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Abstract. The recent COVID-19 outbreak drove the attention to methods for 

monitoring the flow between settlements, including traffic flow. Although the 

remote sensing of nighttime lights is a viable option to estimate traffic flow 

derived indicators, changes on radiance levels at night are not all associated 

with traffic. This paper presents the theoretical approach proposed on the 

development of an algorithm able to identify spectrally unbiased control samples 

for regions of interest (ROI), namely roadway sections. Firstly, an overview of 

the algorithm is presented, followed by an empirical estimation of its time 

complexity. The results showed that the algorithm has an O(n) time complexity 

and that control samples and ROIs can have similar time series features, 

indicating that an analysis without the use of control samples can lead to biased 

results. 

1.Introduction 

Typifying and monitoring regional road traffic spatiotemporal patterns might be crucial 
to better understand the possibilities of COVID-19 spread between human settlements. 
The monitoring of phenomena associated with the road traffic via remotely sensed data 
is mostly restricted to very high-resolution sensors or on-road measurements, which are 
often neither accessible nor systematically distributed [Tuerner et al. 2013]. Some studies 
exploited images and composites from the Visible Infrared Imaging Radiometer Suite 
(VIIRS) ± Day/Night Band (DNB) to successfully detect and monitor light sources at 
night in a sub-pixel level, such as boats, gas-flares, and biomass burning, but only a few 
approached the traffic of land vehicles [Elvidge et al. 2015a, Polivka et al. 2016, Elvidge 
et al. 2015b, Chang et al. 2019]. Road traffic lights can be relatively dim and arguably 
hard to resolve from space, given the anisotropic factor and oblique emission angles of 
auto headlights [Kyba et al. 2014]. Therefore, the characterization of spatiotemporal 
patterns associated with road traffic radiance at night would be more robust if supported 
by methods for identifying patterns strictly associated with environmental changes, rather 
than the road traffic itself. 

Albeit diverse, on-road sensors are most usually fixed and used for monitoring 
and fining purposes. Despite registering the total number of vehicles along a roadway 
section in a very fine spatial and temporal resolution, this type of sensor is not to be found 
in many smaller roadways. Smaller roadways are often the only vehicle route available 
to less prominent towns and play an important role in the spreading of contagious diseases 
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to areas that are closer to the base of the human settlement hierarchy [Fortaleza et al. 
2020]. The use of satellite remote sensing methods comes in handy, for it can produce 
spectral information in a regular and extensive form, surpassing the drawbacks of the on-
road driven methods.  

Although daytime high-resolution imagery matches these criteria, studies of this 
sort are mostly focused on object-oriented techniques, limiting the recognition of features 
that have a similar spatial scale to a given sensor ground sample distance (GSD) [Batz 
and Schäpe 2000]. High-resolution imagery still has a high cost of acquisition, generally 
covering areas only on demand, and lacking the higher availability usually meat by 
moderate resolution sensors. However, sub-pixel target detection based on the reflectance 
factor analysis, through moderate resolution sensors, usually requires a higher spectral 
resolution [Change and Heinz 2000]. In this sense, the detection of targets at night is a 
suitable approach, for it does not depend on a higher spectral resolution, neither a finer 
GSD. 

Target detection from nightly imagery is mostly based on the expected level and 
frequency of radiance associated with optical radiation sources [Elvidge et al. 2015]. The 
radiation amount from headlights measured by the DNB sensor can be lower than the 
amount expected from other typical artificial light sources, potentially lower than high 
albedo features and background areas near lit sites [Kyba et al. 2014]. Chang et al. (2019) 
presented a study analyzing the correlation between traffic flow and a DNB derived 
metrics from accumulated pixels overlapping freeways in China, and found out a broad 
correlation degree (R² ranging from 0.267 to 0.818), depended on the metric and vehicle 
type. Despite the outcome, factors like the higher density of roadhouses on higher flow 
freeways could lead to similar results, putting in check the assumption that these 
correlations are strictly due to the vehicle flow.   

Previous studies showed that the monthly nighttime lights (NTL) average radiance 
is correlated to factors like the vegetation cover and changes in albedo and that some of 
these influences can be found even in the annual NTL composites [Levin 2017, Levin and 
Zhang 2017]. In order to identify different spatiotemporal patterns of road traffic from 
the monthly NTL composites, one must first investigate what is the contribution of other 
side parameters to the changes observed in the average radiance levels at night. Part of 
this problem could be analyzed by comparing the monthly average radiance associated 
with pixels lacking the presence of light sources to pixels overlapping roads of similar 
spectral response. This paper presents the theoretical approach applied to develop an 
algorithm able to identify spectrally unbiased unlit areas. These areas shall be used as 
control samples of the radiance levels from roadways sites, allowing a systematic 
estimation of the basal radiance level of a given roadway. An analysis of the empirically 
estimated time complexity is presented, given that early drafts of the code tended to 
present an exponential time complexity growth.  

2. Material and methods 

2.2. Study Area 

The Metropolitan Region of the Paraíba Valley and North Coast (RMVPLN) is located 
in the State of São Paulo and, along the BR-116 highway, it connects the metropolitan 
regions of São Paulo (RMSP) and Rio de Janeiro (RMRJ) (Figure 1). The region 
comprises 39 municipalities divided into five subregions, holding a high variety of 

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 1-9
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economic activities and a heterogeneous demographic distribution, most concentrated in 
the urban areas. [Gomes, Reschilian, and Uehara 2018]. In a fresh reading of the 
RMVPLN centered regional planning, Gomes, Reschilina, and Uehera (2018) pointed out 
that the strategic location of the RMVPLN seemed to led the political vision for 
development towards the exploiting of the distinct local advantages in a competitive way. 
Although logic, without the population, society, and political engagement, this historical 
approach for the development resulted in sub-regional inequalities, without the carrying 
for the urban-regional needs as well. Smaller town workers often adopt a daily routine of 
traveling across different municipalities in carpool systems or public transportation, 
increasing the probability of transmission and spreading of the COVID-19 from hub cities 
to smaller towns.       

 
Figure 1. Municipalities, Average Nighttime Radiance of the Metropolitan Region 
of the Paraíba Valley and North Coast and samples. 

2.1. Data and algorithm procedural approach 

Monthly cloud-free nightly composites (³vcm´ version), which were the main input data 
of this work, are processed and made available by the Earth Observation Group (EOG), 
at Payne Institute for Public Policy website 
(https://eogdata.mines.edu/download_dnb_composites.html). The composites represent 
the monthly average radiance at the surface from daily cloud-free pixels belonging to 
images retrieved by the Day-Night Band (DNB) sensor. The Visible Infrared Imaging 
Radiometer Suite¶s (VIIRS) DNB sensor, onboard the joint NASA/NOAA Suomi 
National Polar-orbiting Partnership (Suomi NPP) satellite, retrieves daily radiance values 
at night, approximately at 1h:30min, local time. The instrument collects data on a constant 
742x742 m footprint, but its monthly composites are binned to a global 15 arc-second 
geographic grid (~463m at the equator) [Elvidge et al. 2017]. Nightly sensed radiance 
values were needed for two different algorithm processes. Firstly, they are required to 
assess the presence of light sources under a pixel footprint. For this purpose, it was 
determined that every pixel with an average radiance value higher than 2ȘW/cm².sr is not 
to be considered as background by the algorithm, a value considered higher than the 
average background radiance for latitudes between 10 and 50º [Elvidge et al. 2017].  

Road network data was retrieved from the National Cartographic Base, made 
available by the Brazilian Institute for Geography and Statistics (IBGE) [IBGE 2019]. 
Although unlit roadways might be the closest available targets to be selected as control 
samples, a preliminary analysis showed that the magnitude of a cluster of pixels¶ 

Proceedings XXI GEOINFO, November 30 - December 03, 2020, São José dos Campos, SP, Brazil. p 1-9
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radiances values overlapping a roadway can be as dim as completely unlit areas, in some 
cases. Moreover, there is no general optimal radiance value to specify if there are no light 
sources in a roadway, since traffic, noise and background radiance values are not 
stationary, both in space and time [Elvidge et al. 2017]. Therefore, the algorithm must 
automatically assume that a pixel overlapping a roadway is a non-background area. 

Surface reflectance values were extracted from the MODIS MCD43A4 collection, 
band 1 (620-670nm), 2 (841-876nm), and 4 (545-565nm ), a collection of images 
containing the best pixels of a 16-days-moving-window that have been modeled as if they 
were taken from a NADIR instantaneous field of view [Schaaf and Wang 2015]. The 
selected bands correspond to all the available bands in between the VIIRS/DNB spectral 
coverage (500 - 900nm). To increase the probability of high-quality pixels and proceed 
with the analysis with a more temporal compatible data, the quality assessment (QA) band 
of the MCD43A4 collection was consulted to produce a 30-day single composite for each 
month, ranging from January 2013 to January 2020. Finally, the processed MCD43A4 
30-day images were reprojected to match the VIIRS/DNB grid.   

VIIRS/DNB monthly NTL composites, MCD43A4 surface reflectance, and road 
network data are ingested into the algorithm (Figure 2a). Once the datasets are processed, 
the MCD43A4 data is associated to a region of interest (ROI) (Figure 2b). The goal of 
the algorithm is to find a cluster of 3x3 pixels, namely a control sample candidate, with 
the closest spectral response to a specific ROI sample, given a series of restrictions 
(Figure 2c and 2d). The proceedings illustrated by Figure 2 were implemented in a Python 
3.5 environment. 

 
Figure 2. Flowchart of the proposed algorithm. 
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ROIs are clusters of pixels overlapping a roadway section. Currently, each ROI 
comprises nine pixels and can sum up to 5.9 km of roadway. A larger amount of pixels 
would result in a higher spectral mixture, difficulting the search and validity of a control 
sample. They were selected considering the functional role of the section, prioritizing 
roadways that give access to the municipalities but are not embedded in the lit urban area. 
The spectral response is represented by the average reflectance of a control sample 
candidate or ROI, based on the processed MCD43A4 bands, while its likehood is given 
by the Euclidean distance between those metrics (Equation 1). 

  
   λ ෩ ൌ ඥሺ𝐵1തതതതோைூ െ  𝐵1തതതത௧ሻ + ሺ𝐵2തതതതோைூ െ  𝐵2തതതത௧ሻ + ሺ𝐵4തതതതோைூ െ 𝐵4തതതത௧ሻ (Equation 1) 

 
Where  λ ෩ is the spectral likehood, 𝐵𝑛തതതതோைூ is the ROI¶s average reflectance from 

the n¶th band of the MCD43A4 product, and 𝐵𝑛തതതത௧ is the control sample¶s average 
reflectance from the n¶th band of the MCD43A4 product.  
 

Apart from the restrictions aforementioned, a control sample must not contain an 
invalid pixel. An invalid pixel is a pixel whose value has no true physical meaning, either 
due to instrument problems or cloudy atmosphere conditions during the acquirement of 
data. Based on these restrictions, the algorithm must test every sample candidate and then 
calculates their λ ෩. Finally, the control sample candidate with the smallest spectral 
likehood is elected as a control sample for that specific ROI, given a specific month. 

3. Algorithm time complexity and overview 

A profiling of the algorithm identified the functions related to the calculation of average 
radiances and reflectances as the most time-consuming ones. Both functions increase the 
number of operations as the number of images or samples is increased. Those specific 
operations are dependent on third-party functions, making it difficult to determine the 
complexity of the algorithm in a theoretical approach. Therefore, we empirically tested 
the time demanded by the algorithm while increasing the number of images and ROI in 
90 different combinations (Figure 3). 

 
Figure 3. Algorithm time demand for different conditions regarding the number 
of images and samples, and fitted multivariate linear model.  
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In addition to the visual evidence, all the tested conditions presented a strong 
linear correlation (0.996<R²<0.999; Figure 3.a and 3.b), suggesting that a linear 
multivariate regression model is appropriate to represent the time demand of the 
algorithm, regarding the number of images and samples (adjusted R² = 0.895; Figure 3.c). 
The ratio of the ȕ1 coefficient to the ȕ2 coefficient indicates that the number of images 
increases the time demand 44.12% slower than the number of samples.  This is a positive 
outcome, since the number of images is the only dimension that grows indefinitely in a 
typical monitoring scenario. Another theoretical concern of the algorithm is the time 
complexity related to the sample selection method. Rather than testing the fitness of a 
given window as a potential control sample, and only then calculating the average 
reflectance, the method applied takes advantage of the algebraic implementation of the 
convolution filter [Tomilieri and Lu, 1997]. After reading all images as two-dimensional 
arrays, the algorithm defines all unelectable entries as non-numeric data. Therefore, all 
subsequentially operations result in a non-numeric entry, which is automatically excluded 
from the identification of the pixel with the smallest Euclidean distance, avoiding the 
need for multiple restriction tests. 

Due to the association of restrictions criteria to non-numeric data, the algorithm 
is already able to filter off samples where there is a lack of good quality DNB or MODIS 
data, resulting in a gap in the time series. Moreover, the restrictions are all individually 
stored in arrays that can be retrieved based on the selected control sample coordinates. 
This allows the user to set quality flags to the output data, indicating what step has coerced 
the data to a non-numeric format, or even retain the values of the metrics needed for the 
processing methods and sample selection. This approach results in a series of metadata 
that can be used to further investigate the algorithm outcome and eventually investigate 
more precise alternatives to deal with problems concerning the input data quality. 
Currently, the output is a vector (or spatial table) comprising the average monthly 
radiance VIIRS/DNB values for both ROI and independent control samples, but the 
aforementioned metrics can be assigned to the table on demand. 

Figure 4 displa\s examples of the algorithm¶s main outputs. Several relevant 
observations can be pointed out through a visual inspection of both averaged radiance 
time series (Figure a.2 and b.2). Regarding the averaged radiance level of the ROIs, it is 
clear that different roadways have distinct nominal radiances. While the seven-year time 
series of the BR-116 roadway shows values ranging from about 2.5 to 7.5 ȘW/cm².sr, 
BR-353¶s has averaged radiance values barel\ higher than 0.4 ȘW/cm².sr, the very same 
range observed in most of the control sample¶s time series. Likewise, Cao and Bai (2014) 
found averaged radiance values ranging from 2 to 4 ȘW/cm².sr after analyzing daily 
DNB¶s radiances from a bridge section over the San Francisco Ba\, California.  These 
results indicate that it might be meaningless to define thresholds in order to separate lit 
from unlit areas, since there is a relatively wide range of mixture in radiance levels from 
background and dim or transient lit areas.  
 When it comes to heavy traffic roadways, such as the BR-116, the difference 
between the ROI¶s and the control samples¶ averaged radiance does not seem to change 
the time series¶ aspect (Figure 4a.2). Even though, after the subtraction, the resulting time 
series does present some relevant differences if compared with the original one, mainly 
expressed as shifts in the direction of the series in several pairs of months. The changes 
in the time series¶ aspect are clearer when observing roadways with a nominal dimmer 
averaged radiance. In Figure 4b.2, a major increase in the average monthly radiance is 
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6



  

observed from 2017 onwards. Without taking account of the control samples¶ time series, 
it could be wrongl\ interpreted there was a relevant change in the vehicles¶ regime; or 
even a restructuring of the outdoor lights of nearby settlements. 

 
Figure 4. Location (a.1, b.1, c) and radiance level time series (a.2, b.2) of different 
ROIs and their respective control samples.  

4.  Conclusion 

This paper presents the theoretical approach and the implementation strategy used on the 
elaboration of an algorithm able to access meaningful unlit control samples of monthly 
NTL composites based on its spectral response and restrictions criteria.  An overview of 
the algorithm¶s empirically estimated time complexity showed that all the operations 
established by the code can be executed in a linear form. Currently, 85 monthly NTL 
composites are available to be ingested in a time series analysis, but this number will 
grow undefinedly. Moreover, daily processed nighttime images from the DNB sensor will 
be made available b\ NASA¶s Black Marble project soon (blackmarble.gsfc.nasa.gov/), 
stressing the need for algorithms that can be applied efficiently. In this instance, different 
datasets will certainly call for different likehood metrics and restriction criteria, 
nonetheless, they all can take advantage of the conceived structure of the presented 
algorithm.  
 By comparing the time series of roadway sections and spectrally-similar 
background areas identified by the proposed algorithm, it was confirmed that changes in 
radiance levels of roadways are not all associated with traffic flow at night. The results 
show that in the consideration of the VIIRS/DNB monthly composites as a dataset able 
to express quantitative information about the traffic of vehicles at night, the analysis of 
control samples is a necessary step. Whether variations in traffic flow can be detected by 
the VIIRS/DNB monthly composites, and what is the effect of the COVID-19 outbreak 
over the traffic flow at night are scientific questions that will be addressed in future works.  
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