
A User-centric View of Distributed
Spatial Data Management Systems

João Pedro de Carvalho Castro1, Anderson Chaves Carniel1,
Cristina Dutra de Aguiar Ciferri1

1Department of Computer Science – University of São Paulo – Brazil

jp.carvalhocastro@usp.br, accarniel@gmail.com, cdac@icmc.usp.br

Abstract. Distributed spatial data management systems (DSDMSs) represent
a new technology capable of managing huge volumes of spatial data using
parallel and distributed frameworks. An increasing number of DSDMSs have
been proposed in the literature, requiring a comparison among them. However,
comparisons available in the literature only provide a system-centric view of
DSDMSs, which is essentially based on performance evaluations. Thus, there
is a lack of comparisons based on the user-centric view, which is aimed to help
users to understand how the characteristics of DSDMSs are useful to meet the
specific requirements of their spatial applications. In this paper, we fill this
gap in the literature. We provide a user-centric comparison of Hadoop-GIS,
SpatialHadoop, SpatialSpark, GeoSpark, SIMBA, LocationSpark, SparkGIS,
and Elcano, using as a basis an extensive set of criteria related to the char-
acteristics of spatial data handling and to the aspects inherent to distributed
systems. Based on this comparison, we introduce a set of guidelines to help
users to choose an appropriate DSDMS. We also describe a case study to illus-
trate the use of these guidelines.

1. Introduction
The analysis of spatial data is a core issue for corporations that use geographic location
to take strategic decisions and to enhance the user experience. These corporations have a
massive advantage over their competitors and are able to react quickly to business condi-
tions changes. Nowadays, the volume of spatial data is growing increasingly fast, mainly
due to the wide variety of applications that harvest this data, such as mobile and Internet
of Things applications. Therefore, there is a demand for new technologies capable of
managing huge volumes of spatial data.

Distributed spatial data management systems (DSDMSs) have emerged as a so-
lution to this demand. They provide specialized functionalities aimed to process and
index huge volumes of vector spatial data using parallel and distributed frameworks, such
as the Apache Hadoop MapReduce1 and the Apache Spark2 [Garcı́a-Garcı́a et al. 2017].
The Apache Hadoop MapReduce is based on a generic programming model composed of
map and reduce functions, while the Apache Spark is based on in-memory computation
and on a Resilient Distributed Dataset (RDD) abstraction. DSDMSs are developed on the
top of these frameworks, inheriting their characteristics and advantages, and providing
extended functionalities to deal with spatial data.

1https://hadoop.apache.org/
2https://spark.apache.org/

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

80



Several DSDMSs have been proposed in the literature, which are classi-
fied as Hadoop- or Spark-based systems. The most remarkable Hadoop-based sys-
tems are Hadoop-GIS [Aji et al. 2013] and SpatialHadoop [Eldawy and Mokbel 2015].
The state-of-the-art Spark-based systems include SpatialSpark [You et al. 2015],
GeoSpark [Yu et al. 2015], SIMBA [Xie et al. 2016], LocationSpark [Tang et al. 2016],
SparkGIS [Baig et al. 2017], and Elcano [Engélinus and Badard 2018]. However, each
DSDMS has its own characteristics and introduces different functionalities to deal with
spatial data in parallel and distributed environments. Hence, they integrate two different
perspectives, the characteristics of spatial data handling [Güting 1994, OGC 2018] and
the aspects inherent to distributed systems [Pandey et al. 2018].

Due to the variety of DSDMSs and provided functionalities, users who design, de-
velop, and implement spatial applications for corporations face the challenge of choosing
one system over the others. Indeed, the arguments behind choosing a given DSDMS de-
pend on the purpose of the application. There are spatial applications that process ad-hoc
spatial queries (e.g., [Wiemann et al. 2018]). For these applications, the chosen system
should provide support for processing different types of spatial operations, such as topo-
logical predicates (e.g., contains, inside, and meet), geometric set operations (e.g., union,
intersection), and numerical operations (e.g., area, distance). Other spatial applications re-
quire interoperability among different systems (e.g., [Lee and Reichardt 2005]); thus, the
existence of different representations (e.g., textual and binary) for spatial objects (e.g.,
points, lines, and regions) is a requirement. Further, there are applications that require
quick answers to specific spatial queries [Pandey et al. 2018]. In this case, the chosen
system should provide indices specifically designed to answer these queries efficiently.

A review of related work aimed to compare DSDMSs shows that existing studies
focus on comparing these systems experimentally (see Section 2). That is, they provide
a system-centric view of DSDMSs based on performance evaluations. However, it is also
important for users to understand how the characteristics of these systems are useful to
meet the specific requirements of their spatial applications. To the best of our knowledge,
there is no related work that provides a comparison based on this user-centric view.

The main goal of this work is to fill this gap in the literature by analyzing, from
the user-centric point of view, the following DSDMSs: Hadoop-GIS, SpatialHadoop,
SpatialSpark, GeoSpark, SIMBA, LocationSpark, SparkGIS, and Elcano. We introduce
the contributions described as follows.

• Comparison of the DSDMSs using an extensive set of criteria related to the charac-
teristics of spatial data handling and to the aspects inherent to distributed systems.

• Proposal of a set of guidelines, based on the comparison, to help users to identify
the systems that most meet the specific requirements of their spatial applications.

• Description of a case study using GeoSpark to illustrate the use of the guidelines.
This paper is organized as follows. Section 2 reviews related work. Section 3

defines the set of criteria and compares the analyzed DSDMSs. Section 4 introduces our
guidelines. Section 5 describes the case study. Finally, Section 6 concludes the paper.

2. Related Work
We survey related work considering two groups. The first one refers to approaches that
introduce DSDMSs. Because the proposal of these systems depends on computational

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

81



advances such as those related to parallel and distributed frameworks for processing big
data, the first DSDMSs available in the literature are Hadoop-based. Here, we are in-
terested in Hadoop-GIS [Aji et al. 2013] and SpatialHadoop [Eldawy and Mokbel 2015].
The latest systems have been Spark-based, i.e., SpatialSpark [You et al. 2015],
GeoSpark [Yu et al. 2015], SIMBA [Xie et al. 2016], LocationSpark [Tang et al. 2016],
SparkGIS [Baig et al. 2017], and Elcano [Engélinus and Badard 2018]. Further, the work
of Garcı́a-Garcı́a et al. (2017) introduces algorithms for optimizing distance join queries
and implements them using SpatialHadoop and LocationSpark. Differently from our
work, these approaches only briefly and technically summarize system by system. That is,
they do not conduct a comparison among them considering the characteristics of spatial
data handling and the aspects inherent to distributed systems. They also do not propose
guidelines for users.

The second group refers to approaches aimed to provide a performance compari-
son among DSDMSs. In this context, there are only two related works that have been pro-
posed in the literature. In Hagedorn et al. (2017), a performance evaluation is conducted
focusing on the spatial filter and join operators for the following DSDMSs: Hadoop-
GIS, SpatialHadoop, SpatialSpark, GeoSpark, and STARK3, which is a spatial-temporal
query processing extension that integrates into any Spark application. A broader perfor-
mance evaluation is introduced in Pandey et al. (2018). First, the authors briefly survey
SpatialHadoop, Hadoop-GIS, SpatialSpark, GeoSpark, Simba, Magellan4, and Location-
Spark. Then, they present extensive experiments involving the last five DSDMSs, con-
sidering five different spatial queries (i.e., range query, kNN query, spatial joins between
distinct spatial data types, distance join, and kNN join) and four different data types (i.e.,
points, lines, rectangles, and polygons). However, Hagedorn et al. (2017) and Pandey
et al. (2018) provide a system-centric view of DSDMSs, which is aimed to compare
these systems based on their performance only. On the other hand, we compare DSDMSs
considering the user-centric view, which is aimed to help users to understand how the
characteristics of these systems are useful to meet the specific requirements of their spa-
tial applications. Another differential of our work is that we also compare SparkGIS and
Elcano, which are recently published DSDMSs.

In this paper, we analyze DSDMSs with publications in the literature and that sup-
port spatial data only. Thus, Magellan and STARK are not included in our comparisons.
Further, carrying out performance evaluations of the DSDMSs is out of the scope of our
paper due to the user-centric view. In this context, we consider the work of Pandey et
al. (2018) as the state-of-the-art system-centric view. We use their findings in Section 3.2
and in Section 4 to complement our work.

3. User-Centric Comparative Analysis

In this section, we introduce a detailed user-centric comparison among the following
DSDMSs: Hadoop-GIS, SpatialHadoop, SpatialSpark, GeoSpark, SIMBA, Location-
Spark, SparkGIS, and Elcano. We use an extensive set of criteria that integrate two
different perspectives: (i) the characteristics of spatial data handling (Section 3.1); and
(ii) the aspects inherent to distributed systems (Section 3.2).

3https://github.com/dbis-ilm/stark
4https://github.com/harsha2010/magellan

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

82



Table 1. A User-centric view of DSDMSs, considering the characteristics of spa-
tial data handling.

DSDMS Spatial Data
Types

Representa-
tion of Spatial

Objects

Geometric
Set

Operations

Topological
Predicates

Numerical
Operations

Spatial
Indexing

Hadoop-GIS X textual only
union and

intersection
only

X X X

SpatialHadoop
simple points,
rectangles, and
polygons only

textual only union only limited for queries
only X

SpatialSpark X textual only X X X X
GeoSpark X X X X X X

SIMBA
simple points
and rectangles

only
textual only no limited X X

LocationSpark
simple points
and rectangles

only

user should
implement no limited for queries

only X

SparkGIS
at least simple

spatial data
types

not
specified

not
specified

not
specified

at least for
queries X

Elcano X textual only X X X X

3.1. Support for Spatial Data Types and Their Operations
Table 1 compares the DSDMSs considering the following characteristics of spatial data
handling [Güting 1994, OGC 2018]: spatial data types, representation of spatial objects,
geometric set operations, topological predicates, numerical operations, and spatial index-
ing techniques. A checkmark icon in a cell indicates that the DSDMS completely fulfills
the corresponding criterion. A not specified expression indicates that no information is
provided in the research paper that introduces the DSDMS, and the criterion was not
further analyzed because the implementation of the system is not available yet.

Before detailing the motivation and the context behind each aforementioned cri-
terion, it is important to note that the underlying library used by the DSDMSs to handle
spatial objects impacts directly on their capabilities regarding the management of spatial
data. SpatialSpark, GeoSpark, and Elcano are based on the JTS library5. Hence, they ful-
fill almost all the criteria since this library follows the OGC specifications [OGC 2018].

Spatial data types. The support for spatial data types is fundamental to adequately rep-
resent geographical phenomena of different dimensions, such as points, lines, and regions
(i.e., polygons) [Güting 1994]. Regions might also be specialized to other types, such as
rectangles. Further, spatial data types can be simple or complex; simple spatial data types
provide only single-component objects, while complex spatial data types provide versa-
tile spatial objects with finitely many components. Hadoop-GIS, SpatialSpark, GeoSpark,
and Elcano provide support for simple and complex spatial data types. The remaining
DSDMSs limit their scope. For instance, SIMBA and LocationSpark provide support for
simple points and rectangles only. SpatialHadoop, however, is an exception. Despite its

5https://locationtech.github.io/jts/

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

83



limited support for spatial data types, it can be extended, allowing users to define their
own geometry data types. Regarding SparkGIS, it may provide features to manipulate
complex spatial data types, but this cannot be affirmed since its implementation is not
available yet.

Representation of spatial objects. Spatial objects can assume distinct representations
that are used for different purposes, such as interoperability between applications, load-
ing of spatial objects into DSDMSs, and visualization of spatial objects. The OGC stan-
dard specifies several representations [OGC 2018]. For instance, GML and GeoJSON are
textual representations of spatial objects useful for visualizing objects in web-based ap-
plications. Another example is WKB, a binary representation that is useful to make fast
data transferring between applications. Only GeoSpark supports textual and binary repre-
sentations. Regarding LocationSpark, it does not provide encapsulated functions capable
of processing any type of representation, burdening the user to implement these functions.

Geometric set operations. This type of spatial operation calculates the geometric inter-
section, geometric union, and geometric difference of two spatial objects [Güting 1994].
The result of these operations is another spatial object that can be used in further spatial
analysis; thus, allowing users to take more flexible strategic decisions and enhancing the
user experience. With the exception of the DSDMSs that employ the JTS library, geo-
metric set operations are not fully supported by Hadoop-GIS and SpatialHadoop, which
include up to two operations, or are not supported at all by the others systems.

Topological predicates. Spatial queries commonly required in spatial applications of-
ten make use of topological predicates [Gaede and Günther 1998], such as overlap, con-
tains, and intersects. Examples of typical spatial queries include: (i) spatial selections
that return a set of spatial objects satisfying a topological predicate given a search ob-
ject, (ii) range queries that yield all spatial objects satisfying a topological predicate
given a rectangular-shaped object called query window, and (iii) spatial joins that com-
bine different sets of spatial objects according to a topological predicate. From the user-
centric view, it is important to a DSDMS to offer native support for topological predicates
because users can define the specific queries required by their applications. Hadoop-
GIS, SpatialSpark, GeoSpark, and Elcano satisfy this requirement. On the other hand,
SpatialHadoop, SIMBA, and LocationSpark do not allow the specification of ad-hoc spa-
tial queries with topological predicates. Instead, they only support a subgroup of opti-
mized spatial queries with a predetermined set of predicates. For instance, range and
spatial join queries in SpatialHadoop can only be executed with the predicate overlap.

Numerical operations. This type of operation returns numbers calculated from geomet-
ric properties of spatial objects [Güting 1994], such as the length of lines and the area
of regions. Further, numerical operations can be employed to execute distance-based
spatial queries, such as the k-nearest neighbor query that returns a set of k spatial objects
nearest to an origin location. For instance, distance-based spatial queries are useful in spa-
tial neighbourhood analysis. All DSDMSs provide at least some support for numerical
operations. In SpatialHadoop, LocationSpark, and SparkGIS, the numerical operations
are performed only within encapsulated functions that execute spatial queries. However,
SparkGIS may provide other features to manipulate numerical operations, but this cannot
be affirmed since its implementation is not available yet. Finally, regarding numerical op-

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

84



Table 2. A user-centric view of DSDMSs, considering the aspects inherent to
distributed systems.

DSDMS Underlying
Technology

Doc. Com-
pleteness

Spatial
Partitioning

Distributed
Indexing

Query
Language

Visualization
Module

Hadoop-GIS Hadoop-
based X X X HiveSQL-

based limited

SpatialHadoop Hadoop-
based X X X Pigeon-

based

for simple
spatial data
types only

SpatialSpark Spark-based limited X local indices
only no no

GeoSpark Spark-based X X local indices
only SQL-based

for simple
spatial data
types only

SIMBA Spark-based limited X X SQL-based no
LocationSpark Spark-based limited X X no no
SparkGIS Spark-based unavailable X X no limited
Elcano Spark-based unavailable not specified not specified SQL-based no

erations that extract geometric characteristics, only SpatialSpark, GeoSpark, and Elcano
provide this type of support since they are based on the JTS library.

Spatial indexing techniques. The use of a spatial index is one of the most common
techniques employed to accelerate spatial query processing [Gaede and Günther 1998].
Many different spatial indices have been proposed in the literature, such as the R-trees
and the Quadtrees. In general, DSDMSs employ spatial indices for two main purposes:
(i) to process spatial queries in slave nodes; and (ii) to distribute data among slave nodes
and possibly reduce the number of partitions visited during a spatial query (Section 3.2).
Because of these advantages, spatial indices are supported by all compared DSDMSs.

3.2. Support for Aspects Inherent to Distributed Systems
Table 2 compares the DSDMSs considering the following aspects inherent to distributed
systems: underlying technology, documentation completeness, spatial partitioning, dis-
tributed indexing, and query language. A checkmark icon is employed if a DSDMS
completely fulfills a corresponding criterion. A not specified expression indicates that
no information is provided in the research paper that introduces the DSDMS, and the cri-
terion was not further analyzed because the implementation of the system is not available
yet. We discuss the motivation and the context behind each criterion as follows.

Underlying technology. The underlying technology used to implement a DSDMS im-
pacts on the performance of spatial applications because of the I/O cost. Hadoop-based
systems need to write intermediate data to disk, while Spark-based systems store interme-
diate data in the main memory through the use of RDDs. Thus, according to Pandey et al.
(2018), Spark-based systems usually deliver better performance.

Documentation completeness. A complete, accurate, and up-to-date documentation is
a required prerequisite to help users who design, develop, and implement spatial appli-
cations, especially when these users are dealing with state-of-the-art systems. The lack
of documentation may impact negatively in the application development, requiring extra

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

85



time to develop the application and burdening the users. Hadoop-GIS, SpatialHadoop,
and GeoSpark stand out since these systems provide a dedicated website with expres-
sive content, such as list of features, detailing of installation procedures, and several tu-
torials describing how to execute spatial operations. The available documentations of
SpatialSpark, SIMBA, and LocationSpark provide only a short description and a quick
example of some of their operations. SparkGIS and Elcano are exceptions. They do not
have a public version released yet, and therefore do not provide documentation.

Spatial partitioning. The partitioning of data across cluster nodes is a technique fre-
quently used in parallel and distributed computing. This technique usually speed up query
processing by taking advantage of data locality. By using spatial partitioning techniques,
a DSDMS is able to use the spatial characteristics of the dataset as the criterion for the par-
titioning, improving the performance of spatial queries. Several DSDMSs employ spatial
partitioning techniques, with Hadoop-GIS, SpatialHadoop, SIMBA, and SparkGIS pro-
viding the most expressive quantity of algorithms available.

Distributed indexing. The concept of spatial indexing in a parallel and distributed en-
vironment is strongly related to spatial partitioning. Commonly, two data structures are
created: (i) a global index, located on the master node, pointing to each data partition,
and (ii) multiple local indices, each located on a data partition, pointing to the data in-
side the partition. The global index, which is created with the same data structure used
for spatial partitioning, is applied before executing a spatial query in order to prune un-
necessary partitions. This global index, however, is not employed by SpatialSpark and
GeoSpark, which include only local indices. On the other hand, global and local indices
are employed by Hadoop-GIS, SpatialHadoop, SIMBA, LocationSpark, and SparkGIS,
introducing several benefits as discussed in Section 3.1.

Query language. Extending existing query languages is an essential characteristic that
a DSDMS should provide to simplify the manipulation of spatial objects. DSDMSs that
extend well-known query languages, such as SQL, usually reduce the learning curve of
users. That is, they enable users to quickly familiarize themselves with the features of
the system. GeoSpark, SIMBA, and Elcano distinguish themselves because they extend
SparkSQL to support the execution of spatial queries. Hadoop-GIS and SpatialHadoop
also extend existing query languages, but those are based on other standards (HiveSQL
and Pigeon, respectively). The remainder DSDMSs do not offer query language, requiring
extra efforts from users to retrieve and manage spatial objects.

Visualization module. Providing a module for visualizing results of spatial queries is an
important aspect that enhances the user experience in spatial applications. For instance,
visualizing the output of a spatial query in a map instead of in a text file enables users
to visible interpret its content and to take quicker decisions over the identified problems.
To provide a precise and complete map visualization of spatial objects, the generation
of high-resolution maps is needed. Currently, only SpatialHadoop and GeoSpark fully
support this feature. However, this support is restricted to simple spatial data types. On
the other hand, Hadoop-GIS only provides a simple tool that allows users to visualize the
boundaries of partitions. Regarding SparkGIS, its support for visualizing spatial objects
depends on the implementation of plugins that extend its functionalities.

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

86



4. User-centric Guidelines

In this section, we propose a set of user-centric guidelines to help users to identify the
most appropriate DSDMSs to their needs, according to the analyses described in Sec-
tion 3. Because the context and objectives behind the development of applications are
very variable, we provide a small but general characterization that can be later specialized
based on the requirements of each application. Thus, we propose guidelines defined on
the focus of spatial applications. Each guideline also lists the DSDMSs that meet its spec-
ification. Non-listed DSDMSs may offer some related functionalities, but should require
extra implementation efforts from users.

Guideline 1. Focus on executing ad-hoc spatial queries. This guideline is based on spa-
tial applications that need to process spatial queries without specific formats. An example
is an application for analyzing heterogeneous and distributed spatial data for environmen-
tal monitoring [Wiemann et al. 2018]. To fulfill Guideline 1, a DSDMS should provide
support for an expressive variety of spatial operations, such as geometric set operations,
topological predicates, and numerical operations. Based on our analyses, the following
DSDMSs fulfill Guideline 1: SpatialSpark, GeoSpark, and Elcano.

Guideline 2. Focus on the interoperability among different systems. This guideline is
based on spatial applications that need to communicate with each other, such as those that
integrate heterogeneous spatial data from different sources. For instance, the integration
of public and private urban transportation spatial data [Smarzaro et al. 2017]. To fulfill
Guideline 2, a DSDMS should provide support for all spatial data types since the repre-
sentation of spatial phenomena can be different in the sources. Further, spatial objects
should be exchangeable by using textual or binary representations. Based on our analy-
ses, GeoSpark fulfills Guideline 2. Hadoop-GIS, SpatialSpark, and Elcano partially fulfill
this guideline because they provide support for textual representations only.

Guideline 3. Focus on characteristics based on well-known standards. This guideline
is based on spatial applications that require the use of well-known and accepted concepts,
such as terms and expressions employed in the literature, query languages, and represen-
tations of spatial objects. An example is the application of some open standards for home-
land security networks [Lee and Reichardt 2005]. Another example is the web-based ap-
plication detailed in Wiemann et al. (2018). To fulfill Guideline 3, a DSDMS should
employ well-known and accepted concepts in its design. It also should follow Guideline
2. Based on our analyses, GeoSpark fulfills Guideline 3. SpatialSpark, SIMBA, and El-
cano also consider several aspects of this guideline, but introduce limitations related to
the lack of a binary representation of spatial objects based on well-known standards.

Guideline 4. Focus on spatial data visualization. Spatial applications usually require
the use of graphical user interfaces through which users are able to manipulate spatial ob-
jects, share findings by plotting spatial objects in maps, and enrich their decision-making.
For instance, applications analyzing traffic data require the visualization of spatial data
to better understand transportation systems [Chen et al. 2015]. To fulfill Guideline 4, a
DSDMS should provide visualization modules without restricting the type of spatial data
being manipulated. To the best of our knowledge, there is no compared DSDMS that
completely fulfills this guideline. Hadoop-GIS, SpatialHadoop, GeoSpark, and SparkGIS
only provide a limited support for visualizing spatial objects.

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

87



Guideline 5. Focus on efficiently processing spatial queries. Reducing the time spent
to process spatial queries is a common requirement of spatial applications. For instance,
Garcı́a-Garcı́a et al. (2017) propose algorithms for optimizing distance joins queries.
To fulfill Guideline 5, a DSDMS should include optimized- and specialized-algorithms
for processing spatial queries, including the use of indices. Here, the findings about the
performance evaluation of DSDMSs described in Pandey et al. (2018) should be used as
foundation. Pandey et al. (2018) also provide the best parameters of these systems to
process several types of spatial queries.

5. Case Study
In this section, we describe a case study that illustrates the use of the proposed
guidelines. We use a spatial application containing real spatial objects extracted
from OpenStreetMaps that correspond to buildings, highways, and single locations of
Brazil [Carniel et al. 2017]. They are represented by regions, lines, and points respec-
tively. This application handles these objects in spatial queries that analyze the infrastruc-
ture situation of different places, such as farms, schools, and roads. Users who design,
develop, and implement this spatial application should consider the following require-
ments to decide which DSDMS to choose. The application should manage spatial objects
represented by simple and complex data types. The spatial objects are stored in CSV files.
Each line of these files has the format (geo, desc), where geo is the WKT representation
of the spatial object and desc is its description. The application should also support ad-hoc
spatial queries possibly containing geometric set operations, topological predicates, and
numerical operations. Further, the application should provide good performance results.
Finally, it is important to note that users have some previous knowledge of SQL.

The application’s requirements indicate that users should take into account Guide-
lines 1, 3, and 5 (Section 4). As a result, users choose GeoSpark as the most appropriate
DSDMS since it fulfills the requirements. Regarding Guideline 5, users should apply
the same values of parameters as described in Pandey et al. (2018) to guarantee the best
elapsed times for spatial queries. These parameters are: (i) the R-tree as the local index,
and (ii) the Quadtree as the spatial partitioning technique.

Data loading. First, spatial objects from the CSV files are loaded into GeoSpark by using
GeoSparkSQL. Because this module is an extension of SparkSQL, the files are loaded into
a structure called DataFrame, which resembles a relational table. Next, the column that
stores the textual representation of the spatial data should be transformed into a geometry
column. GeoSparkSQL provides a function capable of transforming a WKT representa-
tion into a spatial object, which can be manipulated in SQL queries (Guideline 4). The
following query is an example of how the column that contains the WKT representation
of the regions stored in brazil buildings can be transformed into a geometry column:

SELECT ST_GeomFromWKT(brazil_buildings.geo) AS geo,
brazil_buildings.desc AS desc

FROM brazil_buildings

After loading all spatial objects, users can execute ad-hoc spatial queries on the
DataFrame (Guideline 1). We define four ad-hoc spatial queries as samples for our appli-
cation. These queries are described as follows.

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

88



(a) range query (b) spatial join query

(c) k-nearest neighbours query (d) geometric set manipulation query

Figure 1. Visualization of the query results.

Range query. The first query returns all schools located inside a query window (QW),
which is a rectangle that corresponds to 0.001% of the total extent of Brazil. The results
of this query enable users to analyze the school coverage in a given range. The command
that express this query employs the topological predicate contains as follows:

SELECT brazil_buildings.geo
FROM brazil_buildings
WHERE ST_Contains(QW, brazil_buildings.geo)

AND brazil_buildings.desc = ’school’

Spatial join query. The next query returns all tracks (i.e., rough road used by agricultural
or similar vehicles) that intersect a building. This query is useful to analyze if tracks
should be improved or not. The command that express this query employs the topological
predicate intersects as follows:

SELECT brazil_buildings.geo, brazil_highways.geo
FROM brazil_buildings, brazil_highways
WHERE ST_Intersects(brazil_buildings.geo, brazil_highways.geo)

AND brazil_highways.desc = ’track’

K-nearest neighbours query. The next query yields the 30 nearest energy towers from
the Olympic Arena of Rio de Janeiro (PT) to analyze the infrastructure situation of an
important neighborhood. To this end, the following distance-based query can be written:

SELECT brazil_points.geo, ST_Distance(brazil_points.geo, PT) as d
FROM brazil_points

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

89



WHERE brazil_points.desc = ’tower’
ORDER BY d
LIMIT 30

Geometric set manipulation query. The final query returns the total area of all farms
in Brazil. Hence, we need to compute the geometric union among all farms and then
calculate its area, as follows:

SELECT ST_Area(ST_Union_Aggr(brazil_buildings.geo))
FROM brazil_buildings
WHERE brazil_buildings.desc = ’farm’

Figure 1 depicts the spatial objects returned by these queries. Zooming was ap-
plied to better visualize portions of the result; thus, the result was not completely dis-
played for some queries. We use QGIS6 to show the queries’ results because the visual-
ization module GeoSpark-Viz does not allow the visualization of complex spatial objects.

6. Conclusions and Future Work
In this paper, we provide a comparative analysis of the following up-to-date
DSDMSs: Hadoop-GIS, SpatialHadoop, SpatialSpark, GeoSpark, SIMBA, Location-
Spark, SparkGIS, and Elcano. Because the analysis is performed from the user-centric
view, it is aimed to help users to understand how the characteristics of DSDMSs are useful
to meet the specific requirements of their spatial applications. Based on the comparisons,
we propose a set of guidelines to help users to choose an appropriate DSDMS to design,
develop, and implement their spatial applications. Finally, we describe a case study using
GeoSpark to illustrate the use of the guidelines. Future work includes the user-centric
comparison of other DSDMSs such as Magellan and STARK. Another future work is to
describe the case study using each surveyed DSDMS.

Acknowledgments
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001. This work has also been supported
by CNPq and by the São Paulo Research Foundation (FAPESP). Anderson C. Carniel
has been supported by the grant #2015/26687-8, FAPESP. Cristina D. A. Ciferri has been
supported by the grant #2018/22277-8, FAPESP.

References
Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., and Saltz, J. H. (2013). Hadoop-

GIS: A high performance spatial data warehousing system over MapReduce. VLDB
Endowment, 6(11):1009–1020.

Baig, F., Vo, H., Kurç, T. M., Saltz, J. H., and Wang, F. (2017). SparkGIS: Resource
aware efficient in-memory spatial query processing. In ACM SIGSPATIAL Int. Conf.
on Advances in Geographic Information Systems, pages 28:1–28:10.

Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. (2017). Spatial datasets for conduct-
ing experimental evaluations of spatial indices. In Satellite Events of the Brazilian
Symposium on Databases - Dataset Showcase Workshop, pages 286–295.
6http://qgis.osgeo.org

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

90



Chen, W., Guo, F., and Wang, F. (2015). A survey of traffic data visualization. IEEE
Trans. on Intelligent Transportation Systems, 16(6):2970–2984.

Eldawy, A. and Mokbel, M. F. (2015). SpatialHadoop: A MapReduce framework for
spatial data. In Int. Conf. on Data Engineering, pages 1352–1363.

Engélinus, J. and Badard, T. (2018). Elcano: A geospatial big data processing system
based on SparkSQL. In Int. Conf. on Geographical Information Systems Theory, Ap-
plications and Management, pages 119–128.

Gaede, V. and Günther, O. (1998). Multidimensional access methods. 30(2):170–231.

Garcı́a-Garcı́a, F., Corral, A., Iribarne, L., Mavrommatis, G., and Vassilakopoulos, M.
(2017). A comparison of distributed spatial data management systems for processing
distance join queries. In European Conf. on Advances in Databases and Information
Systems, pages 214–228.

Güting, R. H. (1994). An introduction to spatial database systems. The VLDB Journal,
3(4):357–399.

Hagedorn, S., Götze, P., and Sattler, K. (2017). Big spatial data processing frameworks:
Feature and performance evaluation. In Int. Conf. on Extending Database Technology,
pages 490–493.

Lee, K. B. and Reichardt, M. E. (2005). Open standards for homeland security sensor
networks. IEEE Instrumentation Measurement Magazine, 8(5):14–21.

OGC (2018). OpenGIS R� Implementation Standard for Geographic Information - Simple
Feature Access - Part 1: Common Architecture. Open Geospatial Consortium. Avail-
able at: http://www.opengeospatial.org/standards/sfa.

Pandey, V., Kipf, A., Neumann, T., and Kemper, A. (2018). How good are modern spatial
analytics systems? VLDB Endowment, 11(11):1661–1673.

Smarzaro, R., Lima, T. F. M., and Davis, Jr., C. A. (2017). Could data from location-based
social networks be used to support urban planning? In Int. Conf. on World Wide Web
Companion, pages 1463–1468.

Tang, M., Yu, Y., Malluhi, Q. M., Ouzzani, M., and Aref, W. G. (2016). LocationSpark:
A distributed in-memory data management system for big spatial data. VLDB Endow-
ment, 9(13):1565–1568.

Wiemann, S., Karrasch, P., and Bernard, L. (2018). Ad-hoc combination and analysis of
heterogeneous and distributed spatial data for environmental monitoring - design and
prototype of a web-based solution. International Journal Digital Earth, 11(1):79–94.

Xie, D., Li, F., Yao, B., Li, G., Zhou, L., and Guo, M. (2016). Simba: Efficient in-
memory spatial analytics. In ACM SIGMOD Int. Conf. on Management of Data, pages
1071–1085.

You, S., Zhang, J., and Gruenwald, L. (2015). Large-scale spatial join query processing
in cloud. In Int. Conf. on Data Engineering Workshops, pages 34–41.

Yu, J., Wu, J., and Sarwat, M. (2015). GeoSpark: a cluster computing framework for
processing large-scale spatial data. In ACM SIGSPATIAL Int. Conf. on Advances in
Geographic Information Systems, pages 70:1–70:4.

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 80-91.

91


