related to this research:

❖ Software testing (test oracle, CIT, mutation analysis);

❖ Deep learning;

❖ Deep convolutional neural networks (CNNs);

❖ Transfer learning;

❖ Explainable artificial intelligence;

❖ Data-centric artificial intelligence;



To sum up
❖ Fields, techniques related to this research (cont):

❖ Data augmentation;

❖ Image similarity metrics (structural similarity, Fréchet 
Inception Distance (FID));

❖ Image features;

❖ Oriented FAST and Rotated BRIEF (ORB) algorithm;

❖ K-nearest neighbours (KNN);

❖ Apriori algorithm.



Article

Source: https://ieeexplore.ieee.org/document/9796455



Thank You!

E-mail: valdivino.santiago@inpe.br

Web: http://www.lac.inpe.br/~valdivino/

GitHub: https://github.com/vsantjr

http://www.lac.inpe.br/~valdivino/
https://github.com/vsantjr
http://www.lac.inpe.br/~valdivino/
https://github.com/vsantjr


What to do?
❖ Detailed analysis of the features/characteristics of the 

images in the sets (training, validation, test).

❖ Generate more images (data augmentation; GANs).

❖ Trying different splittings (training, validation, test).

❖ Tuning of hyper-parameters.

❖ “Mosaic” data augmentation. Center cropping (224x224) 
makes more difficult the job of the learner.

❖ Selection of another model rather than CNN.
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