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Abstract. Complex Networks have been widely applied to climate data analysis,
identifying relations and patterns in the atmosphere on a long-term scale. How-
ever, a few investigations have made use of Complex Networks to study meteo-
rology (dealing with short-term changes in the atmosphere). With this in mind,
the purpose of the present work is to make some progress in the spatial anal-
ysis of metrics in meteorological networks, specifically in precipitation events.
We present some results for a study case comprising the Tamanduateı́ basin, in
which we could analyze the spatial dependence intrinsic in the network struc-
ture.

Resumo. Redes Complexas têm sido largamente aplicadas na análise de dados
climáticos, na tentativa de identificar relações e padrões na atmosfera a longo
prazo. Algumas poucas pesquisas fizeram uso das Redes Complexas no estudo
da Meteorologia (tratando de mudanças a curto prazo na atmosfera). Com base
nisso, o presente trabalho tem o propósito de buscar algum avanço na análise
espacial de métricas em redes meteorológicas, mais especificamente, em eventos
de precipitação. Alguns resultados são apresentados para um estudo de caso
compreendendo a bacia do rio Tamanduateı́, nos quais foi possı́vel analisar a
dependência espacial intrı́nsica na estrutura da rede.

1. Introduction
Based on Graph Theory, the study of Complex Networks represents a relevant contribu-
tion to science as a tool to describe the structure of a wide range of complex systems
in nature and society, such as climate events [Barabási and Pósfai 2016]. In such a con-
text, Complex networks have been applied to climate data analysis, aiming to identify
structural patterns and teleconnections. Those researches use similarity measures such as
Pearson correlation, event synchronization, or mutual information to construct the net-
work connections. In terms of data, they are based on long time series of atmospheric
variables, ranging from months to several years [Tsonis et al. 2006, Boers et al. 2019].

A few works have been held specifically in the weather domain, dealing with
short-term changes in the atmosphere and manipulating spatial and temporal high-
resolution data through complex networks. One of those few examples handled precipita-
tion data from weather radar, and they achieved significant results in community detection
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based on a time series of only ten days, with 1km of spatial resolution [Ceron et al. 2019].
The behavior of topological metrics in meteorological networks is a characteristic that re-
mains unknown.

With this in mind, the purpose of the present work is to make some progress in the
spatial analysis of metrics in meteorological networks, specifically in precipitation events.

Due to climate changes, extreme precipitation events are becoming more frequent,
with several impacts on society. Finding spatial patterns of precipitation events could rep-
resent a significant advance in atmospheric science and several applications, from health
geography to resilient urban mobility [Santos et al. 2017].

2. Materials and Methods

2.1. Data

The case study presented here was held in São Paulo Metropolitan Region, specifically
comprising the area of Tamanduateı́ basin, from January of 2015. Located on the Tiete
river’s left margin, the Tamanduatei basin has its source in the city of Mauá. It also crosses
the towns of Diadema, São Caetano do Sul, besides the eastern and central zones of São
Paulo [Ramalho 2007].

Due to its spatial and temporal high-resolution data, we used weather radar time
series as our base dataset. Considering the mentioned study area, the weather radar lo-
cated in the city of São Roque is the one that offers the best coverage, with a range of
250 kilometers. Its scans provide data with 1 kilometer of spatial resolution every 10
minutes [DECEA 2010]. The raw data is composed of a volume scan which contains
scan values for different angles of elevation. For each of these elevation angles, an az-
imuth scan is performed, and such a scan is called Plan Position Indicator (PPI). The São
Roque radar has 15 elevation angles, starting at 0.5 degrees to approximately 20 degrees
[Redemet 2015].

For the first study cases, we used PPI data corresponding to the first level of ele-
vation. These data are available in binary files with a grid of values. Such information is
reflectivity value (dBZ), which we can convert into estimated rainfall rate. In summary,
the higher the reflectivity value, the more intense is the estimated precipitation. As men-
tioned before, the selected time series comprises the entire month of January of 2015 with
a temporal resolution of 10 minutes, so it is composed of more than 4400 scans in time,
each one of them including 783 points in space.

2.2. Network Construction and Analysis

Spatial embedding is a physical property inherent in many phenomena modeled through
networks, including the meteorological events addressed in this research. Therefore, we
use here geographical graphs, which are graphs whose nodes have a known geographic
location, and their edges contain an intrinsic spatial dependency [Santos et al. 2017].

We developed a tool to manage the input data and construct the network taking
into account its geographical component. We called it GIS4Graph. It delivers output files
with topological metrics calculated. One of these outputs is a shapefile, a file compatible
with GIS platforms, and allows graph visualization in geographical space.
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Figure 1. Graph4GIS flowchart

The application is composed of 3 main modules: Data, Graph, and Output. The
developed flowchart is presented in Figure 1. The first module is responsible for dealing
with the binary files provided by the weather radar. It reads all data and creates a time
series for each grid point. Then, it calculates the Pearson correlation between each pair of
them.

The second module deals directly with graph construction and metrics calculation.
First of all, it generates a weighted adjacency matrix based on the Pearson correlation
values - eliminating the ones under a predefined threshold. Next, it builds the graph with
one node for each grid point and the edges with the weights indicated by the adjacency
matrix. After that, it calculates the topological metrics, both global and nodes specific.
Degree, clustering coefficient, and average shortest path are a few examples of them.

The results exportation is done by the third module, which delivers a shapefile with
a set of points and lines, geographically representing the graph’s nodes and edges. The
metrics of each node appears as an attribute of the point in the shapefile. The application
also generates a CSV file with all the global network metrics. The Output module also
exports some charts to support auxiliary analysis.

We execute the application inputting different correlation thresholds, and we an-
alyze the network diameter in each case. The final network is the one with the highest
diameter metric, aiming to promote the best possible balance between removing the least
relevant edges and keeping the most important ones - as applied in previous papers in
the literature [Santos et al. 2019, Ceron et al. 2019]. The threshold in which the network
achieves the highest diameter value is called a critical threshold.
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3. Results
Before analyzing the network built for the mentioned case study, we can observe the
spatial dependence inherent in such data on Figures 2 and 3. The first one shows how
the (temporal) correlation between the (time series associated with each) pairs of points
is related to the geographical (euclidean) distance between them. We grouped correlation
values into three categories - minimum, medium, and maximum - respectively colored
in red, green, and blue. For the red group, it is possible to see a spatial dependence
up to approximately 3 km. Regarding medium and maximum categories, the temporal
correlation is considerably high between 1 and 10 km of distance, but we can still observe
the influence of spatial dependence until 20 km.

Figure 2. Temporal Correlation versus Geographical distance between each
pair of points. Correlation values are grouped into three categories - minimum,
medium and maximum values - respectively coloured in red, green and blue.

We can also notice that the minimum correlations for the geographically nearest
ten pairs of points are even higher than the maximum correlations for those more distant
than 28 km. Such property is an indicator of how well-behaved the relation between
temporal correlations and geographical distances in this network structure.

The scatter plot on Figure 3 presents the relation between the euclidean distance
and the topological distance between each pair of nodes - the network path with the short-
est number of edges between those nodes. We can verify that there is strong linearity in
such relation, with a correlation coefficient (R2) equals to 0.767 and a slope of 1.16. Such
a slope value indicates that as the geographical distance increases, the impact is even more
significant on the topological distance.

This chart also shows the largest edge in the network (2.5 km), indicated by the
maximum geographical distance for the pairs of points within a topological distance of 1
edge. Therefore, there are no pairs of points directly connected in a distance greater than
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2.5 km. On the other hand, there are very close nodes, geographically neighbors, but with
a high topological distance, up to 12 edges.

The geographical network built up by graph4GIS is introduced in Figure 4. It
used a threshold of 0.86, which was the critical threshold for our study case. This output
allows us to visualize the structure of network connections spatially.

Figure 3. Topological distance versus Geographical (euclidean) distance

Figure 4. Geographical network for Tamanduateı́ Basin. The white points repre-
sent the nodes, the blue segments are the edges of the network, and the yellow
border is the outline of the basin.
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4. Final Considerations
This work applied Complex Networks in the study of meteorological networks, aiming
to explore topological metrics’ behavior in such a context. Based on precipitation time
series, this paper introduced some spatial analysis of the system’s topological structure.

As a result, we could identify the spatial dependence of temporal correlations,
such as the linearity in the relation between the topological and geographical distances
between different pairs of points in a hydrological basin. We were also able to verify
some peculiarities in the network, such as the maximum geographical length of an edge
(2.5 km) and a high maximum topological distance between neighboring nodes (11 edges
on the shortest path between nodes closer than 1km to each other).

In future works, we would like to analyze datasets for specific meteorological
processes to identify spacial and topological signatures. Besides, we intend to approach
larger study areas, including the entire São Paulo Metropolitan Region, and other graph
measures, such as degree, clustering coefficient, betweenness, and diameter.
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