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Abstract. Deep Convolutional Neural Networks (DCNN) have played an im-
portant role in several application domains and also in remote sensing image
classification and object detection. In this article, we extend a previously pro-
posed model, used to classify forest areas as preserved or non-preserved, in
order to classify the water volume of dams in the state of Sdo Paulo, Brazil,
using remote sensing images. Our revised DCNN addresses a multi-class clas-
stfication problem while our previous one was devised for binary classification.
Moreover, our model relies on heterogeneous images, considering different sen-
sors and also different spatial resolutions regarding the data sets. Results show
that the overall accuracy of our model was 85.56% considering images from the
Atibainha and Jaguari dams of the Cantareira water supply system to compose
the testing set, demonstrating the feasibility of our approach to these types of
applications. This is an indication of the good generalization capabilities of our
model.

1. Introduction

Climate change, population increase and water consumption are pointed out as the main
factors of the water crisis in Southeast Brazil [INPE 2015], which prolonged drought
brings significant impacts not only to the society, with the containment of water sup-
ply and increase in rates of electricity, but also to the environment, extinction of aquatic
species, the disappearance of springs and rivers. The water volume and flow are moni-
tored not only by rainfall stations, as well as by satellites, through remote sensing images,
enabling the observation of activities on the Earth’s surface.

Recently, Deep Learning (DL) techniques have often been implemented to mon-
itor the water flow in rivers and dams, especially Deep Neural Networks (DNN), due
to the efficiency in extracting and detecting patterns in the data, even as by the abil-
ity to classify and segment objects in images, group data sets and make predictions
[Barino and dos Santos 2020]. The most popular type of DNN is the deep Convolutional
Neural Network (DCNN) which is based on the human visual system [Géron 2019]. For
image processing, convolutions work as filters that extract low and high-level features,
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such as edge and texture, making the model capable of classifying and segmenting im-
ages, were also breaking down the image, following by its reconstruction, emphasizing
the object, a process called encoder-decoder [Ghassemi and Magli 2019].

The volume, variety and velocity of water-related data are growing due to in-
creased attention to topics such as disaster response, water resource management and
climate change. With the widening availability of computing resources and the popu-
larity of DL, the data is transformed into practical knowledge, revolutionizing the water
industry [Sit et al. 2020]. There are several works using the application of DL, high-
lighting the CNN, being used in, extraction of water bodies from remote sensing im-
ages [Chen et al. 2018] and [Namikawa et al. 1], segmentation separating water from
land, snow, ice, clouds and shadows [Isikdogan et al. 2017], water reservoir recognition
[Fang et al. 2019], reservoir volume simulation and prediction [Baek et al. 2020].

Therefore, in this article we evaluate the performance of a deep convolu-
tional neural network, previously used for binary classification of preserved and non-
preserved areas in the context of Cerrado on the Brazilian states of Tocantins and Goids
[Miranda et al. 2021], for classification of the volume of water in the Atibainha and
Jaguari dams in the state of Sao Paulo, as normal, low and critical, using satellite images
with different spatial resolution, since it was trained with 10 meters of spatial resolution
and tested with 2 meters of spatial resolution, in order to assess the performance of the
model.

This paper is organized as follows. Section 2 introduce related works. Section 3
presents Material and Methods. Results and discussion are presented in Section 5. Section
5 presents conclusions and future directions.

2. Related work

There is a great interest in the remote sensing community to rely on DL techniques to
help to develop their systems. In [Ma et al. 2019], authors presented a meta-analysis
and review of DL applied to remote sensing and they concluded that DL models have
been used for several remote sensing image analysis land use and land cover (LULC)
classification, and segmentation. Despite the success of DL, the authors mentioned that
its performance in LULC classification is still inferior compared to scene classification
and object detection. This remark is just to emphasize the need for more experimentation,
in different contexts, to perceive the performance of DL.

With this, CNN has been used for several tasks in this area of study, which encour-
ages their use in different applications, precisely because of the ability to process and learn
about complex and large data. For example, [Khryashchev et al. 2018] CNN was applied
to perform the detection of geographic objects with the help of experts, to carry out the
validation of the results, where the segmentation of images has found application in ur-
ban planning, forest management, and climate modelling. In addition, [Ai et al. 2020]
proposes using different remote sensing images in four spectral bands, red, green and in-
frared, to retrieve the water depth, taking into account the non-linear relationship between
the value of radiance and the water depth value of adjacent and central pixels. Quanti-
tative analysis and experimental results showed that the accuracy of the CNN model in
retrieving shallow sea areas is improved by more than 50%, where, the RMSE accuracy
can reach 0.9485.
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In [Fernandes et al. 2020], the authors studied and evaluated two distinct ap-
proaches for detecting water tanks and swimming pools in satellite images, which can
be useful in monitoring water-related diseases. The first method uses a support vector
machine to classify into positive and negative a discretized colour histogram of a certain
segment of the original image, while the second method used the Faster R-CNN structure
to detect these objects, built with a training set composed by swimming pools and water
tanks on the city of Belo Horizonte, Brazil. The results demonstrated that the DL method
using CNN outperformed the shallow strategy, achieving an accuracy of more than 93%
in the pool detection task and 73% for water tanks.

In the work of the [Pan et al. 2020], the authors performed a comparative study
of water indices and image classification algorithms to map water bodies using 24 high-
resolution Landsat images, using two unsupervised methods, the zero water index thresh-
old HO method and Otsu automatic threshold selection method, and one supervised, the
K-nearest neighbours (KNN) method. The study showed that the unsupervised classifica-
tion achieved results comparable to supervised, showing that in some cases we can reduce
the computational cost applying an unsupervised classification.

3. Material and methods

3.1. Study area

The study area is composed of nine dams from the state of Sao Paulo which is one of
the Brazilian states more affected by drought, and such dams are shown in Figure 1. Ac-
cording to [SABESP 2021], the Atibainha, Jacarei, Jaguari dams are from the Cantareira
system of water; Billings and Pedro Beicht dams respectively belong to the Guarapi-
ranga and Alto Cotia systems water. The Itupararanga and Barra Bonita dams belong to
Sorocaba and Médio Tieté Hydrographic Basin, the Serraria and Serraria dams belong to
Ribeira de Iguape and South Coast Hydrographic Basin, according to [SIGRH 2020].
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Figure 1. Study areas.
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3.2. Data collection

The data collection consists of satellite images (rasters) obtained from the image catalogue
of the National Institute for Space Research, comprising the study regions. Therefore, two
data sets were created, one for training and other for testing.

The training image set consists of 120 images, each one with 8.562 x 12.736
pixels, recorded by the CBERS-4’s PAN10M sensor, 10 meters of spatial resolution. We
considered the near infrared (NIR), red (R) and green (G) bands. It is deserving noting
that the nine dams were used as a study area for this dataset, looking at them during the
period from 2015 to 2021, considering the dates with the lowest occurrence of cloud cover
in the images.

For testing, the dataset consists of 3 images, each one with 56.842 x 58.344 pix-
els, from the CBERS-4A’s WPM camera, whose multi-spectral and panchromatic lenses
have, respectively, 8 and 2 meters of spatial resolution, considering the NIR, R, G and
Panchromatic (PAN2M) bands. It is worth emphasizing that for this dataset the Juguari
and Atibainha dams were used, both from the Cantareira system, observed during the
dates September 3, 2020, April 8, and August 10, 2021.

3.2.1. Data Preprocessing

The training set images were composed of NIR, R and G bands in order to highlight the
edges of the dams, based on the work of [Namikawa et al. 2019]. In Figure 2, colours
pink, red and green represent the NIR, R, and G bands, respectively. Then, the regions of
interest were cut, in the proportion of 224 x 224 pixels, generating a total of 770 images.

Clipping on the
region of interest

Band composition Composite Raster Sample of each class

Critical
class

NIR RED GREEN Multispectral 224x224px cutout;
image Rendered images.

Figure 2. Training dataset: Composition of NIR, Red and Green bands, clipping
interest areas, and organization of images by classes.

Based on hydrological data provided by [SABESP 2021], the images of the train-
ing and testing datasets were classified into normal when the volume of the dam and
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greater than 60% of the total capacity; low, when the volume is between 40% to 60% of
full capacity; and critical, when the volume is less than 40% of the total capacity. Thus,
353,239 and 178 images were obtained for classes normal, low and critical, respectively,
as illustrated in Figures 2 and 3.

Given the difference in the amount of data between the threes classes, we used
the static data augmentation technique, which applies transformations to images such as
rotate and flip. In addition, it was possible to increase and balance the number of images
in each category, also, helping to equalize the process of training, avoiding that model
learns more about one of the classes. We obtained 1,527 images per class, in total 4,581
training samples.

Regarding the test dataset, the images were composed using the NIR, R and G
bands. Each multi-spectral image generated in the composition, with a spatial resolution
of 8 meters, was used in the fusion with its respective panchromatic raster, thus generating
a multi-spectral image with a spatial resolution of 2 meters. Finally, we cropped the
images with the dimensions 224 x 224 pixels and obtained 100 images in total, where 32
are for the critical, 34 for the low and 34 for the normal classes, as shown in Figure 3.
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NIR RED GREEN Multispectral imaging Multispectral image 224x224px cutout;
Panchromatic image high spatial resolution Rendered images.

Figure 3. Testing dataset: Composition of NIR, R and G bands, fusion of the
composite image with the panchromatic band, clipping of areas of interest and
organization of images by classes.

3.3. The model

A DCNN model was extended from our previous work [Miranda et al. 2021] for the bi-
nary classification of vegetated regions preserved and non-preserved on the Brazilian
Cerrado. However, for this work, we made adjustments in the hyper-parameters in our
network architecture for the multi-class task. The model is shown in Figure 4.

The training images are inserted in the convolutional layers, with 224 x 224 input
format, 3 x 3 kernel, activated by the ReLu function, after each convolution a MaxPool-
ing2D layer, pooling (2, 2) was added, and a Dropout layer, with a probability of 25%.
After the convolution layers, we have 4 fully connected layers, each with 256 neurons, ac-
tivated by the ReLu function, and 4 dropout layers with a probability of 25%. The output
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Figure 4. Deep Learning Model Used for Model Training.

layer has 3 neurons, activated by the Softmax function, returning a probabilistic distribu-
tion. The model was trained using the Adam optimizer, adjusted for learning rate=0.001,
£1=0.9, $,=0.999, ¢=1e-07, which consists of a descending stochastic gradient method

based on adaptive moment estimation first and second-order, and the loss function

was

categorical-crossentropy. For training, we defined 100 epochs, saving the model at the

end of the run.

There are three basic differences between this new model and our previous one.
About the four convolutional layers, we had 64, 128, 64, 128 filters, respectively, now we
have 128, 128, 64, 64 filters. This change was introduced because the two first layers get
more pieces of information about the images input and the others get the main features,

coming from the previous layers. For the hidden layers, we added more one dense

and

dropout layers. In the output, we have three neurons since we are dealing with three

classes (multi-class problem).

3.3.1. Metric

In order to evaluate the performance of our model, we used the accuracy metric, which

divides the value of correct predictions by the total number of samples:

#correct predictions
#samples

accuracy =

)]

We assessed the accuracy per class and also considering the entire testing set (over-

all accuracy).

4. Results and discussion

Figure 5 presents the accuracy by each class and the overall accuracy, where the normal
class images had only 2.94% samples which were incorrectly labelled, and our model
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presented accuracies of 79.31% and 77.78% for the low and critical classes, respectively.
The overall accuracy regarding the test set is 85.56%. Some classification errors can be
observed in Figure 6 where, for each image, we show the true value and the incorrect
prediction.

294% Overall 85,56%

Critical 14,44% Accuracy

Dataset:

Dataset:

Normal

79,31%

77,78%

. Normal class Low class . Critical class . Classification correct Classification error

Figure 5. Overall and per class accuracy of the test images.

Analyzing Figure 5, the errors regarding the normal class are all related to the low
class (i.e. the DCNN misclassified a normal test image as a low test image) while there
are five times more errors related to the normal class compared to the critical class, within
the accuracy of the low class in isolation. When looking at the errors related to the critical
class, we see a tie between the two other classes (normal and low). Therefore, the model
presents more difficult to differentiate the low and critical classes.

Normal class Critical class
Classification error Classifications error
s
Labelled as Labelied as Labelled as Labelled as Label\ed as Labeiled as Labehed as
Low Normal Normal Critical Normal
Classifications correct Classifications correct

Labelied as Labelled as. _abe”ed as uabeHed as Labelled as Labelled as Labelled as

Labelledas  Labelled as ] o be
Critical Critical Critical

Normal Normal Normal ow

Figure 6. Classification errors by subset of test images.

Figure 6 shows some incorrectly and correctly labelled images for each class.
The errors of classification are related to the difference between the training and test
sets in terms of spatial resolution since the model was trained with 8 meters of spatial
resolution images and tested with images with 2 meters, although the model had labelled
correctly the images in their respective class. It is worth noting that a parameter used to
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assess the correctness of image classification was the water volume report provided by
[SABESP 2021].

The revised DCNN is naturally different from the previous one. However, the
general conception of our design remains the same. In the previous work, it was obtained
an overall accuracy of 87% which is basically the same as our current model (85.56%).
Hence, this is an indication of the good generalization capabilities of our approach, since
we have a completely different context (water) compared to our previous study (vege-
tation). Even though we can not underestimate the pre-processing steps that, properly
conducted, contribute to the success of our DL method, the network structure, hyper-
parameter values seem to be robust for different contexts and satellite images.

5. Conclusion

Precisely classifying the volume of water in dams is an important task especially in loca-
tions where droughts are more frequent. In this article, we extended a previous proposed
DCNN, used to classify vegetation areas, to classify the water volume of dams in the state
of Sdo Paulo, Brazil. Our revised CNN addresses a multi-class classification problem and
obtained an overall accuracy of 85.56% considering the images from the Atibainha and
Jaguari dams of the Cantareira water supply system to compose the testing dataset. This
accuracy is close to that obtained in our previous work [Miranda et al. 2021], indicating
good generalization capabilities of our model. We believe these are encouraging results,
as the model achieves good performance even if in the training set we have images with
less detailed spatial resolutions compared to the testing set.

Nevertheless, this research can be improved regarding the number of samples for
training; use of images, such as Sentinel-3, which provide altimetry values of water bod-
ies, as auxiliary information; image pre-processing techniques for detection or segmenta-
tion of the edges of water bodies; and more robust adjustments of the hyper-parameters of
the DCNN. Also, it is possible to extract time series from the images and make forecasts
of periods of the water crisis, and thus collaborate in the development of supply, con-
sumption, and generation strategies for hydroelectric energy. Certainly, DL techniques
are potential collaborators for environmental monitoring, concerning the consumption
and management of water bodies. In addition, they enrich the techniques used in the
area of remote sensings, such as image classification, making it more agile and diligent,
especially when processing large volumes of data.
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