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Abstract. Spatial Data Infrastructures (SDI) has contributed expressively to the
discovery and sharing of geospatial data. However, with the big number of
geo-services available in SDI catalogs, and its sparse description, it is difficult
to monitor the availability during the consumption of these resources. Aiming
to overcome this limitation, this paper proposes an architecture that defines re-
silience layers in SDI context, with a Circuit Breaker pattern implementation for
retrieving data even during instability. This architecture delivers a novel way of
reliable access to resources and spatial data from the SDI catalogs.

Resumo. Infraestruturas de Dados Espaciais (IDE) têm contribuı́do de forma
expressiva para a descoberta e o compartilhamento de dados. Porém, com
o grande número de geo-serviços disponı́veis nos catálogos das IDE, e sua
descrição esparsa, é difı́cil monitorar a disponibilidade durante o consumo
desses recursos. Visando superar essa limitação, este trabalho propõe uma
arquitetura que define camadas de resiliência no contexto de IDE, com uma
implementação do padrão Circuit Breaker para a recuperação de dados mesmo
durante instabilidade. Esta arquitetura oferece uma nova forma de acesso
confiável a recursos e dados espaciais dos catálogos de SDI.

1. Introduction

The development of Spatial Data Infrastructures (SDI) has contributed expressively to the
discovery and sharing of geospatial data. The implementation of these infrastructures has,
among its primary issues, political and budgetary challenges [Grus et al. 2011]. Hence,
issues related to their architectures have remained in the background for a long time. Over
the years, most SDIs have been implemented based on the Service Oriented Architecture
(SOA) standard, following the guidelines and standards defined by the Open Geospatial
Consortium (OGC). The SOA architectural approach proposes that web systems must be
broken into web services focused on business logic [Krafzig et al. 2005]. The increasing
number of applications based on cloud SOA has enabled developers to refine concepts
and establish architectural, technical, and organizational standards for the development of
service-oriented applications. SDIs based on this architectural model have been conceived
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as monolithic structures [Assis et al. 2019], in which a set of applications run under a
single process using a single module.

Nevertheless, SOA has remained a very broad concept, interpreted in different
ways by different organizations. Usually, it has been related to a group of medium com-
plexity services, which access the same database and communicate through an ESB (En-
terprise Service Bus). This has inserted bottlenecks and points of failure in web applica-
tions.

The Microservice-Based Architecture has emerged as an alternative for dealing
with the challenges identified over the maturing years of the concepts encompassed in
SOA [Soldani et al. 2018]. Microservices can be defined as a group of small, autonomous
services that work together [Newman 2015].

In a monolithic application, if an important functionality fails, the whole applica-
tion stops working, causing an availability failure. In turn, microservice-based distributed
architecture prevent applications from becoming completely unavailable. However, when
an application is distributed in several microservices, many problems and possibilities
of failures, which do not exist for monolithic architecture, require attention and control.
With the development of applications with architectures based on microservices, large
companies have used the resources and standards to structure their systems, as is the ex-
ample of Netflix, which developed a framework for managing resilient architectures based
on microservices, the Netflix Open Source Software [OSS 2020]. Features like Hystrix,
Eureka, and Zuul make up the Netflix OSS framework and can implement patterns like
Circuit Breaker, Service Discovery, and API Gateway that would empower distributed
applications to achieve resilience and scalability.

The Circuit Breaker pattern [Montesi and Weber 2016] is one of the primary
strategies to deal with the recovery of unavailable service requests. When a resource
is unavailable, the Circuit Breaker acts as a proxy, similar to a tripped Circuit Breaker,
throwing the exception immediately. This exception can be handled with a function that
retrieves alternative resources. The Circuit Breaker can represent an interesting way to
deal with the unavailability of services, by allowing to manage the effects of unavailabil-
ity.

The amount of geo-services offered in SDI catalogs makes the task of monitoring
the availability of these services very complex, requiring a method of dynamic integration
of geo-services that provides a resilience layer. Microservice patterns can achieve some
of these resilience requirements.

Recently, some authors have developed SDIs based on a microservice architecture
[Assis et al. 2019, Mena et al. 2019, Li 2019]. In their works, they have extended the
capabilities of the services provided by the infrastructure in terms of scalability, better
use of cloud resources, and orchestration of container instances. However, there are still
important issues that have not been addressed in the literature for the development of these
infrastructures, such as resilience and fault tolerance.

In an SDI, it is expected that different services provide similar features about the
same place or theme. Nevertheless, when a feature that is being used becomes unavailable
for some reason, the client is in charge of searching the SDI’s catalog to find a service
that supplies a similar feature that could replace it. Since current infrastructures do not
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keep information about feature similarity, as well many services are poorly described in
the catalog service, this task can be quite tedious and time-consuming. This problem
can be especially critical in applications such as environmental monitoring and disaster
management, in which real time decisions are due.

Aiming at solving these limitations, we propose an architecture that enables the
implementation of resilient spatial data infrastructures. To validate our solution, we con-
ducted a case study based on the Brazilian National Spatial Data Infrastructure (INDE).
In this paper, we present a method for adding geo-services as vertices of a resilient ar-
chitecture based on microservices. Using a Circuit Breaker implementation to manage
unavailable resources, this architecture provide reliable access to SDI catalogs resources.

The remainder of this paper is structured as follows. Section 2 addresses related
works. Section 3 presents our SDI architecture. Section 4 focuses on some use case
scenarios. Finally, section 5 concludes the paper and points out further research to be
undertaken.

2. Related Work
Over the years, several authors have analyzed the way in which SDIs are being imple-
mented from an architectural point of view. Thus, some works proposed SDI implemen-
tations using the SOA architecture as an approach to the evolution of each service that
makes up the infrastructure. Friis-Christensen et al. (2006) propose an SDI prototype
aimed at assessing areas of damage caused by fires using SOA. Oliveira et al. (2008)
proposed the application of SOA concepts by evolving a municipality GIS to a local SDI.
However, the authors concluded that the implemented model did not perform satisfacto-
rily. Basanow et al., (2008) used SOA principles to develop an SDI for 3D data. However,
the analyzed services orchestration principles did not meet the complexity ranges that the
system could reach. Likewise, Barik et al. (2016) also applied SOA principles to an SDI
for the tourism sector in the city of Bhubaneswar, India. The authors detailed a method-
ology for building their own geospatial database. However, aspects of using data services
from other SDI have not been addressed.

In general, based on initiatives led by the OGC [Friis-Christensen et al. 2006],
many of the implemented SDI have sought to comply with at least some of the SOA
principles. However, even complying with these principles, most applications do not
reach minimum current requirements on scalability [Scholten et al. 2006], performance
and availability [Soldani et al. 2018].

We observe that SOA has reached an important step forward in the systems com-
plexity, as is the case of a cloud SDI. However, in a cloud environment, the microservice
architecture achieves better performance than SOA. Several authors approach this topic
as an architecture to enable SDI in the cloud. [Krämer 2018], for example, introduced a
native cloud GIS proposal built on a microservice-based architecture, in order to process
large volumes of distributed geospatial data. [Schäffer et al. 2010] carried out a study on
the feasibility of implementing a cloud SDI. The authors identified some barriers to make
this transition, including budget and legal difficulties.

[Li 2019] proposed a four-layer microservices architecture for public waterway
information services. The proposed four layers are: data layer; microservices layer; ap-
plication layer and client layer. Although they implemented a web application based on
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the microservice architecture, the authors did not explore availability and resilience is-
sues.

Another application of microservices in SDI was proposed by [Assis et al. 2019]
by presenting TerraBrasilis, an infrastructure for analyzing geospatial data on deforesta-
tion. In this proposal, the authors developed an SDI optimized for data analysis using
a microservice-based architecture. The proposed solution performs real-time monitoring
of system services in virtualized containers [Docker 2020], which facilitates scalability,
enables the availability of resources and protects the system from potential external at-
tacks. The system uses the agility of the microservice architecture to provide a geospatial
data analysis platform regarding deforestation in the Brazilian cerrado, and, therefore, is
focused on a particular domain. The authors deal with fault tolerance and availability for
SDI using services available in virtualized computing environments in an IaaS (Infrastruc-
ture as a Service) platform. However, a more in-depth solution for handling unavailable
services that goes beyond managing instances and service states is not addressed.

When implementing a cloud SDI using the microservice architecture, several pos-
sibilities arise for deployment automation, easy integration, as well as scalability. How-
ever, distributing an application into several microservices introduces some challenges
such as the low reliability of the network. In particular concerning SDI, it is also neces-
sary to take into account the possibility of unavailability of the data services that compose
the SDI catalog. Therefore, in order to fully exploit the possibilities of cloud computing
under microservice-based architecture, the use of resilience and fault tolerance patterns
as Circuit Breakers is of fundamental importance.

The handling of exceptions to redirect calls to services is something totally depen-
dent on the business logic where the Circuit Breaker pattern is used [Nygard 2018]. In
the context of applications such as SDI, it is important to prioritize data retrieval in order
to improve the underlying decision making process.

Mena et al. (2019) apply microservice patterns to build a resilient application
for geospatial data visualization. The application implements the Circuit Breaker pattern
through the use of the Netflix OSS Hystrix framework [OSS 2020]. The authors isolated
microservices in containers [Docker 2020], which are replicated and in case of unavail-
ability of the microservice, the Ribbon [OSS 2020] is used as a resource to redirect calls to
mirrored microservices. However, this work does not implement the OGC geo-services
standards, as well the proposed architecture does not perform a scalable monitoring of
geo-services availability. The work developed introduces a scalable geospatial data appli-
cation, but not an SDI.

The solutions proposed in the aforementioned approaches aimed at cases of fail-
ure of a call or unavailability of a service that composes the internal architecture of the
application. When dealing with the unavailability of external services, the alternative is
a data return with low adaptability to maintain the user experience. Table 1 presents a
comparison of the aforementioned research works.

The application of resilience patterns in the availability of spatial data resources
is still an unexplored theme. The works that applied the microservices-based architec-
ture paradigms to SDI did not address this aspect directly. Therefore, in this paper we
introduce an architecture based on microservices that applies resilience standards in the
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Table 1. Comparison between geospatial approaches that use service oriented

architecture

provision of geo-services.

3. The Proposed Architecture
To create a resilient application of geospatial data, it is necessary to build an infrastructure
agile enough to solve situations of unavailability with low latency. Figure 1 depicts
our high-level architectural model, developed from the concepts explored in the topics
aforementioned.

As an SDI aggregates resources from different services, it must be aware of the
availability of each of these sources. Dealing with each geo-service available in the SDI
catalog as an architectural microservice enables the resilience and recovery patterns avail-
able for microservices-based architectures. Thus, we consider each geo-service that com-
pose the SDI catalog as a point of failure within the architecture, seeking to establish
strategies to mitigate possible downtime.

The features of an SDI are made available from geo-services, which are imple-
mented based on the OGC standards. One of these standards is the Web Map Ser-
vice (WMS), which renders and returns images of the available geographic resources
[OGC 2020]. In our work, we focused on providing reliable access to WMS services be-
cause they are widely used in different applications and contexts. So, they serve as a main
entry point for SDI spatial data consumption.

Next subsections detail the functions and the characteristics of each component of
the proposed architecture.

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 34-45
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Figure 1. Our Proposed architecture.

3.1. The API Gateway

The API gateway performs the management of our application’s REST entry-points avail-
able for public requests. This component intercepts the requests for services and redis-
tributes them through the application, which processes the necessary actions. The impor-
tance of this resource is due to the monitoring, which are the most common paths taken
by users and services that use the application. This data is useful to guide the evolution
of the architecture, prioritizing the most used resources.

The API Gateway is also responsible for performing the load balancing, in which
requests are redistributed among the available service instances. To accomplish this task,
microservices are instantiated in Docker containers [Docker 2020]. Then, when the appli-
cation is under a heavy load of requests, it is possible to instantiate several microservices
in parallel to balance the load and distribute the requests.

Figure 2 shows the API Gateway flow for two different requests. The API Gate-
way checks if the service requested in the request is unavailable. The API Gateway ac-
cesses the Available Services Environment to check if the requested service is unavailable
and has been replaced by another one. If applicable, the request is adjusted and forwarded
to a Feature Retriever instance to get the data.

3.2. The Service Discovery

When an application is distributed on the network, several instability and latency problems
may arise among the possibilities of failure. Then, it is always necessary to check which
services are available. The primary function of a Service Discovery implementation is to
listen and keep information about the microservices operating in the application. When a
microservice is successfully instantiated, it is registered with service discovery to receive
requests. When a service is unavailable, the Service Discovery is notified, and this service
is added to the list of unavailable services until it registers again.

In our architecture, the Service Discovery registers the instances of available mi-
croservices and operates an Available Services Environment. This environment is used by
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Figure 2. API Gateway process.

other fixed microservices of the application as an environment to check if the service that
provides a requested resource can be replaced by an available service that has the same
resource.

The Available Services Environment associates the identification of a service and
feature with its similar one currently available. This strategy has been adopted because
when dealing with third party services it is not possible to receive registration requests.
Hence, only missing services and their available counterparts are registered.

3.3. The Feature Retriever
The Feature Retriever seeks to work with an interface that guarantees the safe recovery
of data and features of a geo-service with maximum security. This service has only one
HTTP GET route as an access point, as the goal is to simplify access to resources as
much as possible and facilitate replication in different containers, since this is the main
load point of the application.

In the Feature Retriever there is a cache layer under a database that contains in-
formation about the geo-services and feature types provided by the SDI, as it is shown in
Figure 3.

The service poses a query to retrieve the requested feature formatted URL. When
the Feature Retriever is replicated in several containers, its cache is also replicated, avoid-
ing overloading the main database and maintaining the principle of decentralized access
to data.

As is depicted in Figure 3, the Feature Retriever gets the access data to a geo-
service and performs an attempt to retrieve the data, as requested by the user. If the
request receives a successful response, the response is forwarded to the user. If an error
occurs when requesting access to the geo-service, the Feature Retriever accesses the Cir-
cuit Breaker to retrieve an available geo-service that has a similar feature, similar data is
returned to the user from the Feature Retriever.

3.4. The Circuit Breaker
The Circuit Breaker pattern is used as one of the main strategies for handling requests to
unavailable services in microservices-based architectures. In this case, the Circuit Breaker
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Figure 3. Feature Retriever process.

acts as a proxy, similar to an eletrical breaker that opens the circuit when it detects changes
in voltage to avoid unwanted consequences.

Figure 4. Circuit Breaker process.

In our work, the Circuit Breaker aims to keep the flow of spatial data constant
for the user. Figure 4 depicts the flow of an unavailable service case. In step one,
the Feature Retriever alerts the Circuit Breaker that a particular service has triggered an
exception when trying to access a particular feature. In step 2, the Circuit Breaker asks
the Similar Feature Finder to search for available services that have features similar to the
one the user requested (the aim is to keep the user with useful information, even during
the unavailability of the service that was requested). After this process, the service with
the most similar and available feature is selected. In step 3, the Circuit Breaker inserts
the available service and the feature of interest in the Available Services Environment
associated with the service and feature of the original request. Then, alternative data is
returned to the user.

If, in step 3, the Similar Feature Finder does not find any alternative data, the
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feature is labeled labeled as unavailable in the Available Services Environment. Then a
response with a error is returned to the user.

After these steps, the Circuit Breaker registers in the API Gateway notification
service, to be alerted when an user request for the unavailable service, is made again.
When this next request is invoked, the circuit switches to Half-Open and a request attempt
is made in parallel, without affecting the operation of the rest of the request, if the request
is successful, the mention of the faulty service is removed from the Available Services
Environment, and the circuit returns to Closed, otherwise it remains Open.

3.5. The Similar Features Finder

In our architecture, the Similar Feature Finder microservice is in charge of finding fea-
tures that can replace a feature that became temporarily unavailable for some reason.
During this process, it compares this feature to all the features provided by the infrastruc-
ture and returns the ones that have a similarity score higher than a predefined threshold.
To perform this task, the service extracts three information about the unavailable feature
type: the spatial extent, which is identified using its bounding-box, the temporal extent,
in cases where temporal expressions can be found in its description, and theme, which is
identified using its title.

An important characteristic that hindered the implementation of this microservice
is that the catalog service provided by SDIs does not provide information at the level of
the feature type. Hence, to overcome this limitation, we had to implement a module that
extracts information from the catalog service. This process is performed in four stages.
Firstly, it collects all the metadata records registered in the SDI’s catalog service. In the
second stage, it processes each one of these records and identifies the URL of the OGC
web services (WMS and WFS) from which the data can be downloaded. Then, it accesses
each one of these services to get information about the feature types they offer. Finally, a
subset of the metadata describing the service and its respective feature types are stored in
a local database, which is used as the source for finding similar features.

In order to find similar features, we implemented a search engine that uses a set
of similarity metrics to estimate the similarity between the feature that is unavailable
and each feature type stored in our database. The overall similarity between two fea-
ture types is based on three ranking values: spatial, temporal, and thematic. The spa-
tial and temporal rankings are calculated using the approach proposed by Andrade et al.
[Andrade et al. 2014]. To accomplish thematic ranking, we generated a document for
each feature type containing information such as name, title, description, keywords, and
some metadata about the service from which it is offered. These documents are indexed
and retrieved using Apache Solr, which is a tool that provides scalable document retrieval.
Whenever this tool executes a query, it returns a ranking value for each retrieved docu-
ment. Then, we consider these values as the thematic ranking of the features related to
these documents.

After all the ranking values are calculated, the features that got zero as the result
for any of the rankings are discarded. For the remaining features, the similarity score is
calculated using the average of the ranking values obtained for each dimension. Finally,
the features with a similarity score higher than the threshold are selected, sorted, and
returned by the microservice.
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4. Case Study

To validate our approach, we implemented a case study based on the Brazilian National
Spatial Data Infrastructure (INDE) [BRASIL 2008]. In this section, we demonstrate the
application behavior during the open and closed states of the Circuit Breaker.

As shown in the top left section of Figure 5, the user makes a request to the ap-
plication to get a feature of a specific service through its identifiers. In the case analyzed,
the user requests a specific feature related to Public Health Equipment in Brazil.

Figure 5. Request flow in our proposed fallback method.

The API Gateway collects the request and the filters are performed. Then, the
request is forwarded to the microservice for features retrieval. The Feature Retriever
retrieves the INDE’s MPOG (Portuguese Acronym for Ministry of Planning, Budget and
Management) geo-service data access, and the feature with public health equipment in
Brazil. A request attempt is made, and if the response is obtained successfully, it is
returned to the user.
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If the Feature Retriever catches an error, it changes the Circuit Breaker state to
Open. The Feature Retriever Service asks for a similar feature concerning Public Health
Equipment in Brazil. In this case, the Circuit Breaker finds an available feature from the
same MPOG geo-service. The founded feature has less equipment data, focusing in First
Aid places, but it works well as an alternative to an error that can be exposed to the user or
cause more cascading errors. The alternative feature is returned to the user. Meanwhile,
the Circuit Breaker inserts the alternative feature into the Available Services Environment.
Next attempts to access this feature will be redirected to the alternative feature.

If the Circuit Breaker does not find similar features, as shown in the lower center of
the Figure 5, the feature is labeled in the Available Services Environment as unavailable.
When any requested resource is labeled this way, the resilient SDI architecture returns
an error response instantly. This reduces the response latency in the next attempts of this
feature.

5. Conclusion and Future Work
This paper proposed a microservice based architecture that is able to to deal with the
unavailability of geospatial data in SDI, maintaining the availability of applications that
depend on this data. The proposed solution implements resilience patterns, providing
a layer of reliability for users and applications that need high data availability. To make
alternative data available, it relies on a microservice that evaluates the similarities between
features.

As future work, we plan to implement a solution for detecting the semantic rela-
tionships between features using Natural Language Processing, including Named Entity
Recognition. Such extensions would make our architecture able to perform deeper anal-
ysis of semantic relationship between features types, leading to better results in finding
alternative data for fallback. We also intend to implement a new microservice for user
administration to deal with user’s settings for resources consumption. Moreover, we plan
to develop a messaging service to provide notifications about unavailability of features
consumed, as well as the feature substitutions performed by the system.
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Schäffer, B., Baranski, B., and Foerster, T. (2010). Towards spatial data infrastructures in
the clouds. In Geospatial thinking, pages 399–418. Springer.

Scholten, M., Klamma, R., and Kiehle, C. (2006). Evaluating performance in spatial data
infrastructures for geoprocessing. IEEE Internet Computing, 10(5):34–41.

Soldani, J., Tamburri, D. A., and Van Den Heuvel, W.-J. (2018). The pains and gains of
microservices: A systematic grey literature review. Journal of Systems and Software,
146:215–232.

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 34-45
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