Spectral normalization between Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX bands through linear regression and spectral unmixing

Rennan F. B. Marujo¹, Leila Maria Garcia Fonseca¹, Thales Sehn Körting¹, Hugo do Nascimento Bendini²

¹Image Processing Division – National Institute for Space Research (INPE)
São José dos Campos – SP, Brazil

²Remote Sensing Division – National Institute for Space Research (INPE)
São José dos Campos – SP, Brazil

{rennan.marujo, leila.fonseca, thales.korting, hugo.bendini}@inpe.br

Abstract. Monitoring changes on Earth’s surface is a difficult task commonly performed using multi-spectral remote sensing. The increasing availability of remote sensing platforms providing data makes multi-source approaches promising, since it can increase temporal revisit rate. However, Digital image processing techniques are needed to integrate the data, since sensors can be quite different in terms of acquisition characteristics. This work addresses the spectral normalizing of three medium spatial resolution sensors: Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX, through linear regression and linear mixture model approaches. The results showed slight better results when using the linear regression approach.

1. Introduction
Characterizing Earth’s land cover and changes is essential to manage natural resources. Understanding the active processes and monitoring crops is vital for the ecosystems maintenance [Kuenzer et al., 2015]. Multi-spectral remote sensors estimate geobiophysical properties using electromagnetic radiation as a medium of interaction [Choodarathnakara et al., 2012] and can help understand these changes [Boriah et al., 2008].

The Brazilian National Institute For Space Research (INPE) pioneered the free provision of medium resolution satellite data, releasing images with no cost of the second China Brazilian Earth Resources Satellite (CBERS-2) [Banskota et al., 2014]. The adoption of this policy encouraged the United States Geological Survey (USGS) to make the Landsat data available in 2008 [Woodcock et al., 2008; Banskota et al., 2014], which resulted in a greater amount of accesses and use of orbital images [Wulder et al., 2012].

Nowadays there are many satellite sensors obtaining information of Earth’s surface. However, change detection methods normally use short remote sensing images time series, ranging from two to five images, and then they do not take advantage of full potential of historical series [Coppin et al., 2004]. This concept of having multiple images from different dates grouped in a single multi-dimensional array is known as an
image data cube. Integrate the spectral and spatial information with the time component provides rich information to detail the space variations along the time [Petitjean et al., 2012] and can provide pattern observations, which are not found in single time observations, such as trends and periodicities [Kuenzer et al., 2015].

In many applications, e.g. crop monitoring [Steven et al., 2003] and change detection [Coppin et al., 2004], medium, or even high, spatial resolution images are required to provide the detailed information of the surface [Steven et al., 2003]. However, sensors revisit rate are long relative to plant active growth period [Steven et al., 2003] due to the trade-off between the spatial, radiometric and temporal resolution characteristics [Lefsky; Cohen, 2003]. Applications with multiple sensors were documented in the past years [Shimabukuro et al., 1991; Pohl; Van Genderen, 1998]. Therefore, the recent increasing number of onboard satellite sensors and its data availability has made these approaches more promising [Mousivand et al., 2015]. However, sensors heterogeneity concerning spectral, directional, radiometric and spatial characteristics must be treated in order to make the data compatible [Samain et al., 2006; Mousivand et al., 2015; Behling et al., 2016].

Samain et al. (2006) organized the multi-source heterogeneous aspects in four categories: spatial, temporal, spectral and directional. The optimum approach to deal with spatial differences between different sensors would be use multi-scale algorithms, which would use each sensor at its native spatial resolution. However, the complexity and processing cost of this approach is high. Resampling data to a common reference is more appropriate, even though this process may propagate loss of information, when data is resampled to the lowest spatial resolution, or introduce inaccurate measures, when resampling to the most refined resolution [Samain et al., 2006].

In relation to the temporal aspect, each onboard satellite sensor has its revisit time. Combine data from different sources and noise data can make the interval between acquisitions irregular. Similarly to the spatial aspect, the optimum approach would be to use each data on its native acquisition date. However, to facilitate image manipulation, several works in the literature supposes that there are few changes between images acquired close by each other. Based on that, an equidistant interval is adopted by performing operations, such as average or replacing, on those images and assuming it on close dates [Bendini et al., 2016; Vuolo et al., 2017].

Variations in spectral characteristics are harder to deal with, since different sensors with similar bandwidth present different responses to the same target [Trishchenko et al., 2002]. Based on that, values obtained from different sensors cannot be compared directly [Trishchenko et al., 2002]. These differences occur even if sensors have similar spectral bands, because the Spectral Response Function (SRF) is specific for each sensor [Pinto et al., 2016]. In this context, Trishchenko et al. (2002) studied the effects of SRF on surface reflectance and NDVI measures comparing moderate resolution satellite sensors. They concluded that both measures are sensitive to the sensor’s SRF and even for similar sensors a correction procedure is needed. Then, to combine data from different sensors it is necessary to equalize their SRFs, especially in the visible bands [Holden & Woodcock, 2016].

Bendini et al. (2016) used vegetation indices (EVI and NDVI) to derive phenological features of crops using filtered image time series and Random Forest
algorithm to classify agriculture. Holden & Woodcock (2016) used near-simultaneous Landsat-8 and Landsat-7 images to analyze consistency of both sensors surface reflection, since some spectral bands of Landsat-8 are narrow. The results showed that is necessary to normalize their spectral bands, since Landsat-8 visible bands (blue, green and red) are darker and near infrared band is brighter in the Landsat-7 satellite.

In this context, we proposed to test two methods to normalize spectral bands Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX, through linear regression and linear mixture model approaches. The approaches are based on statistical [Samain et al., 2006; Bendini et al., 2016; Holden & Woodcock, 2016; Roy et al., 2016] and spectral information [Hubbard; Crowley, 2005; Gao et al., 2006; Zurita-Milla et al., 2008; Amorós-López et al., 2013].

2. Methodology

Figure 1 shows a diagram that describes the methodology to pre-process and spectrally normalize the images. The study area corresponds to the Path/Row 219/075 and 220/075 (WRS 2 – Worldwide Reference System 2), which intercept Landsat-7/ETM+ and Landsat-8/OLI images simultaneously, and also overlaps CBERS-4/MUX Path/Row 155/124 (CBERS WRS Path Row). Based on that, six cloud-free images were selected to perform the study composing an image data cube, i.e., two images from each sensor acquired in 04/07/2015 and 08/29/2015. In the pre-processing step, the images were converted to surface reflectance. Surface reflectance product for Landsat-7/ETM+ and Landsat-8/OLI images were acquired through USGS EROS Science Processing Architecture (ESPA) [USGS, 2017]. CBERS-4/MUX images were converted to top of atmosphere (Toa) radiance values and posteriorly to Toa reflectance, using methods proposed by Chander et al. (2009) and Pinto et al. (2016). Afterwards, Toa reflectance was converted to surface reflectance through atmospheric correction. The CBERS-4 images were radiometrically corrected and geometrically adjusted and refined by using control points and the SRTM 30m v. 2.1 digital elevation model (DEM) (Level 4). The atmospheric correction was proceeded using the 6S model (Second Simulation of a Satellite Signal in the Solar Spectrum) [VERMOTE et al. 1997].

After this pre-processing step, two spectral normalization methods were tested: linear regression and spectral unmixing. Both methods use a reference sensor and convert additional images to its pattern. The linear regression approach assumes that sensor bands relationship depends on illumination and observation geometry. It is based on the principle that calibrated and atmospherically corrected images from similar sensors are consistent and comparable, showing a low bias. Based on that, reflectance reference values are used to perform regression analysis with reflectance target values, resulting in gain and offset coefficients for each band, as illustrated on Figure 2. Steven et al. (2003) compared NDVI values from different instruments and obtained a strong linear relation between them. In this work, the linear regression coefficients were obtained considering the first date and, then were applied to images of second date, for each sensor.
The spectral approach is based on surface spectral signature restoration. It assumes that spectral reflectance can be decomposed in components, which are related to surface properties [SAMAIN et al., 2006]. Gao et al. (2006) and Zurita-Milla et al. (2008) combined moderate and medium spatial resolution sensors using this approach. One method that can be used in the spectral approach is spectral unmixing [Zurita-Milla et al., 2008]. In this method, endmembers for pre-determined classes, e.g. vegetation, soil and water/shadow, are used to transform the spectral image into a combination of class-fraction images through linear equations [Shimabukuro & Ponzoni, 2017]:

\[
p_i = a \cdot v_{eg}i + b \cdot s_{oil}i + c \cdot s_{hadow}i + e_i,
\]

where \(p_i\) is the pixel reflectance value in band \(i\); \(a, b,\) and \(c\) are vegetation, soil and water/shadow proportion, respectively; \(v_{eg}, s_{oil},\) and \(s_{hadow}\) are vegetation, soil and water/shadow endmembers and \(e_i\) is the error in band \(i\). Based on that, endmembers obtained for a reference image can be applied in target images to construct a synthetic image [Gevaert; García-Haro, 2015], as illustrated on Figure 3. In this work, the endmembers for each class (vegetation, soil and water/shadow) were selected on each image, and used to obtain the class fraction images. Using Landsat-8/OLI as reference, the fraction images were used to the inversion of the process and generate synthetic images on different dates. The main advantage of this approach is that the class proportions instead of sensor spectral responses are used to restore each band.
Nevertheless, this approach is dependent on the endmember selection [Zurita-Milla et al., 2008].

Figure 2. Linear regression spectral normalization diagram.

Figure 3. Spectral Unmixing normalization diagram.
3. Results and Discussion

Table 1 shows gain and offset values for each band obtained by regression method. They were used to transform Landsat-7/ETM+ and CBERS-4/MUX images into synthetic Landsat-8/OLI images, in the same date. Landsat-7/ETM+ was more consistent with Landsat-8/OLI than CBERS-4/MUX, as one can be observed in the gain values.

Table 1. Linear regression coefficients (gain and offset) for Landsat-8/OLI with CBERS-4/MUX and Landsat-8/OLI with Landsat-7/ETM+ in the blue, green, red and near infrared bands.

<table>
<thead>
<tr>
<th></th>
<th>Blue band</th>
<th>Green band</th>
<th>Red band</th>
<th>Nir band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td>Gain</td>
<td>Offset</td>
<td>Gain</td>
<td>Offset</td>
</tr>
<tr>
<td>L8_C4</td>
<td>184.78</td>
<td>0.69</td>
<td>106.13</td>
<td>0.89</td>
</tr>
<tr>
<td>L8_L7</td>
<td>-51.61</td>
<td>1.03</td>
<td>24.89</td>
<td>1.05</td>
</tr>
</tbody>
</table>

In the spectral unmixing experiment, Figure 4 shows endmember reflectance values for Landsat-8/OLI. Vegetation showed a greater response in the green band in comparison to the blue and red bands, with a peak in the near infrared, characteristic of vegetation targets [Jensen, 2007]. While soil class also had a typical exposed soil spectral response.

![Endmember Collection Spectra](image)

Figure 4. Spectral unmixing endmembers on Landsat-8/OLI sensor, collected for the classes vegetation (green curve), soil (yellow curve) and water/shadow (blue curve) in 4 multi-spectral band blue, green, red and near infra-red band.

We used Pearson’s correlation to evaluate similarity among resulted images. Firstly we compared the synthetic images obtained through spectral unmixing to the reference images of both dates. Then, the synthetic images obtained through linear regression for the second date were compared to the same reference images. The resulted Pearson’s correlation coefficients are presented in Table 2.
Table 2. Pearson correlation coefficients obtained by normalizing, through linear spectral unmixing and through linear regression, Landsat-8/OLI (L8), Landsat-7/ETM+ (L7) and CBERS-4/MUX (C4) imagery from 04/07/2015 and 08/29/2015.

<table>
<thead>
<tr>
<th></th>
<th>Blue band</th>
<th>Green Band</th>
<th>Red Band</th>
<th>Nir Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmixing L8 C4 (date 1)</td>
<td>0.77</td>
<td>0.82</td>
<td>0.84</td>
<td>0.89</td>
</tr>
<tr>
<td>Unmixing L8 C4 (date 2)</td>
<td>0.75</td>
<td>0.78</td>
<td>0.81</td>
<td>0.79</td>
</tr>
<tr>
<td>Unmixing L8 L7 (date 1)</td>
<td>0.88</td>
<td>0.94</td>
<td>0.96</td>
<td>0.94</td>
</tr>
<tr>
<td>Unmixing L8 L7 (date 2)</td>
<td>0.87</td>
<td>0.94</td>
<td>0.96</td>
<td>0.91</td>
</tr>
<tr>
<td>Regression L8 C4</td>
<td>0.82</td>
<td>0.90</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Regression L8 L7</td>
<td>0.93</td>
<td>0.97</td>
<td>0.97</td>
<td>0.95</td>
</tr>
</tbody>
</table>

The results showed that shorter wavelength bands such as Blue and Green band are less inter-correlated than longer wavelength bands, such as Red and Near Infrared. This is probably due to atmospheric interference in shorter wavelength bands that was not completely suppressed by atmosphere correction [Jensen, 2007] as well as to the difference in the sensor spectral responses. Landsat-8/OLI and Landsat-7/ETM+ presented higher correlation than CBERS-4/MUX with Landsat-8/OLI. This similarity can be explained by the fact that Landsat-8/OLI is a continuity mission of Landsat-7/ETM+ and then is processed by similar methods. However, CBERS-4/MUX has potential to be used in time series analysis combined with Landsat 8 and Landsat 7. Besides, linear regression spectral normalization approach presented slight better results than unmixing method.

4. Conclusion

In this work, we analyzed the spectral normalization of Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX based on linear regression and unmixing approaches in order to help overcome the lack of observations by merging multiple sensors data. The results showed that the used sensors have potential to be used in a multi-source, since the images were highly correlated. The correlation coefficients showed that shorter wavelength bands are less inter-correlated than longer wavelength bands and that Landsat-7/ETM+ is more correlated to Landsat-8/OLI than CBERS-4/MUX.

The spectral normalization of Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX through linear regression spectral normalization approach presented slight better results than the unmixing method. Based on that, when spectrally normalizing Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX sensors, the linear regression approach is recommended.

5. Acknowledgments

The authors would like to thank the Brazilian National Institute for Space Research (INPE) and FAPESP (Project #2014/08398-6 and Process #2016/08719-2), Sao Paulo Research Foundation for funding this research.
References


