
SOLAP Query Processing over IoT Networks
in Smart Cities: A Novel Architecture

João Paulo Clarindo dos Santos1, João Pedro de Carvalho Castro1,2,
Cristina Dutra de Aguiar Ciferri1

1Institute of Mathematics and Computer Science – University of São Paulo – Brazil
2Computing Center – Federal University of Minas Gerais – Brazil

jpcsantos@usp.br, jpcarvalhocastro@ufmg.br, cdac@icmc.usp.br

Abstract. Spatial data generated by an Internet of Things (IoT) network is im-
portant to assist the decision-making in issues related to smart cities. In these
cities, IoT devices generate spatial data constantly. Thus, data get increasingly
voluminous very fast. In this paper, we investigate the challenge of managing
these data through the use of a spatial data warehouse and spatial on-line an-
alytical processing designed over a parallel and distributed processing frame-
work extended with a spatial analytics system. We propose a novel architecture
aimed to assist a smart city manager in decision-making, which integrates a
cloud layer where these technologies are located with a fog computing layer for
extracting, transforming and loading. Furthermore, we introduce a set of guide-
lines to aid smart cities managers to implement the proposed architecture. We
validate our architecture with a case study that uses real data collected by IoT
devices in a smart city.

1. Introduction
In the last few years, the world population has been growing rapidly. From projec-
tions made by the United Nations, the population will reach 8 billion people in 2025
[Fraga and Queirolo 2018]. Hence, providing the necessary infrastructure to accommo-
date a significant amount of people in cities can be a challenge for public authorities and
companies. According to Ramaswami et al. (2016), the meta-principles for developing a
sustainable and healthy city are “improvements in transportation, basic sanitation and en-
ergy supply”, “’sustainability”, and “technology integration”. Thus, the concept of smart
cities emerged. It “involves the implementation and deployment of information and com-
munication technology (ICT) infrastructures to support social and urban growth through
improving the economy, citizens involvement, and government efficiency” [Yeh 2017].

A network of Internet of Things (IoT) devices can be used to provide information
in a smart city. According to Patel and Patel (2016), IoT can be classified as “intercon-
nected objects that have data regularly collected, analysed, and used to initiate action,
providing a wealth of intelligence for planning, management and decision-making”. The
different layers of an IoT architecture include: (i) the smart device/sensor layer, which
is responsible for collecting data from the environment through the employment of con-
nection standards such as Wi-Fi, GSM and Bluetooth; (ii) the network layer, which is
composed of gateways and gateway networks that support different communication pro-
tocols for sending data to the service layer; and (iii) the service layer, in which data

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

118

is processed and prepared to obtain the information required by a desired application
[Patel and Patel 2016, Atzori et al. 2017].

The IoT technology is very important in a smart city environment. For instance, it
is possible to apply this paradigm in a public transportation system, whose fleet contains
sensors that collect data related to the number of passengers, vehicle type (buses, trams,
etc.), route taken, and maximum speed, aiming to improve the existing lines. Another IoT
application scenario includes air monitoring, with sensors scattered around the city col-
lecting data about pollution in order to identify if air quality improvements are necessary
in certain regions [Atzori et al. 2017].

An IoT network contained in a smart city tends to generate spatial data, usu-
ally represented by geometries (such as points, lines, and polygons) or combinations
of these. For example, smartphones can contain sensors that use location data to con-
nect people with the same hobbies or relationship status living in the same area. The
spatial properties of IoT devices can be determined directly by the sensors, using satel-
lite positioning techniques, like GPS and GLONASS [van der Zee and Scholten 2014,
Eldrandaly et al. 2019].

Performing analytical queries on data generated by an IoT network in a smart
city can assist managers in the decision-making process. For instance, a manager of
a public transportation system can be interested in determining how many passengers
were transported last month, considering the type of vehicle, route, and region. The
query results can be displayed on a map according to the region, helping the manager to
obtain the necessary knowledge in an intuitive manner. In order to enable the execution
of this type of query, IoT data needs to be extracted, transformed, and loaded in a spatial
data warehouse (SDW). An SDW is a subject-oriented, integrated, time-variant and non-
volatile collection of conventional and spatial. It provides support for the costly spatial
on-line analytical processing (SOLAP) queries, which are analytical queries extended
with spatial predicates [Han et al. 1998, Rivest et al. 2001].

In smart cities, IoT devices generate spatial data constantly [Bonomi et al. 2014].
Also, because sensors all over the city can collect and transmit masses of data, data scale
becomes increasingly big [Chen et al. 2014]. To deal with big data, the management of
SDWs can benefit from the use of a cloud computing environment as infrastructure and
from the employment of parallel and distributed processing frameworks, such as Hadoop
[Shvachko et al. 2010] and Hadoop Spark [Zaharia et al. 2016], to reduce the complex-
ity of the cloud. The processing of the SOLAP queries can also benefit from the use
of spatial analytics systems (SASs), which are developed on the top of parallel and dis-
tributed processing frameworks to provide extended functionalities to deal with spatial
data [Castro et al. 2020].

The challenge is to propose an IoT architecture for smart cities that encompasses
all these technologies and also provides efficient support for storing SDWs and process-
ing SOLAP queries. Although there are some proposals of architecture proposed in the
literature [Yuan and Zhao 2012, Bonomi et al. 2014, Eldrandaly et al. 2019], they do not
focus on SDWs and SOLAP in a parallel and distributed processing environment. In this
paper, we overcome these shortcomings.

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

119

The contributions of our paper are described as follows.

• The proposal of an architecture aimed to help smart cities managers and residents
in their decision-making process through the employment of an SDW that uses
a parallel and distributed data processing framework in the cloud and also uses
SASs to process SOLAP queries.

• The definitions of guidelines to assist in the proposed architecture implementation.
• The validation of the efficacy and effectiveness of the architecture with a case

study that describes an application that handles real data generated from a smart
city.

This paper is organized as follows. Section 2 reviews related work, Section 3
presents the proposed architecture, Section 4 introduces the guidelines for implementing
the architecture, Section 5 describes the case study, and Section 6 concludes the paper.

2. Related Work
There are studies in the literature that present challenges related to IoT-generated data,
considering general [Patel and Patel 2016, Atzori et al. 2017] and smart city scenarios
[Arasteh et al. 2016, van der Zee and Scholten 2014, Theodoridis et al. 2013]. In the
context of big data, some work has been done to manipulate IoT spatial data. These
proposals are described as follows.

Yuan and Zhao (2012) propose an architectural solution for SDWs in the context of
IoT environments (SDWIT). This architecture has the following layers: data processing
layer, storage layer, and analysis application layer. SDWIT features include accessing
and analysing IoT data in real time over a traditional SDW. However, the authors did not
consider parallel and distributed data processing frameworks in their architecture, making
SOLAP operations difficult for very large SDWs.

Bonomi et al. (2012) introduce a highly virtualized platform called fog comput-
ing, which “provides computing, storage and networking services between end devices
and traditional cloud computing data centres, typically, but not exclusively located at the
edge of network”. Fog computing aims at low latency between the edge and the core of the
network, very large number of nodes, and wide-spread geographical distribution. There-
fore, the platform is appropriate for operations that have IoT services. The fog computing
platform is expanded in [Bonomi et al. 2014] to deal with a massively distributed number
of sources at the edge. Regarding applications that require analytics over longer peri-
ods or wider scenarios, like an SDW, these proposals only suggest that the corresponding
operations should be performed in the cloud. No further investigation is conducted.

Eldrandaly et al. (2019) define the concept of Internet of Spatial Things (IoST),
which “is an integrative paradigm of embedded smart devices concerned with collect-
ing spatial data of objects to serve a significant purpose”. The authors also introduce a
framework for an IoST network that uses a fog computing platform for real-time spatial
computing. Data are collected and then sent to a fog node for temporary storage and
processing. Finally, data are extracted, transformed and loaded into a cloud database.
Although the framework provides analytics operations that are defined according to the
requirements of the enterprise, these operations do not focus on the processing of queries
extended with spatial predicates over SDWs.

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

120

In contrast to the described approaches, we propose a novel architecture that em-
ploys both parallel and distributed data processing frameworks and SASs, allowing the
execution of fast and reliable analyses over IoT data from smart cities. Our architecture
excels not only in the integration of these technologies with an SDW in the cloud, but
also in the inclusion of a fog layer to handle SOLAP data analytics and SDW Extract,
Transform, and Load (ETL) processes.

We also introduce a set of guidelines to aid smart cities managers in the process
of implementing our architecture. Further, we validate the architecture with a case study
that describes an application that handles real data generated from a smart city. The aim
of this case study is to investigate the efficacy and effectiveness of the architecture, but
not its efficiency. Thus, carrying out performance evaluations is out of the scope of this
paper.

3. The Proposed Architecture
In this section we describe a novel architecture for collecting and analysing, in a fast
and reliable manner, data from IoT devices in smart cities. The architecture (Figure 1)
achieves these goals through the employment of three different layers: (i) the terminal
layer; (ii) the fog layer; and (iii) the cloud layer. We discuss each layer as follows.

Environment

Nature

Urban Traffic

Smarthouses

Health

Renewable

Energy

Public

Transportation

Network Edge

Low Latency

Network Core

High Latency

Data

Collected

Terminal
Layer
Vehicles

Smartphones

Bluetooth

Sensors

RFID

Sensors

Wearable

Devices

Fog
Layer

Fog node

…

Cloud Layer

Internet

Parallel and Distributed Data
Processing Environment
Spatial Data Warehouse

SAS
Spatial Analytics Systems

Parallel and Distributed
Storage Systems

Fact
table

Dimension
Table

Dimension
Table

Dimension
Table

Dimension
Table

SOLAP
Operations

Clients

Client—IoT devices latency

GIS APIs Data MiningWeb Apps

Data

Storage

Spatial Data

Processing

IoT
Devices

…

Fog node

Real-time
data

Analytics

ETL

Wi-Fi Receptors

Bluetooth Receptors

Fog node

RFID Receptors

Figure 1. Architecture overview.

Terminal layer. The terminal layer consists of a network of IoT devices, which are inter-
connected by using technologies such as Radio Frequency Identification (RFID), Global
Positioning System (GPS), Wireless Sensor Network (WSN), and network communica-
tion standards, such as Ethernet and Bluetooth. These devices are available in many parts
of a smart city, such as weather stations, traffic lights, and public transportation. The
devices are aimed to collect spatial and conventional data.

Fog layer. Data collected by terminal layer devices are sent to receivers in the fog layer.
These receivers, called fog nodes, can be limited with regard to data processing and stor-
age. However, by being located close to the network edge, they are in an optimal position
to allow the execution of real-time data analytics and ETL operations. This is due to the
low latency in communication between the terminal layer devices and these nodes.

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

121

Cloud layer. After the data goes through the ELT/ELT process in the fog layer, it is sent
to the cloud layer. In this layer, data are persisted in an SDW stored in a parallel and
distributed storage system. This allows SOLAP queries to be processed with the help of
a SAS, enhancing their performance considerably. Due to the scalable nature inherent to
cloud computing environments, the number of nodes can increase or decrease according
to the demand of queries from clients. Examples of clients include web applications,
Geographic Information Systems (GIS), and different types of Application Programming
Interfaces (APIs).

4. Guidelines for Implementing the Proposed Architecture
In this section, we propose a set of guidelines to aid smart cities managers in the process of
implementing the proposed architecture. Because the context behind each smart city may
be different, is not mandatory to follow every guideline in its completeness. Managers
should choose the appropriated hint provided by the guidelines according to the specific
characteristics of the smart city in which the architecture is being employed. Thus, a con-
cise yet general description of each guideline is provided, allowing further specialization
based on the requirements imposed by each smart city application.

Guideline 1. Deploying IoT devices on the terminal layer. IoT devices must be de-
ployed in the terminal layer considering the communication protocols supported by each
sensor. For instance, vehicle sensors can use GPS, while temperature sensors can use
4G/5G protocols. A smart city manager must also consider the communication compati-
bility between these devices and the fog nodes. We recommend the framework proposed
by [Theodoridis et al. 2013] to assist these managers in the process of integrating these
devices in a smart city scenario.

Guideline 2. Distributing fog nodes across the fog layer. After the disposition of the
IoT devices in the terminal layer, a smart city manager must define which devices must be
used as fog nodes. For instance, some approaches in the literature use Raspberry Pi com-
puters1, which are small single-boarded computers, as fog nodes, using containerization
over these resource-limited devices [Bellavista and Zanni 2017, Xu and Zhang 2019].
Each fog node uses the Docker container technology2 for creating containers for each
application available in fog node (i.e. ETL and real-time data analytics). Because Rasp-
berry Pi computers are low cost and support many communication protocols, they are a
viable choice to the heterogeneous nature of an IoT network. Communication between
the fog nodes and the cloud layer can be carried out using 4G/5G or Wi-Fi protocols.

Guideline 3. Securing the connection between IoT devices and fog nodes. A smart
city manager must be concerned with the dataflow between the IoT devices and the fog
nodes, as sensitive information may be transmitted. Malicious attacks in a fog computing
environment must also be considered. To deal with these issues, smart cities managers
can take decisions using as a basis the work of [Mukherjee et al. 2017]. In this work,
the authors determine the impact of security problems on a fog network and also provide
solutions to increase the security of these environments.

1https://www.raspberrypi.org/
2https://www.docker.com/

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

122

Guideline 4. Configuring the ETL process in the fog layer. To enable ETL processing
in the fog layer, a smart city manager must select tools that allow programming, scaling
and monitoring the tasks of the ETL workflow. There are several tools on the market
which support ETL and workflow monitoring. An example is Apache Airflow3, which is
an open-source platform that uses directed acyclic graphs (DAGs) for authoring, schedul-
ing and monitoring workflows. The tasks of the process should be written in the Python
programming language, since it is natively supported by Airflow. Airflow provides inte-
gration with Hadoop, Spark and several cloud platforms.

Guideline 5. Enabling real-time data analytics in the fog layer. In a fog node, data are
loaded constantly, enabling real-time data analytics. To this end, a smart city manager can
use multiple data management systems, like NoSQL databases (i.e. Couchbase Server4

and Apache Cassandra5) and event streaming platforms such as Apache Kafka6, operated
in containers inserted in the fog node. These platforms support communication by APIs,
enabling real-time spatial data analytics over SDWs.

Guideline 6. Choosing the appropriate SAS to implement the SDW in the cloud
layer. The SDW application should process SOLAP queries efficiently. Therefore, a
smart city manager must select a SAS that is able to completely fulfill the requirements of
the SDW application. Because there several SASs available in the literature with different
characteristics and capabilities, the choice of the most appropriate SAS burdens the selec-
tion process considerably. Managers should use as a basis of choice the state-of-the-art
user-centric comparison of existing SASs described in [Castro et al. 2020].

Guideline 7. Configuring the SDW to process SOLAP queries on the cloud layer.
After choosing the appropriate SAS, a smart city manager must configure the SDW en-
vironment in the cloud layer to process SOLAP queries. The parallel and distributed
processing framework and the distributed file system must be compatible with the cho-
sen SAS. There are several platform-as-a-service (PaaS) on the market that support these
frameworks natively, such as Microsoft Azure7 and Amazon Web Services8. The smart
city manager must consider the periodicity that data should be extracted from the fog
layer, as well as carefully specify data distribution over the SDW. The SOLAP services
must support APIs and GIS applications in order to visualize the result of SOLAP queries.

Guideline 8. Ensuring secure SOLAP query processing in the cloud layer. Since
cloud computing environments can be virtually accessed from anywhere, smart cities
managers should be concerned with security issues related to SDW applications. That
is, smart cities managers should define restrict protocols with regard to roles, permis-
sions, and data confidentiality. A solution to ensure confidentiality is the encryption of
the data stored in the SDW. Data encryption should be done carefully to not compro-
mise the performance of the SDW application. To this end, the encryption methodology
proposed in [Lopes et al. 2014] can be employed, as it allows the efficient processing of
analytical queries over encrypted data warehouses.

3http://airflow.apache.org/
4https://www.couchbase.com
5http://cassandra.apache.org
6http://kafka.apache.org
7http://azure.microsoft.com
8http://aws.amazon.com

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

123

5. Case Study

In this section, we describe a case study that illustrates the use of the proposed architec-
ture. We define the requirements of a spatial application, whose objective is to process
data collected from multiple IoT devices in the context of smart cities. For this case
study, we use a dataset provided by [Ali et al. 2015], which contains vehicle traffic data
observed between two points. These data were collected from sensors distributed in the
municipality of Aarhus, Denmark. The dataset, which is publicly available in the authors’
website9, contains both conventional (i.e., distance in meters between the sensors, type of
road, etc.) and spatial data (i.e., the sensors locations, represented by points) referring to
the period from February to June 2014. As this dataset only provides data regarding the
sensor location (i.e., points), we extended it with new information to enrich the analyses
performed in our spatial application. To this end, we use road (i.e., lines) and city (i.e.,
polygons) data obtained by Geofabrik10 from OpenStreetMaps, and statistical district data
obtained from OpenDataDK11. We guarantee the spatial relationship between the data in
the sense that a road intersects with sensors, a district contains multiple roads, and a city
contains several districts.

The requirements imposed by the SDW application are described as follows. The
application should be deployed in the cloud and should communicate with a SAS to pro-
cess its queries. Furthermore, data handled by the application should be stored in an SDW
designed according to the logical schema depicted in Figure 2, which should also be lo-
cated in the cloud. There are six dimension tables in the SDW: (i) Date and Time, storing
the moment in which a measurement occurred; (ii) Report, storing the distance between
the two sensors that performed the measurement and their geographic locations; and (iii)
Road, District and City, storing the geographic locations associated with the report. The
dimension tables are linked through the fact table Measurement, which stores both the
measurement time and the vehicle speed. The fact table also stores the vehicle count for
each measurement of the IoT sensors.

MEASUREMENT

measurementID (PK)
reportID (PK, FK)
dateID (PK, FK)
timeID (PK, FK)

measurementTime
vehicleSpeed
vehicleCount

DATE
dateID (PK)

day
week
month
year

REPORT
reportID (PK)
roadID (FK)

districtID (FK)
cityID (FK)

firstSensorGeo
secondSensorGeo

reportDistance

ROAD
roadID (PK)

roadGeo
roadType
roadName
postalCode

DISTRICT

districtID (PK)
districtGeo

districtName
districtPopulation

CITY

cityID (PK)
cityGeo

cityName
cityPopulation

TIME
timeID (PK)

second
minute
hour

Figure 2. Logical schema of the SDW stored in the cloud.

9http://iot.ee.surrey.ac.uk:8080/
10https://www.geofabrik.de/
11https://www.opendata.dk/city-of-aarhus/statistikdistrikter

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

124

Another requirement of the application is that it should support different types of
spatial queries based on the definitions of [Gaede and Günther 1998], such as spatial join,
containment and k-nearest neighbour queries. The application should also provide good
performance results. Finally, it is important to highlight that the developers who are going
to implement the application have some previous knowledge of the SQL programming
language.

According to the proposed architecture (Section 3) and guidelines (Section 4), the
case study application should be implemented as follows: (i) use of the Apache Airflow
to perform the ETL process; (ii) storage of the SDW data in the HDFS as the application
requires data storage in the cloud; and (iii) selection of GeoSpark [Yu et al. 2019] as the
SAS to process the SOLAP queries, as it complies with the application’s requirements
regarding performance and spatial queries, as well as supports the SQL programming
language through the use of GeoSparkSQL [Pandey et al. 2018, Castro et al. 2020].

Data loading into the cloud layer. The dataset used in this case study consists of 449
reports. Data from these reports are stored in comma-separated values (CSV) files. To be
loaded into the SDW, the data must go through an ETL process in the fog layer (Guideline
4). Thus, Apache Airflow should be employed to: (i) extract the data from the CSV files;
(ii) perform transformations to arrange the data according to the logical schema depicted
in Figure 2; and (iii) load the data into HDFS for later use by GeoSpark. To accurately
simulate the fog layer, Airflow should be executed from a Docker container.

Converting textual representations of spatial data into spatial objects. In order to
employ GeoSparkSQL for processing SOLAP queries over the SDW stored in HDFS, it
is necessary to load its tables into structures called DataFrames. These structures, which
resemble relational tables, do not transform the textual representations of the spatial data
into spatial objects by default. GeoSparkSQL provides a function to convert well-known
text (WKT) representations into spatial objects. An example of using this function during
the process of loading the Report table is detailed in the following query:

SELECT reportID, roadID, districtID, cityID, reportDistance,
ST_GeomFromWKT(firstSensorGeo) AS firstSensorGeo,
ST_GeomFromWKT(secondSensorGeo) AS secondSensorGeo

FROM sensor

Once the process of loading the data provided by the IoT sensors into the SDW
is complete, smart cities managers are able to execute different types of SOLAP queries
using GeoSparkSQL. Some query examples that address key points of the application’s
requirements are defined as follows. We employ QGIS12 to visualize the query results.

Spatial Join Query. This query returns the districts in which the average vehicle speed
reported from the set of sensors that intercept it is greater than 60 km/h (37.28 mph). This
analysis is necessary to check if there are districts where the maximum permitted speed
is not being respected by the drivers. The query results are depicted in Figure 3, with
each selected district being highlighted in red and the average vehicle speed (in km/h)
displayed in its centre. The following command expresses this query:

12https://qgis.org/

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

125

SELECT districtGeo, AVG(vehicleSpeed) AS a
FROM measurement, report, district
WHERE ST_Intersects(ST_MakeLine(firstSensorGeo, secondSensorGeo),

districtGeo)
AND measurement.reportID = report.reportID
AND report.districtID = district.districtID
GROUP BY districtGeo
HAVING a >= 60

The analysis of the query results indicate that the average vehicle speed is higher
in the northern districts of the municipality of Aarhus. A smart cities’ manager can extract
different types of knowledge from this information. An example is the fact that drivers
can be less inclined to drive over the speed limit in central areas of the municipality
(highlighted in purple in Figure 3), probably due to the increased number of pedestri-
ans in these areas. Another example resides in the assumption that the average speed in
the northern districts is higher due to the fact that some of them connect with external
highways (displayed as pink lines in Figure 3).

Figure 3. Spatial join query results.

Containment query. This query returns the quantity of vehicles that travelled in Aarhus
University/Community Hospital district grouped by day. An interesting knowledge that
can be obtained from this type of analysis is to identify the days in which the district had
the largest number of vehicles and to investigate whether a holiday or an event happened,
as displayed in Figure 4. The following command expresses this query:

SELECT day, SUM(vehicleCount)
FROM measurement, report, district, road
WHERE ST_Contains(districtGeo, roadGeo)
AND ST_Intersects(roadGeo,

ST_MakeLine(firstSensorGeo, secondSensorGeo))
AND measurement.reportID = report.reportID
AND report.districtID = district.districtID
AND report.roadID = road.roadID
AND district.name = ’Universitetet/Kommunehospitalet’
GROUP BY day
ORDER BY day

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

126

Figure 4. Containment query results.

By interpreting the query results, a smart cities manager can obtain different types
of knowledge. For instance, the measurement of zero vehicles in 2014-3-25 could indicate
that this was a day in which the sensors in the designated district were entirely disabled.
Another interesting knowledge that can be obtained is that the traffic in this district seems
more intense in weekdays when compared to weekends.

K-nearest neighbours query. This query returns the average vehicle speed identified
by the 10 nearest reports from the Aarhus Cathedral, which is represented by a point
(10.210556, 56.156944). This type of analysis is necessary to verify if drivers are re-
specting the speed limit in the surrounding area of a highly accessed point of interest, as
shown in Figure 5. The following command expresses this query:

SELECT AVG(vehicleSpeed),
ST_MakeLine(firstSensorGeo, secondSensorGeo) AS reportGeo

FROM measurement, report
WHERE measurement.reportID = report.reportID
GROUP BY reportGeo
ORDER BY ST_Distance(reportGeo,

ST_GeomFromWKT(’POINT(10.210556 56.156944)’))
LIMIT 10

Figure 5. K-nearest neighbours query results.

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

127

The results displayed in Figure 5 can enable smart cities managers to perform a
wide variety of analyses. In particular, one can identify that the highest average speeds
around Aarhus Cathedral can often be observed in the main streets of its district, which
are highlighted in red. Smart cities managers can also observe that these speeds do not go
over 33 km/h. This can indicate that drivers do not tend to speed up in this region, a fact
that might indicate the occurrence of heavy traffic.

6. Conclusions and Future Work
In this paper, we propose a novel architecture for enabling the execution of fast and re-
liable analyses over IoT data from smart cities. The architecture employs parallel and
distributed data processing frameworks and spatial analytics systems in a cloud comput-
ing environment. Besides this cloud layer, our architecture also includes a fog layer,
responsible for handling both real time data analytics and ETL processes; and a terminal
layer, where the IoT devices are located. Further, we introduce a set of guidelines in order
to aid smart cities managers in the process of implementing our architecture. Finally, we
validate the proposed architecture by employing it to implement an SDW application that
analyses data collected from real IoT devices in a smart city.

Future work includes describing additional case studies with sensors that collect
measurements from different contexts, such as temperature and pollution levels. Another
future work consists in the proposal of algorithms to optimize SOLAP query processing
using as a basis the components of the proposed architecture.

Acknowlegments
This work was supported by Brazilian National Council for Scientific and Technologi-
cal Development (CNPq) and by the São Paulo Research Foundation (FAPESP). C.D.A.
Ciferri has been supported by the grant #2018/22277-8, FAPESP.

References
Ali, M. I., Gao, F., and Mileo, A. (2015). CityBench: A configurable benchmark to

evaluate RSP engines using smart city datasets. In LNCS, volume 9367, pages 374–
389.

Arasteh, H., Hosseinnezhad, V., Loia, V., Tommasetti, A., Troisi, O., Shafie-khah, M.,
and Siano, P. (2016). Iot-based smart cities: A survey. In 2016 IEEE 16th EEEIC,
pages 1–6. IEEE.

Atzori, L., Iera, A., and Morabito, G. (2017). Understanding the Internet of Things:
definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks,
56:122–140.

Bellavista, P. and Zanni, A. (2017). Feasibility of fog computing deployment based on
docker containerization over RaspberryPi. In ACM ICPS, pages 1–10. ACM.

Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. (2014). Fog computing: A platform for
internet of things and analytics. Studies in Computational Intelligence, 546:169–186.

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role in
the internet of things. In Proceedings of the MCC ’12, page 13.

Castro, J. P. C., Carniel, A. C., and Ciferri, C. D. A. (2020). Analyzing spatial analytics
systems based on Hadoop and Spark: A user perspective. Software: Practice and
Experience.

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

128

Chen, M., Mao, S., and Liu, Y. (2014). Big data: A survey. Mobile Netw Appl.
Eldrandaly, K. A., Abdel-Basset, M., and Shawky, L. A. (2019). Internet of Spatial

Things: A New Reference Model With Insight Analysis. IEEE Access, 7:19653–
19669.

Fraga, E. and Queirolo, G. (2018). Crescimento populacional fará mundo mudar de cara
até 2100. https://folha.com/ne67804j. [Online; access sep. 20].

Gaede, V. and Günther, O. (1998). Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231.

Han, J., Stefanovic, N., and Koperski, K. (1998). Selective materialization: An efficient
method for spatial data cube construction. In LNCS, volume 1394, pages 144–158.

Lopes, C. C., Times, V. C., Matwin, S., Ciferri, R. R., and Ciferri, C. D. A. (2014).
Processing olap queries over an encrypted data warehouse stored in the cloud. In 16th
DaWaK, pages 195–207. Springer.

Mukherjee, M., Matam, R., Shu, L., Maglaras, L., Ferrag, M. A., Choudhury, N., and
Kumar, V. (2017). Security and Privacy in Fog Computing: Challenges. IEEE Access,
5:19293–19304.

Pandey, V., Kipf, A., Neumann, T., and Kemper, A. (2018). How good are modern spatial
analytics systems? Proc. VLDB Endow., 11(11):1661–1673.

Patel, K. K. and Patel, S. M. (2016). Internet of Things-IOT: Definition, Characteristics,
Architecture, Enabling Technologies, Application & Future Challenges. IJSR, 6122.

Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R., and Kumar, E. (2016).
Meta-principles for developing smart, sustainable, and healthy cities. Science (New
York, N.Y.), 352(6288):940–3.

Rivest, S., Bédard, Y., and Marchand, P. (2001). Toward better support for spatial de-
cision making: defining the characteristics of Spatial On-Line Analytical Processing
(SOLAP). Geomatica, 55(4):539–555.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). The Hadoop Distributed
File System. In 2010 IEEE 26th MSST, pages 1–10.

Theodoridis, E., Mylonas, G., and Chatzigiannakis, I. (2013). Developing an IoT Smart
City framework. In 4th IISA, pages 180–185.

van der Zee, E. and Scholten, H. (2014). Spatial dimensions of big data: Application of
geographical concepts and spatial technology to the internet of things. SCI, 546:137–
168.

Xu, Q. and Zhang, J. (2019). PiFogBed: A Fog Computing Testbed Based on Raspberry
Pi. In 2019 IEEE IPCCC. Institute of Electrical and Electronics Engineers Inc.

Yeh, H. (2017). The effects of successful ICT-based smart city services: From citizens’
perspectives. Government Information Quarterly, 34(3):556–565.

Yu, J., Zhang, Z., and Sarwat, M. (2019). Spatial data management in apache spark: the
geospark perspective and beyond. GeoInformatica, 23(1):37–78.

Yuan, L. and Zhao, J. (2012). Construction of the system framework of Spatial Data
Warehouse in Internet of Things environments. In 5th IEEE ICACI, pages 54–58.

Zaharia, M., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I., Xin, R. S.,
Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., and Venkataraman,
S. (2016). Apache Spark. Communications of the ACM, 59(11):56–65.

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 118-129

129

