
Embedding Vague Spatial Objects into Spatial Databases
using the VagueGeometry Abstract Data Type

Anderson Chaves Carniel1, Ricardo Rodrigues Ciferri2,
Cristina Dutra de Aguiar Ciferri1

1Department of Computer Science – University of São Paulo in São Carlos
13.560-970 – São Carlos – SP – Brazil

accarniel@gmail.com, cdac@icmc.usp.br

2Department of Computer Science – Federal University of São Carlos
15.565-905 – São Carlos – SP – Brazil

ricardo@dc.ufscar.br

Abstract. Spatial vagueness has been required by geoscientists to handle vague
spatial objects, i.e., spatial objects that do not have exact locations, strict bound-
aries, or sharp interiors. However, there is a gap in the literature in how to
handle these objects in spatial database management systems since they mainly
provide support to crisp spatial objects, i.e., objects that have well-defined lo-
cations, boundaries, and interiors. In this paper, we fill this gap by proposing
VagueGeometry, a novel abstract data type that handles vague spatial objects,
includes an expressive set of vague spatial operations, and its implementation
is open source. Experimental results show that VagueGeometry improved the
performance of spatial queries with vague topological predicates from 23% up
to 84% if compared with functionalities available in current spatial databases.

1. Introduction
Spatial database management systems (spatial DBMS) and Geographical Information
Systems (GIS) mainly provide support to handle crisp spatial objects to represent real-
world phenomena by using points, lines, and regions. Crisp spatial objects characterize
spatial phenomena with exact locations and whose shape and boundary are precisely de-
fined [Schneider and Behr 2006]. Examples are cities with their political boundaries. For
their handling, spatial operations like geometric set operations (e.g., union), topological
predicates (e.g., overlap), and numerical operations (e.g., distance) are defined and used
in spatial queries.

However, geoscientists are increasingly interested in modeling spatial real-world
phenomena that do not have exact locations, strict boundaries, or sharp interiors. This
characterization leads to spatial vagueness. In general, it has a spatial extent that certainly
belongs to the real-world phenomena (i.e., the kernel) and a spatial extent that maybe
belongs to the real-world phenomena (i.e., the conjecture) [Siqueira et al. 2014].

There are a number of approaches proposed in the literature that define mod-
els to represent spatial vagueness, which can be classified as probabilistic mod-
els [Li et al. 2007, Zinn et al. 2007], fuzzy models [Kraipeerapun 2004, Dilo et al. 2007,
Dilo et al. 2006, Carniel et al. 2014], and exact models [Clementini and Di Felice 1997,

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

233

Pauly and Schneider 2008, Pauly and Schneider 2010, Bejaoui et al. 2010]. These mod-
els introduce concepts and notions of vague spatial objects by formally defining spatial
data types for vague points, vague lines, and vague regions. They also introduce vague
spatial operations to handle them, i.e., vague geometric set operations (e.g., vague geo-
metric union), vague topological predicates (e.g., vague overlap), and vague numerical
operations (e.g., vague distance).

There are several advantages of incorporating vague spatial objects and their oper-
ations into spatial queries, such as to provide a more realistic representation of application
environments, to allow users to manipulate vague spatial objects found in real-world phe-
nomena, and to provide an efficient processing of operations on vague spatial objects. For
instance, in an ecological application, users aim to manage habitats of species and pol-
luted areas of rivers. The habitats and the polluted areas of rivers are represented by vague
regions. This means that habitats have locations where species certainly appear and loca-
tions where species maybe appear. Further, rivers have unpolluted areas and areas where
there is some kind of pollution. By using such data, a user can ask the following query:
“Find all polluted areas of rivers that maybe overlap with habitats of species”. In this
query, spatial vagueness is represented by the maybe overlap predicate, which will return
true when the overlap occurs to some extent, i.e., occurs with some degree of uncertainty.

To handle spatial objects in spatial applications, abstract data types (ADT)
have been used in spatial DBMS and GIS. An ADT for spatial data types aids the
use of spatial operations in spatial queries by hiding their complexities from the user.
While ADTs for crisp spatial data are deeply implemented in the literature, this is not
the case for vague spatial data. Although there are approaches that provide ADTs
for vague spatial data [Dilo et al. 2006, Kraipeerapun 2004, Pauly and Schneider 2008,
Pauly and Schneider 2010, Zinn et al. 2007], they face several limitations. First, they
only provide support for a small subset of vague spatial operations. Second, they do
not support textual and binary representations of vague spatial objects. Finally, they do
not support SQL operators to manipulate results of vague spatial operations.

In this paper, we fill this gap in the literature. We propose a novel ADT named
VagueGeometry to incorporate vague spatial objects into a spatial DBMS. VagueGeom-
etry is based on the exact model since this model reuses existing concepts and imple-
mentations of crisp spatial data and formally defines a complete set of vague spatial op-
erations. The main advantage to use implementation of crisp spatial data is that they
are well defined and their efficiency is largely explored in the literature. Among the
exact models [Bejaoui et al. 2010, Pauly and Schneider 2008, Pauly and Schneider 2010,
Clementini and Di Felice 1997], VagueGeometry is based on the Vague Spatial Alge-
bra (VASA) [Pauly and Schneider 2008, Pauly and Schneider 2010] since it formally
defines simple and complex vague spatial data types. Further, VASA introduces
a more expressive algebra than the models described in [Bejaoui et al. 2010] and
[Clementini and Di Felice 1997] by including a huge set of operations, such as vague
geometric set operations, vague topological predicates, and vague numerical operations.

VagueGeometry greatly overcomes the aforementioned limitations. Other major
characteristics of the proposed VagueGeometry are described as follows.

• It offers textual and binary representations for vague spatial objects, which make
possible their use to define, insert, and retrieve vague spatial objects by using

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

234

textual or binary representations. Further, these representations can be used as a
way of communication and interoperability between different spatial applications.

• It implements an expressive set of spatial operations for vague spatial objects. To
comply with this goal, VagueGeometry includes the specification of vague geo-
metric set operations, vague topological predicates, and vague numerical opera-
tions. As a result, the use of VagueGeometry empowers the management of vague
spatial objects in spatial applications by users.

• It supports SQL operators that allow users to handle results of vague topological
predicates and vague numerical operations.

• It is open source and implemented in the open source PostgreSQL DBMS with the
PostGIS spatial extension. This means that spatial applications are able to access
directly a spatial DBMS containing vague spatial objects and handle these objects
by using vague spatial operations accordingly.

• It includes an efficient improvement to process vague topological predicates in
spatial queries.

This paper is organized as follows. Section 2 surveys related work. Section 3
summarizes the Vague Spatial Algebra. Section 4 introduces the proposed VagueGeome-
try. Section 5 details the improvement in the processing of vague topological predicates.
Section 6 describes performance tests. Section 7 concludes the paper.

2. Related Work
There are few approaches that implement ADTs for handling vague spatial objects in
spatial DBMS and GIS [Dilo et al. 2006, Kraipeerapun 2004, Pauly and Schneider 2008,
Pauly and Schneider 2010, Zinn et al. 2007]. These approaches mainly differ from our
proposed VagueGeometry in the practicable applicability of the user to handle vague spa-
tial objects in spatial queries. We compare these approaches with VagueGeometry by con-
sidering the following functionalities related to the support provided by them: (i) textual
representation, (ii) binary representation, (iii) vague geometric set operations, (iv) vague
topological predicates, (v) vague numerical operations, (vi) SQL operators, and (vii) cou-
pling with a spatial DBMS.

The majority of the approaches does not provide textual and binary representa-
tions (functionalities (i) and (ii)) to allow the user to insert and retrieve vague spatial
objects. While in [Zinn et al. 2007] is provided input and output functions for vague
spatial objects by using binary format, this is not the case for the textual representation.
The approaches described in [Pauly and Schneider 2008] and [Pauly and Schneider 2010]
define vague spatial objects by using extensive terminal command lines without any tex-
tual or binary representations. The approaches described in [Kraipeerapun 2004] and
[Dilo et al. 2006] support options to represent vague spatial objects by using files in the
format of the GRASS GIS. However, the binary and textual formats are not understand-
able for users and depend on a specific system, thus limiting interoperability between
spatial applications. On the other hand, VagueGeometry defines textual and binary repre-
sentations for vague spatial objects.

Regarding functionality (iii), the approaches described in [Zinn et al. 2007],
[Pauly and Schneider 2008], and [Pauly and Schneider 2010] implement vague geomet-
ric union, intersection, and difference between vague points, lines, and regions.

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

235

The approaches described in [Kraipeerapun 2004] and [Dilo et al. 2006] do not im-
plement the vague geometric difference between vague lines. Regarding function-
alities (iv) and (v), some approaches described in [Pauly and Schneider 2008] and
[Pauly and Schneider 2010] provide support to vague topological predicates and vague
numerical operations, while other approaches in [Zinn et al. 2007], [Kraipeerapun 2004],
and [Dilo et al. 2006] do not provide support for these operations, and therefore, limit the
management of vague spatial objects and the type of queries that can be processed. Our
proposed VagueGeometry implements an expressive set of spatial operations for vague
spatial objects, which includes the specification of vague geometric set operations, vague
topological predicates, and vague numerical operations.

Furthermore, there is no related work that support SQL operators to handle re-
sults of vague spatial operations (functionality (vi)). Although the approaches described
in [Pauly and Schneider 2008] and [Pauly and Schneider 2010] propose some operators,
they do not implement them. However, offering SQL operators is an important functional-
ity since it allows users to intuitively handle results of spatial operations in SQL queries.
Therefore, differently from related work, VagueGeometry supports SQL operators for
vague spatial operations.

Finally, regarding functionality (vii), the approaches described
in [Kraipeerapun 2004] and [Dilo et al. 2006] do not implement vague spatial ob-
jects in a spatial DBMS, while the approaches described in [Pauly and Schneider 2008],
[Pauly and Schneider 2010], and [Zinn et al. 2007] offer this functionality. However, the
implementation of [Pauly and Schneider 2008] and [Pauly and Schneider 2010]1 is based
on the Oracle, which has license restrictions. On the other hand, VagueGeometry is an
open source implementation based on the PostgreSQL.

3. Vague Spatial Algebra
A vague spatial object in the Vague Spatial Algebra (VASA) [Pauly and Schneider 2008,
Pauly and Schneider 2010] is defined as a pair of crisp spatial objects of the same spatial
data type, which must be disjoint or adjacent. The first object represents the kernel part,
while the second object represents the conjecture part. In addition, VASA is character-
ized to separate the portions of space of a spatial object by considering minimum and
maximum approximations. As a result, a spatial object can comprise or expand according
to a minimum limit (i.e., the kernel part) and a maximum limit (i.e., the conjecture part).
Formally, let ↵ 2 {crisp point, crisp line, crisp region}. Then, a vague spatial data type in
VASA is defined by v(↵) = ↵⇥ ↵, such that for an object o = (ok, oc) 2 v(↵), the prop-
erty disjoint(ok, oc) _meet(ok, oc) holds. The kernel and conjecture of o are symbolized
by ok and oc, respectively.

VASA defines the following operations to handle vague spatial objects: vague ge-
ometric set operations, vague topological predicates, and vague numerical operations.
Vague geometric set operations are defined by reusing the crisp geometric set opera-
tions.Vague topological predicates are based on the three-valued logic, and thus, can
return true, false, or maybe. Let A and B be two vague spatial objects. A vague
topological predicate is evaluated by using the well-known crisp 9-intersection ma-
trix [Schneider and Behr 2006] for the following combinations Ak⇥Bk, Ak⇥ (Bc�Bk),

1http://www.cise.ufl.edu/research/SpaceTimeUncertainty/

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

236

VagueGeometry

Vague Point

Vague LineString

Vague MultiPoint

Vague MultiLineString

Vague Polygon Vague MultiPolygon

Crisp
LineString

Crisp
LineString

Crisp Point Crisp Point

Crisp PolygonCrisp Polygon

Crisp
MultiLineString

Crisp
MultiLineString

Crisp MultiPoint Crisp MultiPoint

Crisp MultiPolygon Crisp MultiPolygon

Figure 1. The vague spatial data types of VagueGeometry.

(Ak � Ac) ⇥ Bk, and (Ak � Ac) ⇥ (Bc � Bk), where � denotes the crisp geomet-
ric union. Finally, vague numerical operations return a pair of numeric values corre-
sponding to a minimum and a maximum value. For instance, the area of a vague re-
gion object has a minimum value that corresponds to the area of its kernel and a maxi-
mum value that corresponds to the area of the union between its kernel and its conjec-
ture. Details of the formal definitions for vague spatial operations of VASA are given
in [Pauly and Schneider 2010].

4. The VagueGeometry Abstract Data Type
In this section, we propose VagueGeometry, an ADT to handle vague spatial objects in
a spatial DBMS. VagueGeometry was implemented by using the C language and the
extensibility provided by the PostgreSQL internal library. It is based on VASA, and
thus we make use of the spatial operations provided by PostGIS and GEOS to im-
plement the vague spatial data types and their operations. GEOS2 is a C/C++ library
that implements crisp spatial data types and their crisp spatial operations according to
the OGC specifications3. A detailed documentation of VagueGeometry is available at
http://gbd.dc.ufscar.br/vaguegeometry/.

4.1. Representation of Vague Spatial Objects

Figure 1 depicts vague spatial data types of VagueGeometry which can be simple or
complex. Simple vague spatial data types named vague point, vague linestring, and
vague polygon denote simple vague points, simple vague lines, and simple vague regions,
respectively. Complex vague spatial data types named vague multipoint, vague multi-
linestring, and vague multipolygon denote complex vague points, complex vague lines,
and complex vague regions, respectively. We employ this notation to follow the same
notation used by the OGC specification to denote crisp spatial objects. Note that a vague
spatial object of VagueGeometry is composed of a pair of disjoint or adjacent crisp spatial
objects of the same spatial data type, which is showed in gray in Figure 1.

To use VagueGeometry in spatial queries, we propose textual and binary repre-
sentations for vague spatial objects. We present our proposed representations by first
detailing the textual representations. They are: (i) Vague Well-Known Text (VWKT), (ii)
Vague Geography Markup Language (VGML), (iii) Vague Keyhole Markup Language
(VKML), and (iv) Vague Geographic JavaScript Object Notation (vGeoJSON). These
textual representations are based on the OGC specifications that use the following textual

2http://trac.osgeo.org/geos/
3http://www.opengeospatial.org/

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

237

representations for crisp spatial objects: Well-Known Text (WKT), Geographic Markup
Language (GML), Keyhole Markup Language (KML), and Geographic JavaScript Object
Notation (GeoJSON).

The VWKT, VGML, VKML, and vGeoJSON representations are defined as fol-
lows. Let A be a VagueGeometry object, which can assume different data types (Figure 1),
formed by the kernel Ak and the conjecture Ac. Let name be a function that returns a
keyword representing the data type of A. For instance, name(A) returns the keyword
VAGUEPOINT if A is a simple vague point object. Finally, let WKT, GML, KML, and
GeoJSON be functions that get a crisp spatial object as input and return its respective
textual representation. The textual representations for a VagueGeometry object A are:

(i)VWKT (A) = name(A)(WKT (Ak);WKT (Ac))

(ii)VGML(A) = <vgml:name(A)><vgml:Kernel>GML(Ak)</vgml:Kernel>
<vgml:Conjecture>GML(Ac)</vgml:Conjecture></vgml:name(A)>

(iii)VKML(A) = <vkml:name(A)><vkml:Kernel>KML(Ak)</vkml:Kernel>
<vkml:Conjecture>KML(Ac)</vkml:Conjecture></vkml:name(A)>

(iv)vGeoJSON (A) = {“type”: “name(A)”, “kernel”: GeoJSON (Ak),
“conjecture”: GeoJSON (Ac)}
We now move our discussion to the proposed binary representation, called Vague

Well-Known Binary (VWKB). It is based on the Well-Known Binary (WKB) representa-
tion for crisp spatial objects documented in the OGC specification. Our VWKB repre-
sentation is defined as follows. Let id be a function that returns an integer in the binary
format symbolizing the data type of A. For instance, id(A) returns 1, in the binary format,
if A is a simple vague point object. Let WKB be a function that gets a crisp spatial object
as input and returns its respective WKB representation. Let endianess be an flag that in-
dicates the way in which the bytes are organized in main memory (i.e., either big-endian
or little-endian). The VWKB representation for a VagueGeometry object A is:
VWKB(A) = endianess + id(A) +WKB(Ak) +WKB(Ac),

where + denotes the union between the serialized data.
VagueGeometry supports textual and binary representations to allow its use in dif-

ferent spatial applications. Hence, spatial applications based on XML or web services that
use XML as communication are able to use the VGML and VKML representations. Web
applications that utilize JavaScript as main language are able to use the vGeoJSON repre-
sentation. Applications that manage binary files are able to use the VWKB representation.
Finally, for general purpose, applications can make use of the VWKT representation. It is
important to note that these representations also provide interoperability between appli-
cations since a vague spatial object has an unique representation.

4.2. Vague Spatial Operations
VagueGeometry provides support to input and output operations, vague geometric set
operations, vague topological predicates, and vague numerical operations. While input
operations transform textual or binary representations into a VagueGeometry object, out-
put operations transform a VagueGeometry object into a textual or binary representation.

Vague geometric set operations get two VagueGeometry objects as input and yield
another VagueGeometry object. VagueGeometry implements vague geometric union,
vague geometric intersection, and vague geometric difference.

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

238

Regarding vague topological predicates, VagueGeometry supports vague cov-
eredBy, vague covers, vague crosses, vague disjoint, vague equals, vague inside, vague
intersects, vague meets, and vague overlap. These predicates are based on the three-
valued logic, and can return true, false, or maybe. A predicate returns true if a relationship
certainly occurs, false if a relationship certainly not occurs, and maybe if a relationship
occurs to some extent. To deal with it, VagueGeometry also includes the VagueBool data
type. As a result, a VagueBool object can assume true, false, or maybe as value, which
correspond to the possible return values of vague topological predicates. In addition, it is
possible to use crisp spatial objects as input, which is handled as a vague spatial object
containing only the kernel part.

Finally, vague numerical operations supported by VagueGeometry are: vague area
of a vague region object, vague length of a vague line object, and farthest and nearest
distance between two vague spatial objects. These operations return two numeric values,
which symbolize the minimum and the maximum values of an operation. To deal with it,
VagueGeometry also includes the VagueNumeric data type. As a result, a VagueNumeric
object is composed of a pair of double values, which correspond to the minimum and the
maximum values returned by vague numerical operations.

As can be noted, our proposed VagueGeometry implements an expressive set of
vague spatial operations, which includes the specification of vague geometric set opera-
tions, vague topological predicates, and vague numerical operations.

4.3. SQL Operators
We propose SQL operators to handle VagueBool and VagueNumeric objects, i.e., the
result of vague topological predicates and vague numerical operations, respectively. For
the vague topological predicates, we propose the logical operators and (&&), or (||),
and not (!), and the boolean operators ⇠, ⇠⇠, and &. Logical operators employ the
three-valued logic. They get VagueBool objects as input and yield another VagueBool
object. The logical operators && and || are binary operators, while ! is a unary operator.
For instance, users can use these operators to specify the condition “VG Meets(vg1, vg2)
|| VG Overlap(vg1, vg2)” in a SQL query to indicate that two VagueGeometry objects
vg1 and vg2 meet or overlap. On the other hand, boolean operators are unary operators
that get a VagueBool object as input and have true or false as possible return values.
Therefore, a boolean operator transforms a vague topological predicate into a boolean
restriction. The operator ⇠ yields true if the VagueBool object is true or maybe, and
false otherwise. The operator ⇠⇠ yields true if the VagueBool object is maybe, and
false otherwise. The operator & yields true if the VagueBool object is true, and false
otherwise. For instance, users can evaluate if two VagueGeometry objects maybe overlap
by specifying the condition “⇠⇠VG Overlap(vg1, vg2)” in a SQL query.

Regarding the vague numerical operations, we propose the binary opera-
tors = and ⇠, which get a VagueNumeric object and a numeric value as input and yield
true or false. The operator = yields true if the numeric value is equal to the minimum
value of the VagueNumeric object, and false otherwise. The operator ⇠ yields true if the
numeric value is between the minimum and the maximum value of the VagueNumeric ob-
ject, and false otherwise. For instance, users can use this operator to specify the condition
“VG Area(r) ⇠ 800” in a SQL query to restrict vague region objects in the attribute r that
have approximately 800 of area.

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

239

5. Efficient Processing of Vague Topological Predicates
The implementation of VagueGeometry includes an improvement for the processing of
vague topological predicates. The proposed improvement, called MBRs for Vague Topo-
logical Predicates (MBRVP), makes use of Minimum Boundary Rectangles (MBR) of the
kernel and conjecture parts of vague spatial objects to return the results of vague topolog-
ical predicates when some situations hold. In these situations, MBRVP can avoid the use
of crisp 9-intersection matrices to evaluate the vague topological predicate. As a result,
the time to process spatial queries can be reduced.

We consider two situations, named disjointness between MBRs and set contain-
ment between MBRs. The disjointness between MBRs encompasses two specific cases,
as depicted in Figure 2a. The first case occurs if the MBRs of the union between the ker-
nel and the conjecture of two vague spatial objects are disjoint. The second case occurs if
the MBRs of the kernel and the conjecture of two vague spatial objects are disjoint. Note
that the second case can happen even when the first case holds.

Formally, let A and B be two vague spatial objects. Let also MBRo be a MBR of a
crisp spatial object o. The disjointness between MBRs Sd(A,B) yields true if ((MBRAk

[
MBRAc)\ (MBRBk

[MBRBc) = ?)_ (MBRAk
\MBRBk

= ?^MBRAk
\MBRBc =

? ^MBRAc \MBRBk
= ? ^MBRAc \MBRBc = ?), and false otherwise. By using

this definition, we are able to return true for the vague disjoint predicate if Sd(A,B) =

true holds, and return false for the predicates of vague meets, vague intersects, vague
overlap, and vague equals if Sd(A,B) = false holds. Otherwise, the respective predicate
is evaluated with the computation of crisp 9-intersection matrices. It includes the case of
an intersection between MBRs of the conjecture parts since we cannot guarantee that the
conjecture parts really intersects due to the dead space of the MBRs.

Regarding the set containment between MBRs, it also encompasses two specific
cases (Figure 2b). The first case occurs if the MBR of the kernel of the first vague spatial
object is not inside the MBR of the union between the kernel and the conjecture of the
second vague spatial object. Hence, the interior of the kernel of the first vague spatial
object intersects the exterior of the second vague spatial object. The second case occurs
if the MBR of the kernel of the first vague spatial object and the MBRs of the kernel and
the conjecture of the second vague spatial object are disjoint.

Formally, let A and B be two vague spatial objects. Let also MBRo be a MBR
of a crisp spatial object o. The set containment between MBRs Ssc(A,B) yields true if
(MBRAk

* (MBRBk
[MBRBc))_ (MBRAk

\MBRBk
= ?^MBRAk

\MBRBc = ?),
and false otherwise. By using this definition, we are able to return false for the pred-
icates of vague inside and vague coveredBy if Ssc(A,B) = true holds. Otherwise, the
respective predicate is evaluated. Similarly, if Ssc(B,A) = true holds, then we can return
false for the predicates of vague contains and vague covers, and evaluate the respective
predicates otherwise.

6. Performance Evaluation
The advantages of our proposed solutions (i.e., the VagueGeometry ADT and the MBRVP
improvement) were analyzed through experimental tests that process spatial queries with
vague topological predicates. We analyze topological predicates since they incur high
costs of processing and they are very common in spatial applications.

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

240

(a) (b)

Figure 2. Examples of the situations where the MBRVP improvement should be
applied. Figure 2a: disjointness between MBRs. Figure 2b: set containment
between MBRs. Black regions represent the kernel, while gray regions represent
the conjecture.

6.1. Experimental Setup

We used a data set composed of 100,000 vague regions synthetically generated as follows.
First, we constructed a Voronoi diagram of 200,000 crisp points randomly generated,
which produced the same number of crisp regions. Second, for each crisp region, we
added more points to increase its complexity. As a result, each crisp region was formed
by averagely 313 points. Third, we created pairs of crisp regions that were disjoint or
adjacent. Each pair was created by selecting randomly a crisp region and then by selecting
the nearest crisp region that was disjoint or adjacent to the first one. We randomly assigned
a crisp region as the kernel and the other crisp region as the conjecture. After creating
a pair, we discarded the used regions, such that these regions were not used to create
another pair. In the total, we generated 100,000 pairs of crisp regions.

We considered the following topological predicates: vague disjoint, vague over-
lap, vague inside, vague intersects, vague coveredBy, and vague meets. The workload
was composed of 100 spatial range queries for each vague topological predicate. We also
defined a query window for each spatial range query, which was composed of a vague
region object that had the rectangular format for the kernel and the conjecture. Therefore,
we randomly generated 100 different query windows.

We defined the following configurations: (i) baseline that used current functional-
ities provided by the PostgreSQL with the PostGIS spatial extension; (ii) VagueGeometry
that used the proposed VagueGeometry ADT without improvements; and (iii) VagueGe-
ometry+ that used VagueGeometry empowered with the proposed MBRVP improvement.
For the baseline configuration, we implemented vague topological predicates by using
the Procedural Language/PostgreSQL (PL/pgSQL), which had “TRUE”, “FALSE”, or
“MAYBE” as possible return textual values. For their use, we stored the kernel and the
conjecture of each vague spatial object in separated columns in a relational table.

Note that we did not employ the approaches surveyed in Section 2 in the per-
formance comparisons due to the following limitations. While the approaches proposed
in [Zinn et al. 2007], [Kraipeerapun 2004], and [Dilo et al. 2006] do not provide support
for vague topological predicates, the approaches described in [Pauly and Schneider 2008]
and [Pauly and Schneider 2010] are specifically implemented in Oracle, which has license
restrictions. Further, we used PostgreSQL in the performance tests to isolate the effects
of the DBMS, and thus providing a fair comparison.

Table 1 depicts the SQL templates of the spatial range queries used in the three
configurations. Consider the template for the baseline configuration. baselineTable is a

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

241

Table 1. Templates of the SQL spatial range queries.

Configuration SQL Template

baseline SELECT id FROM baselineTable WHERE R =
P(kernel_geo, conjecture_geo, QWk, QWc)

VagueGeometry
VagueGeometry+ SELECT id FROM vaguegeom WHERE O P(vg, QW)

table composed of three attributes: (i) id that is the primary key, (ii) kernel geo that rep-
resents the kernel of the vague region objects, and (iii) conjecture geo that represents the
conjecture of a vague region object. Further, R is a textual return value that may contain
“TRUE”, “FALSE”, or “MAYBE”, P is the vague topological predicate, and QW is the
query window. Regarding the VagueGeometry and the VagueGeometry+ configurations,
vaguegeom is a table that stored vague region objects in the attribute vg by using our
proposed VagueGeometry. In addition, O corresponds to the use of the SQL operators
introduced in Section 4.3. This means that the operator ⇠⇠ was used to specify that P
returned maybe, the operator & was used to specify that P returned true, and the combi-
nation of the operator & with the operator ! (i.e., &!) was used to specify that P returned
false. Note that the SQL templates are equivalent, i.e., they generate the same result, but
using the specific functionalities provided by the corresponding configurations.

The experiments were conducted on a computer with an Intelr CoreTM i7-4770
processor with frequency of 3.40GHz, 2 TB SATA hard drive with 7200 RPM, and 32
GB of main memory. The operating system was CentOS 6.5 with Kernel Version 2.6.32-
431.el6.x86 64. We employed PostgreSQL 9.3.3, PostGIS 2.2.0, and GEOS 3.4.2.

We collected the elapsed time in seconds. In detail, we executed 100 spatial range
queries for each vague topological predicate and each value of return. Further, we exe-
cuted each spatial range query 10 times and calculated its average elapsed time. Further-
more, we performed the tests locally to avoid network latency and we flushed the system
cache after the execution of each query.

6.2. Performance Results

Figure 3 depicts the performance results. For each configuration and each return value of
the three-valued logic (i.e., true, false, and maybe), we gathered similar elapsed times for
processing the spatial queries. This means that the performance results showed a similar
complexity for each return value.

Clearly, the performance of the VagueGeometry configuration overcame the base-
line configuration. In fact, the internal structures of the VagueGeometry were more effi-
cient than the definition of vague topological predicates by using current functionalities of
the spatial DBMS. The performance gain imposed by the VagueGeometry configuration
over the baseline configuration ranged from 23% up to 53%, where the performance gain
is calculated as the percentage that determines how much more efficient one configuration
was than another configuration.

Despite the expressive performance gains obtained by the VagueGeometry config-

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

242

0
1,000
2,000
3,000
4,000
5,000
6,000

To
ta

l e
la

p
se

d
 t

im
e

(s
)

Returning equal to TRUE
baseline VagueGeometry VagueGeometry+

0
1,000
2,000
3,000
4,000
5,000
6,000

To
ta

l e
la

p
se

d
 t

im
e

(s
)

Returning equal to FALSE
baseline VagueGeometry VagueGeometry+

0
1,000
2,000
3,000
4,000
5,000
6,000

To
ta

l e
la

p
se

d
 t

im
e

(s
)

Returning equal to MAYBE
baseline VagueGeometry VagueGeometry+

(a) (b) (c)

Figure 3. Performance results for each vague topological predicate considering
the returning values of true (a), false (b), and maybe (c).

uration, we gathered yet better results with the improvement proposed in Section 5. The
VagueGeometry+ configuration leaded to a performance gain that ranged from 72% up
to 84% if compared with the baseline configuration. Further, compared to the VagueGe-
ometry configuration, the VagueGeometry+ configuration provided a performance gain
that ranged from 63% up to 66%. This means that the use of the MBRVP improvement
drastically reduced the necessity of processing crisp 9-intersection matrices in vague topo-
logical predicates.

Regarding storage space, the baseline configuration required 961 MB, the Vague-
Geometry configuration required 960 MB, and the VagueGeometry+ configuration re-
quired 963 MB. We can conclude that the storage cost were almost the same. In addition,
the storage of the MBRs of the kernel and the conjecture of each VagueGeometry object
in the VagueGeometry+ configuration did not introduce overhead in the execution of the
spatial queries.

7. Conclusions and Future Work

In this paper, we proposed VagueGeometry, a novel abstract data type to handle vague
spatial objects in the PostgreSQL with the PostGIS spatial extension. VagueGeometry
empowers the management of spatial applications by offering textual and binary repre-
sentations for vague spatial objects and by providing an expressive set of spatial opera-
tions, including vague geometric set operations, vague topological predicates, and vague
numerical operations. As facilities, VagueGeometry introduces SQL operators for manip-
ulating results of vague topological predicates and vague numerical operations. We also
introduced MBRVP, an improvement to VagueGeometry to speed up the performance of
spatial queries to process vague topological predicates.

Comparisons of VagueGeometry with current functionalities available on Post-
greSQL showed that VagueGeometry provided better performance results for spatial
queries with vague topological predicates. The performance gain of VagueGeometry var-
ied from 23% up to 53%. Empowered with MBRVP, VagueGeometry provided even
better results, which varied from 72% up to 84%.

Future work will deal with the extension of VagueGeometry to allow the use of
index structures. Another future work refers to the development of specialized spatial join
algorithms for vague spatial objects by using index structures.

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

243

Acknowledgments
The authors have been supported by the Brazilian research agencies FAPESP, CAPES,
and CNPq.

References
Bejaoui, L., Pinet, F., Schneider, M., and Bédard, Y. (2010). OCL for formal modelling

of topological constraints involving regions with broad boundaries. GeoInformatica,
14(3):353–378.

Carniel, A. C., Schneider, M., Ciferri, R. R., and Ciferri, C. D. A. (2014). Modeling fuzzy
topological predicates for fuzzy regions. In Proceedings of the ACM International
Symposium on Advances in Geographic Information Systems, pages 529–532, New
York, NY, USA.

Clementini, E. and Di Felice, P. (1997). Approximate topological relations. International
Journal of Approximate Reasoning, 16(2):173–204.

Dilo, A., Bos, P., Kraipeerapun, P., and de By, R. A. (2006). Storage and manipulation
of vague spatial objects using existing GIS functionality. In Bordogna, G. and Psaila,
G., editors, Flexible Databases Supporting Imprecision and Uncertainty, volume 203,
pages 293–321. Springer Berlin Heidelberg.

Dilo, A., de By, R. A., and Stein, A. (2007). A system of types and operators for handling
vague spatial objects. International Journal of Geographical Information Science,
21(4):397–426.

Kraipeerapun, P. (2004). Implementation of vague spatial objects. Master’s thesis, Inter-
national Institute for Geo-Information Science and Earth Observation.

Li, R., Bhanu, B., Ravishankar, C., Kurth, M., and Ni, J. (2007). Uncertain spatial data
handling: Modeling, indexing and query. Computers & Geosciences, 33(1):42–61.

Pauly, A. and Schneider, M. (2008). Quality Aspects in Spatial Data Mining, chapter
Querying vague spatial objects in databases with VASA, pages 3–14. CRC Press,
USA.

Pauly, A. and Schneider, M. (2010). VASA: An algebra for vague spatial data in databases.
Information Systems, 35(1):111–138.

Schneider, M. and Behr, T. (2006). Topological relationships between complex spatial
objects. ACM Transactions on Database Systems, 31(1):39–81.

Siqueira, T. L., Ciferri, C. D. A., Times, V. C., and Ciferri, R. R. (2014). Modeling
vague spatial data warehouses using the VSCube conceptual model. Geoinformatica,
18(2):313–356.

Zinn, D., Bosch, J., and Gertz, M. (2007). Modeling and querying vague spatial objects
using shapelets. In Proceedings of the International Conference on Very Large Data
Bases, pages 567–578, Vienna, Austria.

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 233-244.

244

