
Using Rational Numbers and Parallel Computing to
Efficiently Avoid Round-off Errors on Map Simplification
Maurı́cio G. Gruppi 1, Salles V. G. de Magalhães 1,2, Marcus V. A. Andrade 1,

W. Randolph Franklin2, Wenli Li2

1Departamento de Informática – Universidade Federal de Viçosa (UFV)
Viçosa – MG – Brazil

2Rensselaer Polytechnic Institute
Troy – NY – USA

{mauricio.gruppi,salles,marcus}@ufv.br, mail@wrfranklin.org,
liw9@rpi.edu

Abstract. This paper presents EPLSimp, an algorithm for map generalization
that avoids the creation of topological inconsistencies. EPLSimp is based on
Visvalingam-Whyatt’s (VW) algorithm on which least “important” points are
removed first. Unlike VW’s algorithm, when a point is deleted a verification is
performed in order to check if this deletion would create topological inconsisten-
cies. This was done by using arbitrary precision rational numbers to completely
avoid errors caused by floating-point arithmetic. EPLSimp was carefully imple-
mented to be efficient, although using rational numbers adds an overhead to the
computation. This efficiency was achieved by using a uniform grid for indexing
the geometric data and parallel computing to speedup the process.

1. Introduction
The map simplification process, also known as map generalization, allows the produc-
tion of maps with different levels of details [Jiang et al. 2013]. It consists of removing
information that is not relevant to the viewer, while preserving essential features on the
map. Generalization is inherent to every geographical data since every map consists of
generalized representations of reality, and the more generalized a map is, the more distant
it becomes from the real world [João 1998]. The output of this process is a map with
more desirable properties than those from the input map. An example of generalization
is scaling a map of a single town which contains detailed information about streets and
buildings. When scaling this map to show nearby towns it may be necessary to simplify
it so that it is not overburden by unimportant data.

A challenge in generalization is to find a balance between simplification and re-
ality. Map simplification can produce inappropriate results as it may affect topological
relationships. These results are said to be topologically inconsistent and they may present
relationships that are conflicting with reality. For example, the simplification can create
self-intersecting lines, improper intersections between lines and polygons, etc.

Another kind of topological inconsistency is the sidedness change, that is, after
performing simplification, a feature can be on a different side regarding other feature on
the map. For example, after the simplification of a line, a point which was originally on
the right side of this line now can be on the left side. Thus when designing simplification
algorithms it is important to guarantee topologically consistent results.

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 162-173.

162

(a) (b)

Figure 1. (a) Example of polylines L1 and L2 and a control point P . (b) Simplifica-
tion of L1 and L2. Notice that topology consistency is preserved: no intersections
were created and sidedness is maintained.

(a) (b)

Figure 2. Inconsistent simplification output: (a) P is on the wrong side of line L2;
(b) nonexisting ntersection between lines L1 and L2 is created.

2. Polyline Simplification

An approach for performing map simplification is to reduce the complexity of its lines.
That means making simpler representation of curves or polygon edges. Usually, lines are
represented by polygonal chains or polylines. A polyline is a serie of segments defined
by a sequence of n vertices (v1, v2, ..., vn), where each segment consists of two endpoints
and adjacent segments share a common endpoint. Figure 1(a) shows an example of two
polygonal chains L1 and L2, and also a control point P (gray hexagon) that does not
belong to a polyline but is considered relevant or meaningful.

The basic idea of line simplification consists of removing points and represent-
ing the original curve using approximation with fewer vertices. Figure 1(b) presents
an example of the simplification of the lines shown in Figure 1(a). Two famous
and frequently used line simplification algorithms are the Ramer-Douglas-Peucker’s
algorithm (RDP) [Douglas and Peucker 1973, Ramer 1972] and Visvalingam-Whyatt
(VW) [Visvalingam and Whyatt 1993] algorithm.

The line simplification process can bring inconsistencies to the output if some
care is not taken. Figure 2 shows two examples where removing certain points from the
polylines in Figure 1(a) would cause topological inconsistency: (a) after simplification,
point P is on the other side of the simplified line L2; (b) a “nonexistent” intersection
between lines L1 and L2 is created.

Topological inconsistency may be created by some simplification algorithms such
as the ones based on the RDP method. But there is another source of error that affects
even algorithms that attempt to avoid inconsistencies: round-off errors resulting from
floating point arithmetic. These errors occur because real numbers cannot be exactly

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 162-173.

163

represented in computational systems, instead, an approximation of the real number is
used [Goldberg 1991]. In order to overcome such problems, the best strategy is to make
use of Exact Geometric Computation [Li et al. 2005].

In this paper is presented a method that uses rational numbers and parallel comput-
ing to solve the following variation of the generalization problem: given a set of polylines
and control points, the goal is to simplify these polylines by removing some of their ver-
tices (except endpoints) such that topological relationships between pairs of polylines and
between polylines and control points are maintained. In practice, polylines may repre-
sent boundaries of counties or states, and control points may represent cities within these
states. The introduction of rational numbers was used to prevent errors introduced by
rounding in floating point arithmetic. The use of arbitrary precision numbers is expected
to increase the overall execution time of the algorithm since its operations are more com-
plex. In order to compensate this performance drop, parallel computing is used.

3. Related Works
In this section we describe algorithms for line simplification as well as problems that arise
from floating-point arithmetic.

3.1. Algorithms for Line Simplification
Many algorithms for line simplification have been developed so far. One of the most
famous is the Ramer-Douglas-Peucker’s algorithm (RDP) [Douglas and Peucker 1973,
Ramer 1972]. Its basic idea is to start with a very rough approximation of the original line
(i.e. a straight line connecting the end vertices) and iteractively refine the approximation
including, in each step, the vertex that is farthest from the current line. The method stops
when the distance between the farthest vertex and the line is greater than a given threshold
(the smaller the threshold the less simplified the line is).

The RDP algorithm does not take topological consistency into consideration and
may generate inconsistent results. An approach proposed by Saalfeld [Saalfeld 1999]
attempts to avoid such inconsistencies. It uses Douglas-Peucker’s algorithm to simplify
lines and then starts a refining process by adding points to the output line so that the curve
no longer presents any inconsistency. Noteworthy to mention that adding points to a curve
may eliminate previous inconsistencies but may create new ones.

Another approach based on Douglas-Peucker was proposed by Li et al.
[Li et al. 2013]. It intends to avoid topological inconsistencies as well as cracks on poly-
gon shapes using a strategy based on detection-point identification, which are points lying
within a minimum boundary rectangle (MBR) of the bounded face formed by a subpoly-
line and its corresponding simplifying segment. These detection-points are used for con-
sistency verification of the simplification process.

Visvalingam and Whyatt [Visvalingam and Whyatt 1993] proposed a method
(called the VW algorithm) for line generalization that uses the concept of effective area of
a point to define the priority of its removal. The effective area of a point vi, for 1 < i < n,
in a polygonal chain v1, · · · , vn, is defined as the area of the triangle formed by vi and its
two adjacent vertices, namely, vi�1, vi, vi+1. The VW algorithm considers that the “im-
portance” of the points are proportional to their effective area and, therefore, it ranks the
points and simplifies the polylines by removing first the points with smaller areas.

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 162-173.

164

Even though the VW algorithm performs simplification with good quality, it
does not avoid topological problems in the map. To solve this problem, Gruppi et
al.[Gruppi et al. 2015] developed TopoVW, a variation of the VW algorithm that avoids
the creation of topological inconsistencies. Similarly to VW, TopoVW processes the points
in an order based on their effective area but only removes a point vi if its removal does not
create inconsistencies in topology. When a point is removed the effective areas of its two
neighbor points in the line are updated since the triangle associated with them change.
TopoVW may be configured to stop when the number of points removed reaches a limit
or when the smallest effective area of the points is greater than a given threshold.

Although some of the methods previously mentioned have mechanisms to detect
and prevent topological inconsistencies created by the simplification process itself, these
problems may still happen because of round-off errors related to the use of inexact arith-
metic to process the points’ coordinates.

3.2. Round-off Errors in Floating Point Arithmetic
The computational representation of a non-integer number is made by adjusting this num-
ber to a finite sequence of bits, this possibly causes the number to be an approximation
most of the time. Furthermore, even if some numbers can be exactly represented, arith-
metic operations applied to these numbers may generate a result that is not exactly correct.
In geometric algorithms this is a great issue since they may result in inconsistent outputs.

Kettner et al. [Kettner et al. 2008] presented a study of how rounding in floating
point arithmetic affects the planar orientation predicate and as consequence the planar
convex hull problems. The planar orientation predicate is the problem of finding whether
three points p, q, r are collinear, make a left turn, or make a right turn. This predicate is
computed by verifying the sign of a determinant involving the points.

This determinant will be positive, negative or zero which means that points
(p, q, r) form a left turn, right turn or are collinear, respectively. Due to round-off er-
rors in floating point arithmetic the results can be classified incorrectly due to rounding to
zero, perturbed zero, or sign inversion. Respectively, it means a non-zero result may be
rounded to zero, a zero result may be mis-classified as positive or negative, and a positive
result may be mis-classified as negative or vice-versa.

To observe the occurrence of issues caused by floating-point arithmetic, Kettner
et al. [Kettner et al. 2008] developed a program to apply planar orientation predicate
(orientation(p, q, r)) on a point p = (px + xu, py + yu) where u is the step between
adjacent floating point numbers in the range of p and 0 x, y 255. This results in
a 256 ⇥ 256 matrix containing either 1, -1 or 0 if the point corresponding to the matrix
position is to the right, to the left or on the line that passes through q and r. Figure 3
shows the geometry of this experiment for p = (0.5, 0.5), u = 2

�53 and q = (12, 12) and
r = (24, 24). White cells represent correct output. The black diagonal line is an approx-
imation of line (q, r). Black cells represent incorrect output, that is, black points above
the diagonal were considered to form a right turn with the line (q, r), which is not true, it
also applies to the points below the diagonal which were said to form a left turn with line
(q, r). Gray cells contain points considered collinear to (q, r). According to Kettner et al.,
even using extended double arithmetic was not enough to overcome this issue.

As shown by [Kettner et al. 2008], these inconsistent results in

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 162-173.

165

q

r

Figure 3. Geometry of the planar orientation predicate for double precision float-
ing point arithmetic. White points represent correct outputs, gray were consid-
ered collinear and black cells points considered to be in the wrong side of the
line. The diagonal line is an approximation to line (q, r). This Figure was created
based on the experiments performed by Kettner et al.[Kettner et al. 2008].

orientation(p, q, r) predicate could make algorithms that use this predicate (such
as the Incremental Convex Hull algorithm) to fail.

A well-known technique to get around round-off errors in floating point arith-
metic is the Epsilon-tweaking, that consists in comparing numbers using a relatively
small tolerance value epsilon (✏). In practice, epsilon-tweaking fails in several situa-
tions [Kettner et al. 2008]. Snap rounding is another method to approximate arbitrary
precision segments into fixed-precision numbers [Hobby 1999]. However, Snap round-
ing can generate inconsistencies and deform the original topology if applied consecu-
tively on a data set. Some variations of this technique attempt to get around these issues
[de Berg et al. 2007, Hershberger 2013].

One of the most robust ways for eliminating rounding errors in geometry is by us-
ing Exact Geometric Computation (ECG). According to Li [Li et al. 2005], any problem
handled by other approaches can also be solved by ECG. Additionally, ECG can do even
more and the solutions may be of higher quality. This can be achieved by using arbitrary
precision rational numbers [Li et al. 2005], which eliminates rounding errors but consid-
erably decreases performances as most operations are more computationally intensive.

4. Evaluation of Round-off Errors on Map SimpliÞcation

Similarly to other geometric problems, map simplification is also affected by round-off
errors. As mentioned in section 3, TopoVWprocesses points in an order defined by their
effective areas and only removes a point if its removal does not cause topological incon-
sistencies on the map. Given a polyline point v from a map, the removal of v causes a
topological inconsistency if and only if there is another point (that may be a polyline or a
control point) inside the triangle formed by v and its two adjacent vertices in its polyline.

If the point-in-triangletest fails returning a false positive a point that could have

Proceedings XVI GEOINFO, November 29 th to December 2nd , 2015, Campos do Jord÷ao, Brazil. p 162-173.

166

been removed from the polyline will not be removed. If this test returns a false negative,
on the other hand, topological inconsistencies may be created on the map.

In TopoVW, the test to determine if a pointp lies inside the triangleT formed
by pointsr , s and t is performed by computing the barycentric coordinates ofp in T,
i.e., p is expressed in terms of three scalarsa, b andc such thatpx = arx + bsx + ctx ,
py = ary + bsy + cty, anda + b+ c = 1. Pointp lies in T if and only if 0 ! a ! 1 and
0 ! b ! 1 and0 ! c ! 1. A function is inside(r, s, t, p) to perform thepoint in triangle
test using the barycentric coordinates was implemented in C++. This approach is similar
to the one used by Kettner et al. shown in Section 3.2.

In a similar manner to the orientation test presented in the previous section, the
functionis inside(r, s, t, p) may also return incorrect results in two situations:

¥ false inside: erroneously determine an outer point as inside;
¥ false outside: erroneously determine an inner point as outside;

Sinceis inside is TopoVWÕs key operation, the method may avoid simplifying
lines due tofalse insideappearance. Even more alarming, it may remove points on the
presence offalse outsides, what would change the topological relationships. Figure 4
shows an example offalse outsidesimpliÞcation. In this example there are two non-
intersecting lines (solid and dashed) as shown in Figure 4(a), the zoomed area shows
explicitly that both lines do not intersect. Pointp is inside the triangle formed by points
(r, q, w) with w not shown in the Þgure to preserve simplicity. However, due to afalse
outsidefailure pointq is removed resulting in an intersection as seen in Figure 4(b).

Another instance of this problem is shown by Figure 5, where a single line is
simpliÞed. Similarly to the previous example, vertexp is inside the triangle formed by
(r, q, w) but it is seen as afalse outside. Vertexq is removed by the simpliÞcation process
causing the line to self-intersect as seen in Figure 5(b).

(a)

!

"

#

"

(b)

!

"

Figure 4. (a) Example input on which false outside failure occur, two lines (solid
and dashed) do not intersect. (b) Result of simpliÞcation with false outside, the
removal of point q causes the lines intersect after simpliÞcation.

5. TheEPLSimpMethod

To avoid adding topological errors to the map in the situations described in section 4, we
developedEPLSimp, a simpliÞcation algorithm based onTopoVWthat uses exact arith-
metic to completely avoid the round-off errors that may happen during the point in trian-
gle tests. InEPLSimp, all non-integers variables are represented using arbitrary-precision

Proceedings XVI GEOINFO, November 29 th to December 2nd , 2015, Campos do Jord÷ao, Brazil. p 162-173.

167

(a)

!

"

#

"

(b)

!

"

Figure 5. (a) Example input of a single line and the occurrence of a false outside.
(b) SimpliÞcation with a false outside point. The removal of point q produces a
self-intersecting line.

rational numbers. Since exact arithmetic is usually much slower than arithmetic with
floating point numbers (that usually can be performed natively on the CPU), some opti-
mizations were implemented in order to reduce the performance penalty that it introduces.

First, similarly to TopoVW, we used a uniform grid to index the polyline and con-
trol points from the map. The idea is to create a regular grid, superimpose it with the map
and insert in each cell c the control points and polyline points that are inside c. Then,
given a triangle T , only points in the uniform grid cells intersecting T need to be tested in
order to verify if there is a point inside T .

One advantage of the uniform grid over more complex data structures such as
quadtrees is that it is easier to be constructed and maintained. Given a set S of points, we
compute the uniform grid by performing only one pass through the dataset: for each point
p in S, the cell c from the grid where p should be is computed (by dividing p’s coordinates
by the dimensions of the grid cells) and p is inserted in c.

Since the slowest step during the construction of the grid is the computation of the
cell in which each point p is (due to the division operations with arbitrary-precision ratio-
nals), we used parallel programming to accelerate this step. The idea is to pre-compute
in parallel the cell in which each point is and, after that, insert the points in the cells (this
insertion step is not done in parallel in order to avoid the cost of synchronizations).

After indexing the points, the next step consists in simplifying polylines. As men-
tioned in section 3, TopoVWsorts the points based on their effective areas and processes
them by removing the ones whose removal would not create topological problems in the
map. To accelerate the simplification process used in TopoVW, we subdivided the poly-
lines into sets such that polylines from different sets may be simplified independently in
parallel not requiring the synchronization of data structures accesses.

Algorithm 1 presents the simplification algorithm and the strategy used for subdi-
viding the polylines into sets that can be simplified in parallel. This subdivision is also
performed using a uniform grid (this grid may have a resolution different from the uni-
form grid used for indexing the points). We create this new uniform grid and, then, insert
in each grid cell the polylines that are completely inside this cell. The polylines in differ-
ent grid cells could be processed independently since the triangle formed by any polyline
point never contains a point from another cell. On the other hand, polylines intersecting

Proceedings XVI GEOINFO, November 29th to December 2nd , 2015, Campos do Jordão, Brazil. p 162-173.

168

more than one cell cannot be processed in parallel without synchronization. For example,
even though the polyline containing the vertexv in Figure 6 (a) does not intersect the cell
containing the polygonP, before deletingv it is necessary to access the cell containing
polygonP in order to verify if the deletion ofv causes a topological inconsistency. There-
fore, if the two polylines in this Þgure are simpliÞed in parallel the algorithm would need
to perform synchronizations.

(a)

!

"

(b)

!

"

#$

Figure 6. (a) Example where a polyline intersecting multiple cells needs to access
data in a cell it does not intersect. (b) Example where the deletion of a point
makes the deletion of other points infeasible .

After processing all the polylines lying completely in single cells, we repeat the
simpliÞcation process for the polylines intersecting more than one cell. In order to be
able to do that in parallel, we reduce the uniform grid resolution, reclassify the remaining
polylines and, then, simplify the ones that lie in single cells in this new uniform grid.
This process is repeated until there is no more polyline to be simpliÞed (eventually all the
polylnes will be processed since when the uniform grid is reduced to one cell all polylines
that were not processed yet will lie in this unique cell).

To avoid the necessity of synchronizations between threads processing different
sets of polylines, the simpliÞcation stopping criteria used inEPLSimpis the effective area
of the points. That is, the thread simplifying a set of polylines stops the process whenever
the point with smallest effective area in the set has an area greater than a given threshold.
If the stopping criteria was the number of points removed, synchronizations would be
necessary to ensure that all threads stop simplifying lines when the global number of
removed points reaches the target number.

It is important to mention that we have considered other two parallelization strate-
gies. First, we could pre-process the map verifying for each point if there is another point
inside the triangle deÞned by it and its two neighbors. This pre-processing could be per-
formed in parallel. After labeling the points that can safely be removed (that is, the ones
without other points in their triangles), we could just remove the ones with smaller effec-
tive areas. This strategy would not work very well because when a point is removed the
triangle of its two neighbors change. For example, in Figure 6 (b), any of the pointsa or b
or c may be removed without changing the topological relationship between the polyline
and the control pointp. However, ifa or c is removed the triangle associated withbwill
containp and, therefore,bwill not be a candidate to be removed anymore.

Another parallel strategy would be to perform the point inside triangle test in
parallel. That is, given a triangleT, after using the uniform grid to select the points that
are candidate to be inT we could perform the test to verify if each point is really insideT

Proceedings XVI GEOINFO, November 29 th to December 2nd , 2015, Campos do Jord÷ao, Brazil. p 162-173.

169

Algorithm 1 Parallel map simpliÞcation algorithm.
1: M : input map
2: MaxArea : maximum effective area of a point to be removed
3: GridSize: initial resolution of the uniform grid used to separate the polylines.
4: while GridSize > 0 do
5: ug ! GridSize " GridSize uniform grid
6: for each polylinep in M not simpliÞed yetdo
7: if p is completely inside a cellc from ug then
8: Insertp into c
9: end if

10: end for
11: for each cellc in ug do //Parallel for loop
12: //Iterate in an order based on the pointsÕ effective areas
13: for each pointvi in polylines fromc | ef fectiveArea (vi) <MaxArea do
14: if ! pointp | is inside(vi ! 1, vi , vi +1 , p) then
15: Remove the pointvi from its polyline
16: end if
17: end for
18: end for
19: GridSize ! GridSize/ 2
20: end while

in parallel. However, preliminary experiments showed that, because of the uniform grid,
the average number of points that need to be effectively tested in this step is usually small
and, therefore, the performance gain obtained by processing them in parallel would not
be good if compared with the overheads associated with the parallelism.

6. Experimental Evaluation

We evaluated EPLSimp by implementing it in C++ (the library GM-
PXX [Granlund and the GMP development team 2014] was used to provide arbitrary
precision arithmetic) and performing experiments in some small datasets artiÞcially
generated to contain polylines and control points that would introduce topological errors
in the simpliÞcation performed byTopoVW. Furthermore, experiments were performed
in 3 real-world maps in order to evaluate the performance ofEPLSimp. The computer
used has a dual E5-2687 8-core/16-thread Intel Xeon CPU and 128 GB of RAM.

In the Þrst set of experiments, we used the maps artiÞcially generated to contain
points in positions where the point-in-triangle tests would give a false negative answer
(similar to the examples presented in section 4) and, therefore, methods such asTopoVW
would create topological errors during the map simpliÞcation. As expected, because of
the use of exact arithmetic,EPLSimpwas able to simplify these maps without creating
any topological inconsistency.

Next, we performed experiments in three datasets to verify the overhead added
by the use of arbitrary precision rational numbers inEPLSimp. Dataset 1 was the largest
dataset used in the ACM GISCUP competition 2014. It contains 30000 polyline points
and 1607 control points. Dataset 2 represents the Brazilian county subdivision map avail-

Proceedings XVI GEOINFO, November 29 th to December 2nd , 2015, Campos do Jord÷ao, Brazil. p 162-173.

170

able in the IBGE (the Brazilian geography agency) website and it contains 300000 poly-
line points and 10000 control points (the control points were positioned randomly in the
map). Dataset 3 represents the United States county subdivision map available in the
United States Census website and it has 4 million polyline points and 10 million control
points (that were also positioned randomly in the map).

The choice of the dimensions of the uniform grid used byTopoVW and
EPLSimp to index the points affects the performance of both methods and it can be
performed using several strategies. For example,TopoVWautomatically deÞnes the grid
size by computing the total number of polylines/control points in the map and chooses
the grid dimension estimating the average number of points per cell close to a constant
(this constant was determined experimentally). Since the best grid size forTopoVWmay
not be the best grid size forEPLSimpand since we want to compare the performance of
these two methods, we chose experimentally, for each method and dataset, a conÞguration
that presents the best performance (for example, in dataset 2,TopoVWandEPLSimpused
grids with, respectively,5122 and20482 cells).

The uniform grid thatEPLSimpuses to classify the polylines that are processed in
parallel was conÞgured to have initially2562 cells and to iteratively reduce the resolution
to half after completely processing each set of polylines that can be processed in parallel.
As mentioned in section 5, this process is repeated until all polylines have been simpliÞed,
what happens, in the worst case, when the grid has only one cell.

Table 1 presents the wallclock-time (in milliseconds) of the two methods in two
situations: in the Þrst one they were conÞgured to remove the maximum amount of points
that they can remove without creating topological errors. In the second one, they were
conÞgured to remove50%of the points. Rowinitialize contains the time for initializing
the algorithm and includes the time for creating the data structures (such as the uniform
grids). Rowsimplify contains the time spent in the simpliÞcation process. In all tests
EPLSimpwas tested using 16threads.

EPLSimpwas, on average, less than twice slower thanTopoVW, even though we
store and process all points coordinates using arbitrary precision rational numbers, that
are much more computationally expensive to process than ßoating point numbers. This
happens becauseEPLSimpwas carefully implemented using techniques such as paral-
lel computing and the uniform grid to accelerate the simpliÞcation process. It is worth
mentioning that one of the advantages of the uniform grid over other indexing techniques
(such as Quadtrees) is that it is easily parallelizable and can be created by performing a
single pass over the data (this is particularly important for efÞciency since the indexing is
performed using coordinates represented by rational numbers).

Table 2 evaluates the scalability ofEPLSimpconsidering 5 different number of
threads. In these datasets,EPLSimphad a speedup of2! when two threads were used and
this speedup increased slowly for larger amounts of threads. For example, the running-
time using16threads was not much different from the time using8 threads. Some reasons
for this behavior are: Þrst, due to AmdahlÕs law, sequential parts of the algorithm limits
its scalability; furthermore, some polylines sets may take more time to be simpliÞed than
others, what causes load imbalance in the threads; Þnally, when several threads run in par-
allel the memory accesses may saturate the memory bus. Anyway, it is worth mentioning

Proceedings XVI GEOINFO, November 29 th to December 2nd , 2015, Campos do Jord÷ao, Brazil. p 162-173.

171

Table 1. Times (in ms) for the main steps of the map simpliÞcation algorithms.
Rows Max. represents the time for removing the maximum amount of points from
the map while rows Half represents the time to remove half of the points.

Dataset 1 2 3
Method TopoVW EPLSimp TopoVW EPLSimp TopoVW EPLSimp

M
ax

. Initialize 4 22 28 190 1828 5353
Simplify 39 60 626 445 46069 57095

Total 43 82 654 635 47897 62448

H
al

f Initialize 4 22 28 186 1847 5447
Simplify 25 41 357 331 23021 48090

Total 29 63 384 517 24868 53537

Table 2. Times (in ms) for initializing and simplifying maps from the 3 datasets
considering different number of threads. The simpliÞcation was conÞgured to
remove the maximum amount of points from the maps.

Initialization SimpliÞcation
Dataset 1 2 3 1 2 3

T
hr

ea
ds

1 71 655 26833 176 1574 250237
2 91 568 15483 152 1150 131310
4 54 422 9853 99 689 82641
8 34 240 6552 61 483 62089
16 22 190 5353 60 445 57095

that typical computers nowadays have 2 or 4 cores and, therefore,EPLSimpis able to
present a good scalability in those computers.

7. Conclusion and Future Works

This paper presentedEPLSimp, an algorithm for map simpliÞcation that does not produce
topological inconsistencies. It uses arbitrary precision numbers to avoid round-off errors
caused by ßoating-point arithmetic, which could lead to topological inconsistencies even
in methods designed to avoid these problems, such asTopoVW.

EPLSimpwas implemented to be efÞcient even though it uses arbitrary precision
numbers, which are much slower to be processed than ßoating-point numbers. This efÞ-
ciency improvement was achieved by using a uniform grid to index the geometric objects
and, also, high performance computing. As a result, using 16 threadsEPLSimpwas, on
average, less than twice slower thanTopoVW, even though the latter performs all compu-
tation using inexact ßoating-point numbers (that are natively supported by the CPU) and
then can generate ÒwrongÓ (or inconsistent) results.

For future work, we intend to develop other GIS algorithms using arbitrary pre-
cision arithmetic. Furthermore, adaptingEPLSimpto simplify vector drawings and 3D
objects is also an interesting future research topic.

Proceedings XVI GEOINFO, November 29 th to December 2nd , 2015, Campos do Jord÷ao, Brazil. p 162-173.

172

8. Acknowledgement

This research was partially supported by CNPq, CAPES (Ciöencia sem Fronteiras),
FAPEMIG and NSF grant IIS-1117277.

References

de Berg, M., Halperin, D., and Overmars, M. (2007). An intersection-sensitive algorithm
for snap rounding.Computational Geometry, 36(3):159Ð165.

Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature.Cartographica: The
International Journal for Geographic Information and Geovisualization, 10(2):112Ð
122.

Goldberg, D. (1991). What every computer scientist should know about ßoating-point
aritmetic.ACM Computing Surveys, 23(1):5Ð48.

Granlund, T. and the GMP development team (2014). The gnu multiple precision arith-
metic library.

Gruppi, M. G., Magalh÷aes, S. V. G., Andrade, M. V. A., Franklin, W. R., and Li, W.
(2015). An efÞcient and topologically correct map generalization heuristic. InProceed-
ings of the 17th International Conference on Enterprise Information Systems (ICEIS).

Hershberger, J. (2013). Stable snap rounding.Computational Geometry, 46(4):403Ð416.

Hobby, J. D. (1999). Practical segment intersection with Þnite precision output.Compu-
tational Geometry, 13(4):199Ð214.

Jiang, B., Liu, X., and Jia, T. (2013). Scaling of geographic space as a universal rule for
map generalization.Annals of the Association of American Geographers, 103(4):844Ð
855.

Jo÷ao, E. (1998).Causes and Consequences of map generalization. CRC Press.

Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., and Yap, C. (2008). Classroom exam-
ples of robustness problems in geometric computations.Computational Geometry,
40(1):61Ð78.

Li, C., Pion, S., and Yap, C.-K. (2005). Recent progress in exact geometric computation.
The Journal of Logic and Algebraic Programming, 64(1):85Ð111.

Li, L., Wang, Q., Zhang, X., and Wang, H. (2013). An algorithm for fast topological con-
sistent simpliÞcation of face features.Journal of Computational Information Systems,
9(2):791Ð803.

Ramer, U. (1972). An iterative procedure for the polygonal approximation of plane
curves.Computer Graphics and Image Processing, 1(3):244Ð256.

Saalfeld, A. (1999). Topologically consistent line simpliÞcation with the douglas-peucker
algorithm.Cartography and Geographic Information Science, 26(1):7Ð18.

Visvalingam, M. and Whyatt, J. (1993). Line generalisation by repeated elimination of
points.The Cartographic Journal, 30(1):46Ð51.

Proceedings XVI GEOINFO, November 29 th to December 2nd , 2015, Campos do Jord÷ao, Brazil. p 162-173.

173

