
SP-TWDTW: A New Parallel Algorithm for Spatio-Temporal
Analysis of Remote Sensing Images

Sávio S. T. de Oliveira1, Luiz M. L. Pascoal1, Laerte Ferreira2, Marcelo de C. Cardoso1,
Elivelton Bueno1, Vagner J. S. Rodrigues1, Wellington S. Martins1

1Instituto de Informática - Universidade Federal de Goiás (UFG)
Alameda Palmeiras, Quadra D, Câmpus Samambaia

131 - CEP 74001-970 - Goiânia - GO - Brasil
2LAPIG - CAMPUS II Samambaia - Cx. POSTAL 131

CEP: 74001-970 - Goiânia - GO - Brasil

{savioteles,luizmlpascoal,lapig.ufg}@gmail.com,

{marcelo.cardoso,elivelton.bueno,vagner}@gogeo.io, wellington@inf.ufg.br

Abstract. In the class of computationally complex problems, the time series
analysis is one of those that has high demand for computational power. The
Time-Weighted Dynamic Time Warping (TWDTW) algorithm stands out as one
of the best solution found in the literature in this field, but its time complexity
of O(n2) makes it unfeasible for large data sets. To overcome this limitation,
this work proposes a parallel algorithm, named SP-TWDTW (Spatial Parallel
TWDTW), that allows the analysis of large scale time series using Manycore
architectures. The SP-TWDTW considers the temporal axis and the spatial au-
tocorrelation to determine the land use mapping in a given region. The results
show that the SP-TWDTW algorithm is a promising solution with response time
up to 11 times lower.

1. Introduction
The Earth’s surface is changing at an unprecedented rate. Forest ecosystems diminish at
alarming speed, urban and agricultural areas expand into the surrounding natural space.
Since then, time series analysis of remote sensing images has become indispensable to
identify these changes. It has attracted great interest in the world scenario, becoming an
important resource in several applications [Kuenzer et al. 2015].

Among the group of time series analysis algorithms, the Time-Weighted Dynamic
Time Warping (TWDTW) is considered one of the best algorithms for searching all pos-
sible occurrences of patterns in time series of remote sensing images [Maus et al. 2016].
The TWDTW algorithm is an adaptation of the Dynamic Time Warping (DTW) algo-
rithm [Sakoe 1971], a well-known method for time series analysis. The DTW compares
a pattern of a known event with an unknown time series.

Unlike the DTW, the TWDTW algorithm is sensitive to the seasonal changes of
the natural and cultivated vegetation types, which is extremely important in remote sens-
ing field [Maus et al. 2016]. However, the TWDTW analyzes each pixel individually, not
taking into account the neighboring pixels and, therefore, make assumptions (e.g. inde-
pendent, identical distributions) which violate Tobler’s first law of Geography: everything
is related to everything else but nearby things are more related than distant things (i.e.,

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

46

independent distributions). Techniques which ignore spatial autocorrelation typically per-
form poorly in the presence of spatial data [Vatsavai 2008].

This paper proposes a new highly parallel solution, named Spatial Parallel
TWDTW (SP-TWDTW), which takes into account the temporal axis and the spatial auto-
correlation to determine the land use mapping in a given region. The TWDTW algorithm
has a high computational cost, with time complexity of O(n2), which makes its use unfea-
sible for large data sets [Xiao et al. 2013] and makes it virtually impossible to analyze the
spatial axis due to the computational cost. The SP-TWDTW explore the cores available
in Manycore architectures and automatically manages the usage of the memory spaces to
allows the processing of large amounts of data. The main contributions of this work are
listed below:

• A new parallel algorithm for spatio-temporal analysis of remote sensing images.
• The inclusion of the spatial dimension in the classification of time series.
• An automatic system to manage memory usage between CPU and GPU spaces.

This paper is organized as follows. Section 2 discusses the processing of time
series analysis for remote sensing images. Section 3 describes the TWDTW algorithm
used as the basis for this work. The new algorithm proposed in this paper (SP-TWDTW) is
presented in Section 4. Section 5 validates the SP-TWDTW algorithm experimentally and
discusses the performance of the algorithm. Finally, Section 6 presents some conclusions
and future work.

2. Analysis of Time Series for Remote Sensing Images
Time series analysis comprises methods for extracting important statistics and character-
istics from time series data. The DTW, which is one of the most well-known methods
in this field, allows the alignment between two time series, even if they have different
lengths or they are not aligned on the time axis. Given the time series A and B, the
distance between them are computed as

DTW (A,B) = min

vuut
KX

k=1

wk (1)

where wk = (i, j) represents the association between the i-th and the j-th observations,
say ai and bj , respectively time series A and B, which are equivalents according to the
Euclidean Distance, d(i, j) =

p
(ai � bj)2. The sequence w1, w2, ..., wk represents the

association between observation pairs of the two given time series, denoted by the ad-
justment path. Equation 1 is subject to the following conditions: i) The first observation
of one series must match the first observation of the other series, w1 = (1, 1), and the
last observation of one series must match the last observation of the other, wk = (m,n);
ii) Given wk = (i, j) and wk+1 = (i0, j0) then i

0
� i  1 and j

0
� j  1; iii) Given

wk = (i, j) and wk+1 = (i0, j0) then i
0
� i > 0 and j

0
� j  0. The DTW algorithm is

not recommended for time series analysis of remote sensing images because it disregards
the temporal range when finding the best alignment between two time series classifica-
tion [Maus et al. 2016].

Some previous work like [Petitjean et al. 2012, Petitjean and Weber 2014,
Maus et al. 2016] proposed non parallel methods using DTW to analyze time series of

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

47

satellite images, while [Petitjean et al. 2012, Petitjean and Weber 2014] used a maximum
time delay to avoid time distortions based on the date of the satellite images. On the other
hand, [Verbesselt et al. 2010, Jamali et al. 2015] support parallel execution in Multicore
architectures using the library foreach1 from R programming language. The TWDTW
method [Maus et al. 2016] seeks to find all possible occurrences of a particular pattern
within a time series, introducing time constraints, and has been prominent in the accuracy
of identifying land cover use.

The rapid growth of multicore/manycore processors has attracted the attention
of many researchers. For example, the works [Xiao et al. 2013, João Jr et al. 2017,
Zhu et al. 2018] presented parallel solutions to analyze time series using many-
core architectures (GPUs). However, they do not address the problems identified
by [Maus et al. 2016] in the remote sensing field.

It is essential to make users aware of both the spatial and temporal dimensions
in a Geographic Information System (GIS), since they may reveal implicit relationships
which match the reality of the analyzed data [de Oliveira and de Souza Baptista 2012].
Several techniques of spatial time analysis have been previously pro-
posed [Cressie and Wikle 2015]. Some methods process each image independently
and compare the results for different time instances [Gómez et al. 2011, Lu et al. 2016].
The technique presented in [Costa et al. 2017] builds time series of each pixel and
process them independently. At the end, the algorithm chooses some seed pixels in
the image and calculates the distance between the time series of these seeds to their
neighbors using the DTW method, grouping similar neighbors.

Some papers performs the time series analysis through spatial interpola-
tion [Li and Heap 2014], which is the process of using points with known values to esti-
mate values of other unknown points. Several methods are used, such as:

1. Nearest Neighbor: the value of each point is determined by the nearest
points [Mitas and Mitasova 1999];

2. IDW: gives greater weights to points close to the prediction loca-
tion [Shepard 1968];

3. Kriging: assumes that the distance or direction between sample points reflects a
spatial correlation that can be used to explain variation in the surface [Stein 2012].

3. Time-Weighted Dynamic Time Warping (TWDTW)

The TWDTW [Maus et al. 2016] is a variation of the DTW algorithm that is sensitive
to seasonal changes of natural and cultivated vegetation types. It considers inter-anual
climatic and seasonal variability. The TWDTW method computes the cost matrix n,m

given the pattern U = (u1, ..., un) and time series V = (v1, ..., vm). The elements i,j of
 n,m are computed by adding the temporal cost !, becoming i,j = |ui�vj|+!i,j , which
ui 2 U 8 i = 1, ..., n and vj 2 V 8 j = 1, ...,m. To calculate the time cost, the logistic
model is used with a midpoint � and a bias ↵ presented in Equation 2.

!i,j =
1

1 + e�↵(g(ti,tj)��)
, (2)

1https://cran.r-project.org/web/packages/foreach/index.html

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

48

in which g(ti, tj) is the elapsed time in days between dates ti for the patterns U and tj

in the time series V . From the cost matrix an accumulated cost matrix is calculated,
named D by using a recursive sum of the minimum distances, as shown in equation 3

di,j = i,j +min{di�1,j, di�1,j�1, di,j�1}, (3)

which is subject to the following conditions:

dij =

8
><

>:

 i,j i = 1, j = 1
Pi

k=1 k,j 1 < i  n, j = 1
Pj

k=1 i,k i = 1, 1 < j  m

(4)

The kth lowest cost path in D produces an alignment between the pattern and a
subsequence of V with associated distance �k, in which ak is the first element and bk the
last element of k. Each minimum point in the last row of the cost matrix is accumulated,
i.e. dn,j 8 j = 1, ...,m, produces an alignment, with bk = argmink(dn,j), k = 1, ..., K
and �k = dn,bk , in which K is the minimum number of points in the last row of D.

A reverse algorithm, equation 5, maps the path Pk = (p1, ..., pL) along the kth

“valley” to the lowest cost in D. The algorithm starts in pl=L = (i = n, j = bk) and ends
with i = 1, i.e. pl=1 = (i = 1, j = ak), in which L denotes the last point of alignment.
The path Pk contains the elements that have been matched between the series.

pl�1 =

8
><

>:

(i, ak = j) se i = 1

(i� 1, j) se j = 1

argmin(di�1,j, di�1,j�1, di,j�1) otherwise
(5)

The land cover mapping with TWDTW is performed in two steps. In the first step,
the DTW algorithm is applied to each pattern in U 2 Q and each time serie V 2 S. This
step provides information on how many patterns match with time series intervals. In the
second step, the best matching pattern found by the DTW algorithm is used for land cover
mapping.

4. Spatial-Time Series Analysis of Remote Sensing Images with a Parallel
Architecture

The TWDTW is a pattern-matching algorithm based on dynamic programming with time
complexity O(n2). This section presents the solution proposed in this work for the parallel
processing of spatial time series analysis. This solution, named SP-TWDTW (Spatial
Parallel TWDTW), parallelizes the TWDTW analyzing the temporal axis of the time
series, as well as the spatial axis of the neighboring pixels to classify each time series.

The accumulated cost matrix D is computed from the cost matrix using the
recursive sum of the minimum distances, as shown in equation 3. The construction of D
can not be trivially paralleled since the computation of each element (i, j) of the matrix
depends on the previously elements (i�1, j), (i, j�1) and (i�1, j�1). This dependency
can be seen in Figure 1(a). The idea behind the SP-TWDTW algorithm is presented in
Figure 1(b). Each diagonal is computed in parallel, with each thread being responsible for

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

49

a diagonal cell. Since the elements are not dependent on each other within the diagonal,
the calculation of the accumulated cost does not lead to an inconsistent matrix. The details
of the SP-TWDTW matrix computation are presented in Algorithm 1 in Section 4.1.

(a) The computation of each
element in D depends on the
values of previous elements.

(b) SP-TWDTW: Parallel
processing of D

Figure 1. Computation of the accumulated cost matrix D

4.1. Spatial Parallel Time-Weighted Dynamic Time Warping (SP-TWDTW)
Algorithm 1 describes the SP-TWDTW, which has as input the set of patterns Q and the
set of time series S and calculates the final alignment cost matrix between each U 2 Q and
V 2 S. Since Q and S can be larger than available memory, the input of this algorithm
admits that these sets are stored on the disk. The SP-TWDTW manages the loading of
blocks of Q and S to CPU memory and subsequently to the GPU memory, so that it does
not exceed the limits of them. The SP-TWDTW also receives as input the maximum
size of the sets Q and S that fill in the GPU memory (bQ and bS respectively) and CPU
memory (max_bQ and max_bS respectively).

The algorithm starts in the lines 2 and 3 by reading the blocks of the patterns into
the queueQ and blocks of the time series into the queueS. This work is performed by a
CPU thread that manages the input queue size and the CPU memory available size. So, it
is not necessary to wait to finish this step to start loading the blocks into the GPU global
memory. Between lines 4 and 28, the Algorithm 1 loads the blocks into the GPU memory
and computes the matrix D. This is done while there are blocks to be processed.

From line 5 until line 8, bQ patterns U and bS time series V are loaded into the
GPU global memory, joining the patterns in a single bigQ sequence and the time series
in a single bigS sequence. This union allows the GPU to perform block processing using
all its computational power. In line 9, the cost matrix is constructed from bigQ and bigS,
with each GPU thread being responsible for computing an element of the array.

The calculation of matrix D is performed following the idea presented in Figure
1(b), where each thread computes the cost of each element in the diagonal. Since each
element of the diagonal depends only on the two diagonals, they can be calculated inde-
pendently. Given that bigQ and bigS have several patterns U and time series V , bQ ⇤ bS
threads are launched in the GPU, with each block of threads being responsible for calcu-
lating the cumulative cost between a pattern U and a time series V . Each block in the GPU

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

50

has min(sizeU, sizeV) threads that is the maximum size of a diagonal when comparing
U and V , so that each thread performs the calculation of one diagonal element.

From line 14 to 20, the costs of the first sizeU elements from the upper diagonals
above the secondary diagonal are computed. In a square matrix, these first sizeU diag-
onals are the upper triangular matrix. The Algorithm 1 assumes that the index starts at
position 0. To identify each diagonal, the row index in the upper matrix is computed as
si � tid and the column index is determined by the thread id. The matrix D is updated
for each diagonal element using the function update_accumulated_cost_matrix.

The elements of the next sizeV � 1 diagonals are computed between lines 21 and
26. In a square matrix, for example, these sizeV � 1 diagonals are the lower triangular
matrix. To identify each diagonal, the row index in the upper matrix is calculated as
sizeU � tid � 1 and the column index is set to sizeV � sj � tid � 1. The matrix D is
then updated for each element of the diagonal.

The function update_accumulated_cost_matrix updates each element Di,j of
the accumulated cost matrix D. The calculation of Di,j follows the equation 3, which is
the smallest value between Di�1,j , Di�1,j�1 and Di,j�1 plus the cost i,j . The index in
the matrices and D related to i, j of the matrices U and V must be computed, since the
matrices and D are sent as vectors for the GPU and the series U and V in blocks of
size bQ and bS respectively. So, it is necessary to find the pair U and V inside D and
and then find the correct position in the matrix D related to U and V. In the GPU bQ ⇤ bS

blocks of threads are launched with bQ on the x-axis and bS on the y-axis. So, each block
of threads handles one block in and D.

The matrix D is computed following equation 6 and the global index of and
D follows the equation 7, in which (i + blockIdx.x ⇤ sizeU) ⇤ sizeV ⇤ gridDim.y

finds the correct line in and D, wherein blockIdx.x the id of the block of threads in
the x-axis and gridDim.y the number of blocks in the y-axis. The part of the equation
(j+blockIdx.y⇤sizeV) finds within of the matrix line the correct position of the element
(i, j), being blockIdx.y the id of the block of threads in the y-axis.

D[indexi,j] = min(D[indexi�1,j], D[indexi�1,j�1], D[indexi,j�1) + [indexi,j] (6)

index = (i+blockIdx.x⇤sizeU)⇤sizeV ⇤gridDim.y+(j+blockIdx.y ⇤sizeV) (7)

The algorithm computes the final alignment between each U and V following the
equation 5 in the function compute_dtw_path between lines 29 and 31. This cost is
stored in the matrix R, which each row represents a pattern U and each column a time
series V to be sorted.

Between lines 34 to 39, the SP-TWDTW analyzes the spatial axis, performing a
spatial interpolation on line 36 for each alignment between U and V , that is, each element
of R. We already have the cost of the alignment between U and V stored in Rij , but in the
line 36, the method compute_spatial_interpolation(Ri,j) searches for the cost of other
spatially close time series to V related to the pattern U , estimate the value of Rij and
stores it in the matrix I at Iij . There are several factors that impact on the quality of this
spatial prediction [Li and Heap 2014] and, therefore, a mechanism has been made where
it is possible to give weights for temporal and spatial axis in line 37 of the algorithm. This
weighted cost is stored in the output R matrix.

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

51

Algorithm 1: sp-twdtw(Q, bQ, max_bQ, S, bS, max_bS, temporal_weight,
spatial_weight)

Input: Q: set of patterns U
bQ: number of patterns U in the GPU memory
max_bQ: max patterns U in the CPU memory
S: set of time series V
bS: number of time series V in the GPU memory
max_bS: max time series V in the CPU memory
temporal_weight: temporal axis weight
spatial_weight: spatial axis weight
Output: R: final alignment cost matrix between each U and V

1 while There are patterns U and time series V on disk do
2 queueQ load max_bQ patterns U to CPU memory
3 queueS load max_bS timeseries V to CPU memory
4 while There are patterns in queueQ and time series in queueS do
5 gpu_queueQ load bQ patterns U to GPU global memory
6 gpu_queueS load bS time series V to GPU global memory
7 bigQ merge all patterns U in gpu_queueQ
8 bigS merge all time series V in gpu_queueS
9 compute the cost matrix between bigQ and bigS

10 sizeU compute the pattern size of each U in bigQ
11 sizeV compute the time series size of each V in bigS
12 tid thread id
13 if tid < sizeU then
14 for si 0 to sizeU - 1 do
15 if tid  min(si, sizeV � 1) then
16 i si� tid
17 j tid
18 update_accumulated_cost_matrix(, D, i, j, sizeU, sizeV)

19 end
20 end
21 for sj sizeV � 2 to 0 do
22 if tid  min(sj, sizeU � 1) then
23 i sizeU � tid� 1
24 j sizeV � sj � tid� 1
25 update_accumulated_cost_matrix(, D, i, j, sizeU, sizeV)

26 end
27 end
28 end
29 for Each U in gpu_queueQ and V in gpu_queueS do
30 compute_dtw_path(R,D, sizeU, sizeV)
31 end
32 end
33 end
34 for Each line i in R do
35 for Each column j in R do
36 Ii,j compute_spatial_interpolation(Ri,j)
37 Ri,j Ri,j ⇤ temporal_weight+ Ii,j ⇤ spatial_weight
38 end
39 end

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

52

The drawback of the diagonal based method is that the sizes of the diagonals
vary, which causes a waste of GPU resources. When the diagonal size is lower than the
number of block threads, some of these threads become idle. But, the performance gain
in parallelizing the computation of the diagonal is better than sequential computation.

5. Experiments and Results
This section aims to evaluate the performance of the SP-TWDTW and TWDTW algo-
rithms executed on Multicore (CPU) and Manycore (GPU) architectures. In the CPU
tests, a machine with AMD FX-8320E (3.2 GHz, 8 MB Cache) and 8 GB of RAM was
used. The GPU tests were performed on a NVIDIA GeForce GTX 1050 Ti card with 4
GB GDDR5 of available memory and 768 CUDA cores with clock of 1392 MHz. The
TWDTW was implemented in C++ 2 and SP-TWDTW was implemented on the GPU
using the NVIDIA CUDA language. To compare the response time between the SP-
TWDTW and the TWDTW, the time series V and the patterns U were obtained from real
data in Brazil [Maus et al. 2016] from MODIS sensor, specifically the Porto dos Gauchos
municipality, that covers approximately 7,000 km

2 and is located in the state of Mato
Grosso, Brazil, inside of the Amazon Biome. Each test was performed ten times and the
response time was obtained from the average of them.

Temporal and spatial resolution of remote sensing system have increased in the
last years being a great challenge for remote sensing field [Battude et al. 2016]. The re-
sults regarding the response time for high temporal resolution is presented in Figure 2(a),
by comparing the TWDTW and SP-TWDTW over a pattern U and a time series V , vary-
ing their size. The response time increases considerably with TWDTW as the size of the
pattern U and the time series V increases.

As one can see in Figure 2(a), the TWDTW algorithm works better for smaller
time series (e.g. less than or equal to 90 x 230), however, when the size exceeds 90 x 230
it becomes more advantageous to use the SP-TWDTW. This is due to the fact that SP-
TWDTW uses the GPU for processing and, in this case, the transfer time of U and V from
the CPU memory to GPU memory overcomes the final response time of the algorithm.
The SP-TWDTW algorithm presented response time up to 10 times lower than TWDTW.

Next, the results regarding the high resolution on spatial data are shown in Fig-
ure 2(b) by comparing the response time of SP-TWDTW and TWDTW using small
batches of time series U and V with size of 45 and 23 respectively. As the batch size
increases the difference in response time also increases. For batch size of 3x150, the re-
sponse time of the SP-TWDTW was 7 times lower than the TWDTW. The SP-TWDTW
used a batch size equal to 10x600, running several batches to calculate the alignment be-
tween each U and V . In this scenario, the SP-TWDTW obtained response time 11 times
lower than the TWDTW, since it explored better the GPU architecture.

To compare the accuracy of the SP-TWDTW algorithm and TWDTW algorithm,
we selected the Porto dos Gauchos municipality, located in the state of Mato Grosso,
Brazil, inside of the Amazon Biome. Data from this study area were obtained from
TWDTW’s github 3 and covers approximately 7000 km

2 with 541 time series. The same
2The original version of TWDTW was developed in R, but, in this work, we implemented in C++ to be

able to compare fairly with SP-TWDTW, since the C++ language has better performance.
3https://github.com/vwmaus/dtwSat

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

53

(a) Comparison between the TWDTW and the
SP-TWDTW algorithms using only one pattern U
and one time series V varying their size. The x
axis contains the size of U and V following the
format: sizeofU x sizeofV .

(b) Comparison between the TWDTW and the
SP-TWDTW algorithms with several patterns U
and time series V . The x axis follows the format:
number of patterns U x number of time series V .
Each pattern has size 45 and time series size 23.

Figure 2. Comparing the response time between SP-TWDTW and TWDTW.

value of ↵ and � were use for both methods. The Kriging, IDW and Nearest Neigh-
bor(NN) spatial interpolation methods were used, with their parameters have been opti-
mized through cross validation.

The Table 1 presents the results for time series classification using the SP-
TWDTW. An analysis was performed by varying spatial and temporal axis weights and
the interpolation methods. The SP-TWDTW algorithm with weight 0 for the spatial axis
and 1 for temporal shows the number of time series incorrectly classified by the TWDTW.
It is noteworthy that, in this case, the SP-TWDTW brings the gain of response time re-
duction, as presented in Figure 2, but not in accuracy. The original TWDTW algorithm
implemented in R [Maus et al. 2016] obtained a response time of 9851 ms while the SP-
TWDTW on the GPU took 40 ms, that is, 246 times faster than the TWDTW in R.

Regardless of the interpolation method, when the spatial axis are set with higher
value of weight than the time axis, the SP-TWDTW presented lower accuracy than the
TWDTW. This is explained on Table 2 by spatial closeness between the “Soybean-maize”,
“Soybean-cotton” and “Cotton-fallow” crops. For “Forest” and “Soybean-millet” land us-
age, the SP-TWDTW didn’t misses even with spatial weight equals to 1 because the data
in these land usage are clustered and independent from others land classes. Concerning
to interpolation methods, the IDW performed better that the other methods due to the uni-
form data distribution. For sparse data, the Kriging method would probably present better
accuracy than the IDW [Li and Heap 2014].

Table 2 presents the accuracy assessment for each land usage type according to
the TWDTW and SP-TWDTW time series analysis methods and the IDW spatial interpo-
lation method. The spatial and temporal weights were fixed on 0.4 and 0.6 respectively.
The accuracy for SP-TWDTW was equal or better for all land use types, improving the
TWDTW accuracy in a region that it already presented great results. Since the “Soybean-
maize”, “Soybean-cotton” and “Cotton-fallow” crops are spatially closed and mixed, the
SP-TWDTW negatively impacted on the analysis of the spatial axis.

Finally, in the results for the established scenarios, the SP-TWDTW presented a
response time up to 11 times lower than the TWDTW in C ++ and 246 times lower than

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

54

Weights Interpolation Methods
Spatial Temporal Kriging NN IDW
0 1 9 9 9
0,1 0,9 8 8 8
0,2 0,8 8 8 8
0,3 0,7 7 8 7
0,4 0,6 8 8 7
0,5 0,5 8 10 8
0,6 0,4 12 12 10
0,7 0,3 12 15 12
0,8 0,2 14 15 12
0,9 0,1 14 15 12
1 0 14 18 15

Table 1. Number of samples that were incorrectly classified by the SP-TWDTW
method varying the spatial and temporal weights and the interpolation methods.

Method Cotton-fallow Forest Soybean-cotton Soybean-maize Soybean-millet
UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

TWDTW 95 100 100 100 100 87 95 100 100 100
SP-TWDTW 96 100 100 100 100 90 97 100 100 100

Table 2. Accuracy evaluation for each land usage type according to the TWDTW
and SP-TWDTW algorithms.

the TWDTW in R, presenting a viable alternative to the time series analysis in the Big
Remote Sensing Data era. The SP-TWDTW also presented similar user’s and producer’s
accuracy than the traditional TWDTW.

6. Conclusion

In the class of complex computational problems, the time series analysis is one of the
problems with increased demand for computing power [Rakthanmanon et al. 2013], due
to the complexity of the algorithms and the large volume of data to be processed.

The TWDTW algorithm has been highlighted as one of the best solution found
in the literature to perform the time series analysis for remote sensing images. However,
TWDTW disregards the first law of Geography, processing each pixel independently. In
addition, the TWDTW algorithm presents time complexity of O(n2), becoming unfeasi-
ble for large data sets.

This work presented a parallel solution capable of analyzing large volumes of time
series data exploring parallel architectures. The solution, named SP-TWDTW (Spatial
Parallel TWDTW), analyzes the spatial and temporal dimensions using the TWDTW al-
gorithm to temporal analysis and the interpolation methods to spatial analysis. To support
the Big Remote Sensing Data scenario, the SP-TWDTW took advantage of the Manycore
architecture with the coordinated and appropriate usage of the large number of available
cores. The SP-TWDTW processes the time series as batches, managing the CPU and
GPU memory spaces to allows the processing of large amount of data without exceeding
their capacity.

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

55

As results, the SP-TWDTW proved to be a promising solution for high temporal
resolution data, with a speedup of 10 times over the traditional TWDTW and almost
11 times less response time compared to TWDTW for high spatial resolution data. Using
spatial interpolation methods, SP-TWDTW was able to increase the accuracy of TWDTW
for land use mapping in the Amazon region.

As future work, we intend to evaluate the SP-TWDTW algorithm using large data
sets. We also intend to integrate the SP-TWDTW algorithm into the DistSensing plat-
form [de Oliveira et al. 2017] exploring the resources of a cluster of computers.

References

Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Sicre, C. M., Le Dantec, V., and
Demarez, V. (2016). Estimating maize biomass and yield over large areas using high
spatial and temporal resolution sentinel-2 like remote sensing data. Remote Sensing of
Environment, 184:668–681.

Costa, W. S., Fonseca, L. M., Körting, T. S., SIMÕES, M., Bendini, H. N., and Souza,
R. C. (2017). Segmentation of optical remote sensing images for detecting homoge-
neous regions in space and time. In Embrapa Solos-Artigo em anais de congresso
(ALICE). In: BRAZILIAN SYMPOSIUM ON GEOINFORMATICS, 18., 2017, Sal-
vador. Proceedings... Salvador: Unifacs, 2017. p 40-51.

Cressie, N. and Wikle, C. K. (2015). Statistics for spatio-temporal data. John Wiley &
Sons.

de Oliveira, M. G. and de Souza Baptista, C. (2012). Geostat-a system for visualization,
analysis and clustering of distributed spatiotemporal data. In GeoInfo, pages 108–119.

de Oliveira, S. S. T., de Castro Cardoso, M., dos Santos, W., Costa, P., do Sacramento Ro-
drigues, V. J., and Martins, W. S. (2017). Distsensing: A new platform for time series
processing in a distributed computing environment. Revista Brasileira de Cartografia,
69(5).

Gómez, C., White, J. C., and Wulder, M. A. (2011). Characterizing the state and pro-
cesses of change in a dynamic forest environment using hierarchical spatio-temporal
segmentation. Remote Sensing of Environment, 115(7):1665–1679.

Jamali, S., Jönsson, P., Eklundh, L., Ardö, J., and Seaquist, J. (2015). Detecting changes
in vegetation trends using time series segmentation. Remote Sensing of Environment,
156:182–195.

João Jr, M., Sena, A. C., and Rebello, V. E. (2017). Implementação e avaliação de técnicas
de paralelização no algoritmo de hirschberg para sistemas multicore. Simpósio em
Sistemas Computacionais de Alto Desempenho (WSCAD).

Kuenzer, C., Dech, S., and Wagner, W. (2015). Remote sensing time series revealing land
surface dynamics: Status quo and the pathway ahead. In Remote Sensing Time Series,
pages 1–24. Springer.

Li, J. and Heap, A. D. (2014). Spatial interpolation methods applied in the environmental
sciences: A review. Environmental Modelling & Software, 53:173–189.

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

56

Lu, M., Chen, J., Tang, H., Rao, Y., Yang, P., and Wu, W. (2016). Land cover change de-
tection by integrating object-based data blending model of landsat and modis. Remote
Sensing of Environment, 184:374–386.

Maus, V., Câmara, G., Cartaxo, R., Sanchez, A., Ramos, F. M., and de Queiroz, G. R.
(2016). A time-weighted dynamic time warping method for land-use and land-cover
mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 9(8):3729–3739.

Mitas, L. and Mitasova, H. (1999). Spatial interpolation. Geographical information
systems: principles, techniques, management and applications, 1:481–492.

Petitjean, F., Inglada, J., and Gançarski, P. (2012). Satellite image time series analysis un-
der time warping. IEEE Transactions on Geoscience and Remote Sensing, 50(8):3081–
3095.

Petitjean, F. and Weber, J. (2014). Efficient satellite image time series analysis under time
warping. Ieee geoscience and remote sensing letters, 11(6):1143–1147.

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria,
J., and Keogh, E. (2013). Addressing big data time series: Mining trillions of time
series subsequences under dynamic time warping. ACM Transactions on Knowledge
Discovery from Data (TKDD), 7(3):10.

Sakoe, H. (1971). Dynamic-programming approach to continuous speech recognition. In
1971 Proc. the International Congress of Acoustics, Budapest.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data.
In Proceedings of the 1968 23rd ACM national conference, pages 517–524. ACM.

Stein, M. L. (2012). Interpolation of spatial data: some theory for kriging. Springer
Science & Business Media.

Vatsavai, R. R. (2008). Machine Learning Algorithms for Spatio-temporal Data Mining.
PhD thesis, University of Minnesota, Minneapolis, MN, USA. AAI3338985.

Verbesselt, J., Hyndman, R., Newnham, G., and Culvenor, D. (2010). Detecting trend
and seasonal changes in satellite image time series. Remote sensing of Environment,
114(1):106–115.

Xiao, L., Zheng, Y., Tang, W., Yao, G., and Ruan, L. (2013). Parallelizing dynamic time
warping algorithm using prefix computations on gpu. In High Performance Comput-
ing and Communications & 2013 IEEE International Conference on Embedded and
Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International Conference on,
pages 294–299. IEEE.

Zhu, H., Gu, Z., Zhao, H., Chen, K., Li, C.-T., and He, L. (2018). Developing a pattern
discovery method in time series data and its gpu acceleration. Big Data Mining and
Analytics, 1(4).

Proceedings XIX GEOINFO, December 05-07, 2018, Campina Grande, PB, Brazil. p 46-57.

57

