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Abstract. This article explores the uncertainty modelling and their different 
ways of visualizations for categorical spatial attributes. It shows how to model 
these attributes using procedures of indicator geostatistics. The geostatistical 
modelling uses as input a set of sample points of the categorical attribute that 
are transformed in indicator samples according the classes of interest. 
Experimental and theoretical semivariograms of the indicator fields are defined 
representing the spatial variation of the indicator information. The indicator 
fields, along with their semivariograms, are used to determine the uncertainty 
model, the conditioned probability distribution function, of the attribute at any 
location inside the geographic region delimited by the samples. The probability 
functions are used for producing prediction and uncertainty maps based on the 
maximum class probability criterion. These maps can be visualized using 
different techniques. In this work, it is considered individual visualization of the 
predicted and uncertainty maps and of the predictions combined with their 
uncertainties. The combined visualizations are based on 3D planar projection 
and on the Red-Green-Blue to Intensity-Hue-Saturation (RGB-IHS) fusion 
transformation techniques. The methodology of this article is illustrated by a 
case study with real data, a sample set of soil textures observed in an 
experimental farm located in the region of São Carlos city in São Paulo State, 
Brazil. The resulting maps of this case study are presented and the advantages 
and the drawbacks of the visualization options are analyzed and discussed. 

Resumo.  Este artigo explora a modelagem de incerteza e suas diferentes 
formas de visualização para atributos espaciais categóricos. Utilizam-se 
procedimentos geoestatísticos por indicação para a modelagem dos atributos. 
Essa modelagem usa, como dados de entrada, um conjunto de amostras 
pontuais do atributo categórico que são transformadas em amostras por 
indicação de acordo com as classes de interesse.  Para cada amostra por 
indicação obtém-se semivariogramas experimentais e teóricos representando a 
variação espacial da informação por indicação. Os campos por indicação, em 
conjunto com seus respectivos semivariogramas, são usados para obtenção do 
modelo de incerteza, a função de distribuição de probabilidade condicionada 
às amostras, do atributo em qualquer localização espacial dentro da região 
geográfica delimitada pelo conjunto amostral. As funções de distribuição de 
probabilidades possibilitam a produção de mapas de predições e incertezas 
utilizando-se informação da moda, classe de máxima probabilidade, da 
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distribuição. Esses mapas podem ser visualizados utilizando-se diferentes 
técnicas. Neste trabalho consideraram-se visualizações individuais e 
combinadas dos mapas de predições e de suas respectivas incertezas. As 
visualizações combinadas basearam-se em projeções planares tridimensionais 
e nas técnicas de fusão por transformações no espaço de cores conhecidas como 
RGB-IHS (“Red, Green and Blue” to “Intensity, Hue and Saturation”) e vice-
versa. A metodologia apresentada neste artigo é ilustrada por um estudo de 
caso com dados reais, um conjunto amostral de texturas de solo observado em 
uma fazenda experimental localizada na cidade de São Carlos, em São Paulo, 
Brasil. Os mapas resultantes desse estudo de caso são apresentados e as 
vantagens e desvantagens das opções de visualização são analisadas e 
discutidas. 

 

1. Introduction 
For many environmental applications, continuous or categorical spatial attributes can be 
computationally modelled from a set of sample points obtained, on field works for 
example, in a geographical region of interest. The attribute representations are used as 
input for spatial modelling functions whose outputs simulate Earth related phenomena, in 
a Geographical Information System (GIS) database, allowing deeper studies and analyses 
to support better decision makings in real world problems. 
 Associated with the produced results always there will be an uncertainty, which 
is distributed spatially within the geographical region. Geostatistical approaches yield 
tools for representing the stochastic local or global uncertainties of geographical attributes 
from their sample sets. Maps of predictions, such as mean, median or mode values, and 
related uncertainty maps, based on standard deviation, quantile or probability values, can 
be extracted from the attribute uncertainty models. So, the predictions are accompanied 
with their uncertainties that are also spatially distributed in the region of interest. In 
special, using indicator geostatistical functions for interpolations and simulations, the 
uncertainty fields take into account the sample values and also their relative spatial 
locations (Deutsch and Journel (1998)). Moreover, the indicator geostatistics allow to 
model uncertainties of categorical, besides the continuous, attribute information 
(Goovaerts (1997) and Felgueiras et al. (2015)).  
 A significant topic for the attribute representations is to visualize their uncertainty 
fields in a way that facilitates the analyses of the spatial distribution in terms of quality 
of the attribute modelling. Many articles have addressed the subject of visualization 
methods to represent spatial data uncertainties (Pebesma et al. (2007), Tan and Chen 
(2008), Sun and Wong (2010), Senaratne et al. (2012) and Kinkeldey et al. (2014)). 
Typically, an attribute uncertainty map is visualized separated from the data map using a 
gray scale look up table where the minimum and maximum values are assigned to the 
black and white colors respectively, or vice-versa. The intermediary colors are defined as 
midway gray levels proportional to the attribute values. It is common, also, to show the 
uncertainty map using different color tables, as the rainbow colors for example. 
 Koo (2015) presents a framework for combining visual variables to 
simultaneously represent an attribute and its uncertainty. The author uses three categories 
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of uncertainty visualizations: coloring, overlap symbols and integrate symbols. Another 
interesting approach is to use a fusion technique to visualize the attribute data merged 
with the uncertainty displaying both information integrated in a single map. Hengl (2003) 
describes two methods for visualization of uncertainty associated with predictions of 
continuous and categorical variables. Both methods are based on the Intensity-Hue-
Saturation (IHS) color model with uncertainty coded with whiteness. Also, in a GIS 
environment, it is common to obtain 3D planar projections of attribute representations 
and to use the uncertainty as the texture of the rendered images. 
 In this context, the objective of this article is to explore the modelling and 
visualization the uncertainties of categorical spatial attributes. The uncertainty modelling 
is performed by procedures of indicator geostatistics applied to a sample set of points of 
a spatial categorical attribute. It is considered individual visualization of the uncertainty 
maps, visualization of the predictions combined with their uncertainties using 3D planar 
projections and visualization resulting from fusion technique based on Red-Green-Blue 
to Intensity-Hue-Saturation (RGB-IHS) color transformation. The methodology is 
illustrated with a case study developed for a sample set of soil texture observed in an 
experimental farm located in the region of São Carlos city in São Paulo State, Brazil. Four 
classes of soil texture, namely Sandy, Medium Clayey, Clayey and Too Clayey, are 
considered in order to obtain the predictions along with their uncertainties. The resulting 
maps of this case study are presented and analyzed and the advantages and the drawbacks 
of the visualization options are discussed 
 The organization of this article starts with this introduction section. Section 2 
presents summaries of the main concepts linked to the main issues of this article. Section 
3 addresses the methodology of this work while section 4 describes the case study used 
to illustrate the modelling and visualizations resulting from application of the proposed 
methodology. Section 5 shows results and analyses related to the adopted attribute 
uncertainty modelling and map visualizations. In the section 6 important conclusions are 
reported along with suggestions for future works. 

2. Concepts 

2.1. Indicator Geostatistics 
Geostatistical procedures can be used to generate statistical uncertainty models of spatial 
attributes and, from them, to derive attribute realizations, predictions (such as mean, 
median and mode values) and uncertainty metrics based on probabilities and confidence 
intervals of standard deviations and quantiles.  
 The geostatistical indicator approaches allow for modeling the joint conditional 
distribution functions of continuous or categorical random variables, at any unknown 
spatial location u, considering an available set of sample points. The Simulation process 
consists of drawing realizations from the joint conditional distribution functions. 
 For a categorical variable, its conditional probability distribution function (cpdf) 
is built from estimations on indicator fields obtained by indicator transformations applied 
to the original sample set, of nsamples, {z(uj), j = 1, ..., nsamples}, considering any number 
of nclasses. Instead of the variable Z(uj), consider its binary indicator transformation    
I(uj; k), as defined by the relation of Equation 1. 
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 This transformation is equivalent to associate probability 1 (100%) for Z(uj) 
values which are equal to class k and 0 otherwise. The result of transformation expressed 
in Equation (1) generates k indicator fields, with 0 and 1 values, {i(uj), j = 1, ..., nsamples} 
of the indicator variable I(uj; k). Next, experimental indicator semivariograms are defined, 
from the Equation 2, for each one of the k indicator fields to represent their spatial 
variations.  

> @¦
 

�� 
)N(

1

2);();(
)2N(

1ˆ ),(

h
huu

hh
j

jj kikiγ k                                            (2) 

where i(uj; k) and i(uj +h; k) are the j-th values of the indicator variable I separated by the 
distance vector h, and N(h) is the number of the pairs points that are separated by h.  

 The k indicator fields and their respective theoretical semivariograms are used by 
the kriging procedure for assessment of class probabilities at any spatial location inside 
the region of interest. Moreover, the sequential indicator simulation procedure uses 
kriging, applied on the indicator sample and pre-realization values, in order to infer the 
cpdfs and the class realizations of the categorical variable (Goovaerts (1997) and (2001)).  
Maps of predictions with c*(uD) and uncertainties Unc*(uD) values, based on local 
maximum probabilities Pk(uD) of any cpdf, can be evaluated from the set of realization 
fields as presented by the Equations 3 and 4. 

c*(uα) = c𝑙(uα)  where  P(c𝑙(uα)) > P(ck(uα))      ∀ l, k = 1, …, nclasses         (3) 

Unc*(uα) = 1 - Max (P(ck(uα)))     k = 1, …, nclasses                              (4) 

 In Equations 3 and 4, uD��^D = 1,...,gridsize(nlines x ncolumns)}, are spatial locations 
regularly distributed in the geographic space, determining regular grid representation 
structures. 

2.2. 3D Planar Projection 
The 3D planar projections allow the visualization of 3D information in a 2D surface using 
geometric transformations. Parallel projections position the viewpoint at the infinite while 
when the viewpoint is elsewhere the projections are known as perspective projections. 
The 3D planar projections are generally based on applying geometric transformations 
based on Translations, Scaling and Rotations. Many books of basic computer graphics, 
such as Newman and Sproul (1979) and Foley et al. (1985) present details of the 
mathematics evolved on this subject. Rendering planar projections of 3D information 
considers hidden lines or surfaces and inclusion of additional 2D texture information to 
get more realistic 2D images. 

2.3. RGB - IHS Transformations 
The human eye perceives color information through three types of cones with sensitivity 
to the Red (R), Green (G) and Blue (B) wavelengths of visible electromagnetic energy. 
This physical schema is the base of the RGB color system, where individual intensities 
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of Red, Green and Blue combine to define a color. In terms of human perception, it is 
more natural to evaluate the values Intensity (I), the Hue (H) and the Saturation (S) of a 
color. Intensity corresponds to the total energy measure involved in all wavelengths, and 
provides the brightness sensation. The Hue is the average wavelength of the light, and 
determines the object color. Saturation express the purity of the color with low saturation 
values producing pale tones and high saturation values presenting pure colors. The IHS 
color system is also known by other names, depending on how the Intensity component 
is named: HSV system has Value (V) for Intensity; and HLS has Lightness (L) for 
Intensity (there is a slight change in this system but the overall idea is the same). More 
information is available in most Computer Graphics book, including Foley et al. (1985). 
There are different ways to perform the RGB-IHS transformation, and vice-versa. 
 The RGB-IHS and IHS-RGB color transformations are widely used in remote 
sensing applications to fuse images of different resolutions and/or sensors. Three bands 
from a multispectral image are selected and associated to a corresponding RGB 
component and then transformed into IHS model. Next, in the IHS-RGB reverse 
transformation the process replaces one of the IHS components. Usually, the intensity 
component is replaced by one panchromatic band with higher resolution when a pan-
sharpening fusion is required. In this case, the resulting RGB components present an 
enhanced image with higher spatial resolution with the colors of the multispectral image. 
In this work, we explore this fusion procedure using the spatial attribute predicted image, 
as the input multispectral image, and it respective uncertainty as auxiliary information 
that will replace the Intensity and Saturation components. 

3. Methodology 
Considering specifically spatial categorical attributes, the methodology adopted in this 
work, for their uncertainty modelling and visualizations, comprises the following 
sequence: 

• A sampling set of points of the categorical attribute, given as the input data, is 
initially transformed in indicator sample sets according to the number of classes 
considered.  

• Experimental and theoretical semivariograms are obtained for the indicator sample 
fields to represent their respective spatial variability.  

• The indicator fields and their theoretical semivariograms are used to run Sequential 
Indicator Simulation (SIS) functions of the Geostatistical Software Library (GSLib) 
(Deutsch and Journel (1998)), in order to obtain realization values and from them 
prediction and uncertainty maps of the attribute in the spatial region of interest.  

• Prediction and uncertainty maps are visualized individually using different lookup 
tables.  

• Prediction and uncertainty maps are combined in 3D planar projection 
visualizations. 

• The RGB-IHS transformation is applied in the Red, Green and Blue components of 
the predicted categorical map.   

• The IHS-RGB reverse transformation is applied by replacing the Intensity or the 
Saturation component by the Uncertainty map. 
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• The RGB layers from the reverse transformation are combined in order to display 
and compare the results of the fusion processes.).   

4. Case Study 
In order to illustrate the methodology of this work, a set of points of soil texture data 
sampled in the region of an experimental farm known as Canchim. The region of interest 
is located in the city of São Carlos, São Paulo, Brazil, and covers an area of 2660 ha 
between the north-south coordinates from s 21o54’32’’ to s 21o59’39’’ and the east-west 
coordinates from w 47o48’11’’ to w 47o51’59’’. The input data set consists of 86 samples 
of soil texture information each classified as one of the following four classes: Sandy, 
Medium Clayey, Clayey or Too Clayey. Figure 1 illustrates the borders of the Canchim 
farm and the spatial locations of the classified soil texture samples. This classified map 
was obtained by nearest neighbor estimations showing regions of influence of each class. 
The SPRING GIS (Camara et al. (1996)) was used to store, analyze and visualize all the 
geoinformation of this work. 

 
Figure 1: Distribution of the soil texture sample points of the Canchim region. 

5. Results and Discussion  

5.1. Soil texture estimated by Indicator Geostatistics  
The spatial dependence analyses are based on the indicator sample fields of the soil 
texture classes generated by the indicator transformation as defined in Equation 1. The 
spatial dependences analyses are represented by the indicator semivariograms generated 
from the indicator sample set defined by each texture class. The experimental indicator 
semivariograms were assessed and fitted by theoretical ones in the SPRING GIS 
computational environment. The indicator semivariogram parameters, along with the 
global probabilities of each texture class, are reported in Table 1. All semivariograms 
were fitted with exponential functions. The global probabilities are assessed by the ratio 
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between the number of samples of each class and the total number. These parameters and 
the sample set are used as input for the SIS function. 

Table 1: Parameters of the indicator semivariograms related to the soil texture 
classes. 

Texture Class Nugget Effect Contribution Range Global Probability 

Sandy 0.00 0.14 1915 0.20 

Medium Clayey 0.00             0.22   902 0.35 

Clayey 0.01            0.20          1059 0.38 

Too Clayey      0.03 0.05             695 0.07 

  
 Figure 2(a) shows the map of predicted soil texture classes while the Figure 2(b) 
shows the map of their uncertainties, where both maps were obtained from the resulting 
realizations of the GSLib SIS function known as sisim. Those estimations were assessed 
from the cpdfs’ higher probability criterion, as defined in Equations 3 and 4, for each 
spatial location considered. 
 

                         

Figure 2: Map of (a) predictions, (b) uncertainties in gray scale color table and 
(c) uncertainties using a rainbow color table  

 A qualitative, visual, comparison between the map of predictions of Figure 2(a) 
and the map of nearest neighbors’ interpolation, of Figure 1, shows that the both maps 
agree with the local information presented in the texture sample set. The differences 
appear in the smoother class transitions presented in the map predicted from the 
geostatistical simulated values. 
 The uncertainties depicted in Figures 2(b) and 2(c), as expected for environmental 
attributes, are higher in the borders, the transitions areas, of the soil texture class regions. 
Consequently, the probability uncertainty values are lower in the middle of each map 
class. It can be observed also that the minimum uncertainty values appear at the sample 
locations since the geostatistical procedures are exact, i.e., the estimation is equal to the 
sample value at any sample location. 

(a) (b) (c) 
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 Figure 2(c) depicts the map of uncertainties using a rainbow look up table color. 
The map of Figure 2(b), compared with the one of Figure 2(c), seems to be better to 
emphasize the borders, the transitions between classes where the uncertainties are higher, 
among the classes of the predicted map. Other lookup tables can be used in order to 
highlight specific detail.  

5.2. Uncertainty visualization by 3D planar projection 
Figure 3(a) displays the uncertainty information in a 3D Planar Projection using the gray 
level map of Figure 2(b) as the texture of the final rendered figure while in the Figure 
3(b) the texture was gathered from the predicted map of the Figure 2(a).  
 

  

Figure 3: Planar projections of the uncertainty map displayed in (a) gray levels 
and (b) predicted classes as texture of the rendered map. 

 Figures 3(a) and 3(b) can be rendered using different azimuth and zenith angles 
and are considered qualitative applications. These drawings are useful in order to have a 
visual perception of the vertical variation of the uncertainty information in different 
angles together with other soil texture information. Other textures can be used, e. g., the 
one of Figure 2(c). 

5.3. Uncertainty Visualization by RGB-IHS fusion 
All the images considered in this application are color coded with 8 bits, so the minimum 
and the maximum values for the colors are 0 and 254. The 255 value is used as the 
background color. The texture classes have the following R, G, B color composition: 
Sandy 254, 254, 0 (Yellow); Medium Clayey 254, 0, 0 (Red); Clayey 0, 254, 0 (Green) 
and; Too Clayey 0, 0, 254 (Blue). Considering its class colors, the predicted texture map 
can be decomposed in three new maps corresponding to the Red, Green and Blue 
components. 
 Applying the RGB-IHS transformation in the components of the RGB texture map 
results in a Saturation component equal to 254, the maximum value, for the entire region. 
The Intensity component was assigned to 127, a medium value. The Hue component 
varies according the colors presented in the predicted map. Low Hue values (Black) 
represents the yellow color, low medium values the Green, high medium values the Blue 
and high values the Red. Figure 4 depicts the results of the IHS-RGB transformation 
replacing (a) the Intensity and (b) the Saturation by the Uncertainty map of Figure 2(b).  
 In Figure 4(a), the original colors of the predicted map tend to darker colors where 
the uncertainty is very low. This occurs because any color with low intensity appears as 

(a) (b) 
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black. To avoid the dark colors, one could remap the uncertainty interval values to higher 
values. In any case the map of Figure 4(a) shows the predominant colors of each class 
going from low intensities, where uncertainties are low, to high intensities, where 
uncertainties are high.  
 The map of Figure 4(b) has similar behavior as the one in Figure 4(a) when the 
Saturation is replaced instead of the Intensity. In this case, low saturated colors appear at 
locations with low uncertainties and the colors appear whitened or paled. Also, here it is 
possible to use a remap interval of uncertainty to avoid too paled effects. Using the 
Saturation component, the original predicted colors seem to be preserved better than when 
the Intensity is considered. 
 

                                  

Figure 4: Fusion using IHS-RGB transformation replacing (a) the Intensity and 
(b) the Saturation by the Uncertainty map.  

 
 Moreover, the maps of Figure 4 can be rendered using the inverted uncertainty 
information. This can be done after applying an inverted linear function, mapping 0 to 
254 and vice-versa, in the uncertainty map before the fusions. The results of using 
inverted uncertainties are shown in Figure 5 where the black and paled areas appear at 
the transition regions where the uncertainties are higher. These images keep the class 
colors, or saturate in white, where the uncertainties are lower. 
 Although the effectiveness of the above visualization methods has not yet been 
evaluated by a substantial number of users it suggests that the maps of Figures 4 and 5 
allow one to have an integrated perception of both information, the predicted colors, or 
classes, and the uncertainties, mixed in the same map. Furthermore, these maps could be 
used as background of cartographic charts in order to enhance their final presentation, for 
example. The fusion maps can also be used as texture information for the 3D planar 
projection as presented in Figure 3. 

(a) (b) 
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Figure 5: Fusion using IHS-RGB transformation replacing (a) the Intensity and 

(b) the Saturation by the Inverted Uncertainty map.  

  

6. Conclusions 
This paper explored a geostatistical methodology for spatial modelling of categorical 
attributes that yield also the uncertainties related to the predictions. Furthermore, it 
presented different ways to visualize the predictions and their uncertainty information. 
The article showed also that the uncertainty can be visualized in a map separated from 
the map representing the spatial attribute. But sometimes it is interesting to integrate both 
information such as when the uncertainty is plotted using a 3D planar projection using 
the attribute data as the texture of the rendered figure. A more complex option is to use a 
fusion technique to create a unique map that presents the uncertainty mixed with the 
predictions. In this work, the RGB-IHS fusion technique was considered. The Hue was 
maintained as the original one while the Intensity or the Saturation component of the 
predicted information was replaced by the uncertainty information. After the reverse 
transformation, the RGB color composition showed maps where data and their 
uncertainties could be perceived in the same map. Besides, the resulting mixed maps can 
be used as backgrounds of cartographic charts and for planning actions on decision 
making activities, for example. In the future, we intend to explore similar methodology 
for spatial modelling of spatial continuous attributes and other fusion techniques. 
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