Proceedings XVI GEOINFO, November 29" to December 2"¢, 2015, Campos do Jordio, Brazil. p 162-173.

Using Rational Numbers and Parallel Computing to
Efficiently Avoid Round-off Errors on Map Simplification

Mauricio G. Gruppi !, Salles V. G. de Magalhaes '2, Marcus V. A. Andrade !,
W. Randolph Franklin?, Wenli Li?

!Departamento de Informética — Universidade Federal de Vigosa (UFV)
Vicosa — MG — Brazil

Rensselaer Polytechnic Institute
Troy - NY — USA

{mauricio.gruppi,salles,marcus}@ufv.br, mail@wrfranklin.org,
1iw9@rpi.edu

Abstract. This paper presents EPLSimp, an algorithm for map generalization
that avoids the creation of topological inconsistencies. EPLSimp is based on
Visvalingam-Whyatt’s (VW) algorithm on which least “important” points are
removed first. Unlike VW’s algorithm, when a point is deleted a verification is
performed in order to check if this deletion would create topological inconsisten-
cies. This was done by using arbitrary precision rational numbers to completely
avoid errors caused by floating-point arithmetic. EPLSimp was carefully imple-
mented to be efficient, although using rational numbers adds an overhead to the
computation. This efficiency was achieved by using a uniform grid for indexing
the geometric data and parallel computing to speedup the process.

1. Introduction

The map simplification process, also known as map generalization, allows the produc-
tion of maps with different levels of details [Jiang et al. 2013]. It consists of removing
information that is not relevant to the viewer, while preserving essential features on the
map. Generalization is inherent to every geographical data since every map consists of
generalized representations of reality, and the more generalized a map is, the more distant
it becomes from the real world [Jodo 1998]. The output of this process is a map with
more desirable properties than those from the input map. An example of generalization
is scaling a map of a single town which contains detailed information about streets and
buildings. When scaling this map to show nearby towns it may be necessary to simplify
it so that it is not overburden by unimportant data.

A challenge in generalization is to find a balance between simplification and re-
ality. Map simplification can produce inappropriate results as it may affect topological
relationships. These results are said to be topologically inconsistent and they may present
relationships that are conflicting with reality. For example, the simplification can create
self-intersecting lines, improper intersections between lines and polygons, etc.

Another kind of topological inconsistency is the sidedness change, that is, after
performing simplification, a feature can be on a different side regarding other feature on
the map. For example, after the simplification of a line, a point which was originally on
the right side of this line now can be on the left side. Thus when designing simplification
algorithms it is important to guarantee topologically consistent results.

162

Proceedings XVI GEOINFO, November 29" to December 2"¢, 2015, Campos do Jordio, Brazil. p 162-173.

Py /._/c\\\
» ~ / ~.
y o e S
._//J \\ _ 4 \\
/// [/// [3
L~ o) N L~ o) N
« N g
P ~ P \\
L. AN L \
» _»
-——--/ o«

(a) (b)

Figure 1. (a) Example of polylines L, and L. and a control point P. (b) Simplifica-
tion of L; and L. Notice that topology consistency is preserved: no intersections
were created and sidedness is maintained.

(@) (b)

Figure 2. Inconsistent simplification output: (a) P is on the wrong side of line L,;
(b) nonexisting ntersection between lines L; and L, is created.

2. Polyline Simplification

An approach for performing map simplification is to reduce the complexity of its lines.
That means making simpler representation of curves or polygon edges. Usually, lines are
represented by polygonal chains or polylines. A polyline is a serie of segments defined
by a sequence of n vertices (v1, vs, ..., ¥,,), Where each segment consists of two endpoints
and adjacent segments share a common endpoint. Figure 1(a) shows an example of two
polygonal chains I,; and L, and also a control point P (gray hexagon) that does not
belong to a polyline but is considered relevant or meaningful.

The basic idea of line simplification consists of removing points and represent-
ing the original curve using approximation with fewer vertices. Figure 1(b) presents
an example of the simplification of the lines shown in Figure 1(a). Two famous
and frequently used line simplification algorithms are the Ramer-Douglas-Peucker’s
algorithm (RDP) [Douglas and Peucker 1973, Ramer 1972] and Visvalingam-Whyatt
(VW) [Visvalingam and Whyatt 1993] algorithm.

The line simplification process can bring inconsistencies to the output if some
care is not taken. Figure 2 shows two examples where removing certain points from the
polylines in Figure 1(a) would cause topological inconsistency: (a) after simplification,
point P is on the other side of the simplified line Lo; (b) a “nonexistent” intersection
between lines L; and L4 is created.

Topological inconsistency may be created by some simplification algorithms such
as the ones based on the RDP method. But there is another source of error that affects
even algorithms that attempt to avoid inconsistencies: round-off errors resulting from
floating point arithmetic. These errors occur because real numbers cannot be exactly

163

Proceedings XVI GEOINFO, November 29" to December 2"¢, 2015, Campos do Jordio, Brazil. p 162-173.

represented in computational systems, instead, an approximation of the real number is
used [Goldberg 1991]. In order to overcome such problems, the best strategy is to make
use of Exact Geometric Computation [Li et al. 2005].

In this paper is presented a method that uses rational numbers and parallel comput-
ing to solve the following variation of the generalization problem: given a set of polylines
and control points, the goal is to simplify these polylines by removing some of their ver-
tices (except endpoints) such that topological relationships between pairs of polylines and
between polylines and control points are maintained. In practice, polylines may repre-
sent boundaries of counties or states, and control points may represent cities within these
states. The introduction of rational numbers was used to prevent errors introduced by
rounding in floating point arithmetic. The use of arbitrary precision numbers is expected
to increase the overall execution time of the algorithm since its operations are more com-
plex. In order to compensate this performance drop, parallel computing is used.

3. Related Works

In this section we describe algorithms for line simplification as well as problems that arise
from floating-point arithmetic.

3.1. Algorithms for Line Simplification

Many algorithms for line simplification have been developed so far. One of the most
famous is the Ramer-Douglas-Peucker’s algorithm (RDP) [Douglas and Peucker 1973,
Ramer 1972]. Its basic idea is to start with a very rough approximation of the original line
(i.e. a straight line connecting the end vertices) and iteractively refine the approximation
including, in each step, the vertex that is farthest from the current line. The method stops
when the distance between the farthest vertex and the line is greater than a given threshold
(the smaller the threshold the less simplified the line is).

The RDP algorithm does not take topological consistency into consideration and
may generate inconsistent results. An approach proposed by Saalfeld [Saalfeld 1999]
attempts to avoid such inconsistencies. It uses Douglas-Peucker’s algorithm to simplify
lines and then starts a refining process by adding points to the output line so that the curve
no longer presents any inconsistency. Noteworthy to mention that adding points to a curve
may eliminate previous inconsistencies but may create new ones.

Another approach based on Douglas-Peucker was proposed by Li et al.
[Li et al. 2013]. It intends to avoid topological inconsistencies as well as cracks on poly-
gon shapes using a strategy based on detection-point identification, which are points lying
within a minimum boundary rectangle (MBR) of the bounded face formed by a subpoly-
line and its corresponding simplifying segment. These detection-points are used for con-
sistency verification of the simplification process.

Visvalingam and Whyatt [Visvalingam and Whyatt 1993] proposed a method
(called the VW algorithm) for line generalization that uses the concept of effective area of
a point to define the priority of its removal. The effective area of a point v;, for 1 < < n,
in a polygonal chain vy, - - - , v, is defined as the area of the triangle formed by v; and its
two adjacent vertices, namely, v;_1, v;, v;11. The VW algorithm considers that the “im-
portance” of the points are proportional to their effective area and, therefore, it ranks the
points and simplifies the polylines by removing first the points with smaller areas.

164

Proceedings XVI GEOINFO, November 29" to December 2"¢, 2015, Campos do Jordio, Brazil. p 162-173.

Even though the VW algorithm performs simplification with good quality, it
does not avoid topological problems in the map. To solve this problem, Gruppi et
al.[Gruppi et al. 2015] developed TopoVW, a variation of the VW algorithm that avoids
the creation of topological inconsistencies. Similarly to VW, TopoVW processes the points
in an order based on their effective area but only removes a point v; if its removal does not
create inconsistencies in topology. When a point is removed the effective areas of its two
neighbor points in the line are updated since the triangle associated with them change.
TopoVW may be configured to stop when the number of points removed reaches a limit
or when the smallest effective area of the points is greater than a given threshold.

Although some of the methods previously mentioned have mechanisms to detect
and prevent topological inconsistencies created by the simplification process itself, these
problems may still happen because of round-off errors related to the use of inexact arith-
metic to process the points’ coordinates.

3.2. Round-off Errors in Floating Point Arithmetic

The computational representation of a non-integer number is made by adjusting this num-
ber to a finite sequence of bits, this possibly causes the number to be an approximation
most of the time. Furthermore, even if some numbers can be exactly represented, arith-
metic operations applied to these numbers may generate a result that is not exactly correct.
In geometric algorithms this is a great issue since they may result in inconsistent outputs.

Kettner et al. [Kettner et al. 2008] presented a study of how rounding in floating
point arithmetic affects the planar orientation predicate and as consequence the planar
convex hull problems. The planar orientation predicate is the problem of finding whether
three points p, g, r are collinear, make a left turn, or make a right turn. This predicate is
computed by verifying the sign of a determinant involving the points.

This determinant will be positive, negative or zero which means that points
(p,q,r) form a left turn, right turn or are collinear, respectively. Due to round-off er-
rors in floating point arithmetic the results can be classified incorrectly due to rounding to
zero, perturbed zero, or sign inversion. Respectively, it means a non-zero result may be
rounded to zero, a zero result may be mis-classified as positive or negative, and a positive
result may be mis-classified as negative or vice-versa.

To observe the occurrence of issues caused by floating-point arithmetic, Kettner
et al. [Kettner et al. 2008] developed a program to apply planar orientation predicate
(orientation(p,q,r)) on a point p = (p, + zu,p, + yu) where u is the step between
adjacent floating point numbers in the range of p and 0 < z,y < 255. This results in
a 256 x 256 matrix containing either 1, -1 or 0 if the point corresponding to the matrix
position is to the right, to the left or on the line that passes through ¢ and r. Figure 3
shows the geometry of this experiment for p = (0.5,0.5), u = 2753 and ¢ = (12,12) and
r = (24, 24). White cells represent correct output. The black diagonal line is an approx-
imation of line (¢, 7). Black cells represent incorrect output, that is, black points above
the diagonal were considered to form a right turn with the line (g,), which is not true, it
also applies to the points below the diagonal which were said to form a left turn with line
(g,). Gray cells contain points considered collinear to (g,). According to Kettner et al.,
even using extended double arithmetic was not enough to overcome this issue.

As shown by [Kettneretal. 2008], these inconsistent results in

165

Proceedings XVI GEOINFO, November 29 " to December 2, 2015, Campos do Jordao, Brazil. p 162-173.

q

Figure 3. Geometry of the planar orientation predicate for double precision float-
ing point arithmetic. White points represent correct outputs, gray were consid-
ered collinear and black cells points considered to be in the wrong side of the
line. The diagonal line is an approximation to line (¢, 7). This Figure was created
based on the experiments performed by Kettner et al.[Kettner et al. 2008].

orientation(p, q,r) predicate could make algorithms that use this predicate (such
as the Incremental Convex Hull algorithm) to fail.

A well-known technique to get around round-off errors in floating point arith-
metic is the Epsilon-tweaking, that consists in comparing numbers using a relatively
small tolerance value epsilon (e). In practice, epsilon-tweaking fails in several situa-
tions [Kettner et al. 2008]. Snap rounding is another method to approximate arbitrary
precision segments into fixed-precision numbers [Hobby 1999]. However, Snap round-
ing can generate inconsistencies and deform the original topology if applied consecu-
tively on a data set. Some variations of this technique attempt to get around these issues
[de Berg et al. 2007, Hershberger 2013].

One of the most robust ways for eliminating rounding errors in geometry is by us-
ing Exact Geometric Computation (ECG). According to Li [Li et al. 2005], any problem
handled by other approaches can also be solved by ECG. Additionally, ECG can do even
more and the solutions may be of higher quality. This can be achieved by using arbitrary
precision rational numbers [Li et al. 2005], which eliminates rounding errors but consid-
erably decreases performances as most operations are more computationally intensive.

4. Evaluation of Round-off Errors on Map Simplibcation

Similarly to other geometric problems, map simplification is also affected by round-off
errors. As mentioned in section 3, TOpoVWoprocesses points in an order defined by their
effective areas and only removes a point if its removal does not cause topological incon-
sistencies on the map. Given a polyline point v from a map, the removal of v causes a
topological inconsistency if and only if there is another point (that may be a polyline or a
control point) inside the triangle formed by v and its two adjacent vertices in its polyline.

If the point-in-triangletest fails returning a false positive a point that could have
166

Proceedings XVI GEOINFO, November 29 " to December 2, 2015, Campos do Jordao, Brazil. p 162-173.

been removed from the polyline will not be removed. If this test returns a false nege
on the other hand, topological inconsistencies may be created on the map.

In TopoVW the test to determine if a poiftlies inside the triangld formed
by pointsr, s andt is performed by computing the barycentric coordinatep of T,
i.e., pis expressed in terms of three scalard andc such thatp, = ary + bs, + cty,
py = ary + bs, + ct,, anda+ b+ c= 1. PointpliesinT ifand only if0! a! 1and
0! b! 1landO! c! 1. Afunctionis_insidgr,s,t, p) to perform thepoint in triangle
test using the barycentric coordinates was implemented in C++. This approach is s
to the one used by Kettner et al. shown in Section 3.2.

In a similar manner to the orientation test presented in the previous sectior
functionis_insidg(r, s, t, p) may also return incorrect results in two situations:

¥ false inside erroneously determine an outer point as inside;
¥ false outsideerroneously determine an inner point as outside;

Sinceis.inside is TopoVWOs key operation, the method may avoid simplifyi
lines due tofalse insideappearance. Even more alarming, it may remove points on
presence ofalse outsideswhat would change the topological relationships. Figure
shows an example dhlse outsidesimplibcation. In this example there are two nol
intersecting lines (solid and dashed) as shown in Figure 4(a), the zoomed area :
explicitly that both lines do not intersect. Pojmts inside the triangle formed by point:
(r,g,w) with w not shown in the Pgure to preserve simplicity. However, duefaise
outsidefailure pointg is removed resulting in an intersection as seen in Figure 4(b).

Another instance of this problem is shown by Figure 5, where a single lin
simplibed. Similarly to the previous example, verteis inside the triangle formed by
(r,q,w) butitis seen as talse outsideVertexq is removed by the simplibcation proces
causing the line to self-intersect as seen in Figure 5(b).

(a) (b)

Figure 4. (a) Example input on which false outside failure occur, two lines (solid
and dashed) do not intersect. (b) Result of simplibcation with false outside, the
removal of point g causes the lines intersect after simplibcation.

5. The EPLSimpMethod

To avoid adding topological errors to the map in the situations described in section «
developedEPLSImp a simplibcation algorithm based dopoVWthat uses exact arith-
metic to completely avoid the round-off errors that may happen during the point in t1
gle tests. IFEPLSimp all non-integers variables are represented using arbitrary-preci

167

Proceedings XVI GEOINFO, November 29M to December 2", 2015, Campos do Jordao, Brazil. p 162-173.

@ (b)

Figure 5. (a) Example input of a single line and the occurrence of a false outside.
(b) Simplibcation with a false outside point. The removal of point g produces a
self-intersecting line.

rational numbers. Since exact arithmetic is usually much slower than arithmetic with
floating point numbers (that usually can be performed natively on the CPU), some opti-
mizations were implemented in order to reduce the performance penalty that it introduces.

First, similarly to TopoVW we used a uniform grid to index the polyline and con-
trol points from the map. The idea is to create a regular grid, superimpose it with the map
and insert in each cell ¢ the control points and polyline points that are inside c. Then,
given atriangle T, only points in the uniform grid cells intersecting T need to be tested in
order to verify if there is a point inside T.

One advantage of the uniform grid over more complex data structures such as
quadtrees is that it is easier to be constructed and maintained. Given a set S of points, we
compute the uniform grid by performing only one pass through the dataset: for each point
pin S, the cell cfrom the grid where p should be is computed (by dividing p’s coordinates
by the dimensions of the grid cells) and p is inserted in c.

Since the slowest step during the construction of the grid is the computation of the
cell in which each point p is (due to the division operations with arbitrary-precision ratio-
nals), we used parallel programming to accelerate this step. The idea is to pre-compute
in parallel the cell in which each point is and, after that, insert the points in the cells (this
insertion step is not done in parallel in order to avoid the cost of synchronizations).

After indexing the points, the next step consists in simplifying polylines. As men-
tioned in section 3, TopoVWsorts the points based on their effective areas and processes
them by removing the ones whose removal would not create topological problems in the
map. To accelerate the simplification process used in TopoVW we subdivided the poly-
lines into sets such that polylines from different sets may be simplified independently in
parallel not requiring the synchronization of data structures accesses.

Algorithm 1 presents the simplification algorithm and the strategy used for subdi-
viding the polylines into sets that can be simplified in parallel. This subdivision is also
performed using a uniform grid (this grid may have a resolution different from the uni-
form grid used for indexing the points). We create this new uniform grid and, then, insert
in each grid cell the polylines that are completely inside this cell. The polylines in differ-
ent grid cells could be processed independently since the triangle formed by any polyline
point never contains a point from another cell. On the other hand, polylines intersecting

168

Proceedings XVI GEOINFO, November 29 " to December 2, 2015, Campos do Jordao, Brazil. p 162-173.

more than one cell cannot be processed in parallel without synchronization. For example,
even though the polyline containing the verteix Figure 6 (a) does not intersect the cell
containing the polygof®, before deleting it is necessary to access the cell containing
polygonP in order to verify if the deletion of causes a topological inconsistency. There-
fore, if the two polylines in this Pgure are simplibed in parallel the algorithm would need
to perform synchronizations.

S ..
7SN

(@) (b)

Figure 6. (a) Example where a polyline intersecting multiple cells needs to access
data in a cell it does not intersect. (b) Example where the deletion of a point
makes the deletion of other points infeasible .

After processing all the polylines lying completely in single cells, we repeat the
simplibcation process for the polylines intersecting more than one cell. In order to be
able to do that in parallel, we reduce the uniform grid resolution, reclassify the remaining
polylines and, then, simplify the ones that lie in single cells in this new uniform grid.
This process is repeated until there is no more polyline to be simplibed (eventually all the
polylnes will be processed since when the uniform grid is reduced to one cell all polylines
that were not processed yet will lie in this unique cell).

To avoid the necessity of synchronizations between threads processing different
sets of polylines, the simplibcation stopping criteria useeh.Simps the effective area
of the points. That is, the thread simplifying a set of polylines stops the process whenever
the point with smallest effective area in the set has an area greater than a given threshold.
If the stopping criteria was the number of points removed, synchronizations would be
necessary to ensure that all threads stop simplifying lines when the global number of
removed points reaches the target number.

It is important to mention that we have considered other two parallelization strate-
gies. First, we could pre-process the map verifying for each point if there is another point
inside the triangle debPned by it and its two neighbors. This pre-processing could be per-
formed in parallel. After labeling the points that can safely be removed (that is, the ones
without other points in their triangles), we could just remove the ones with smaller effec-
tive areas. This strategy would not work very well because when a point is removed the
triangle of its two neighbors change. For example, in Figure 6 (b), any of the @oints
or c may be removed without changing the topological relationship between the polyline
and the control poinp. However, ifa or ¢ is removed the triangle associated wittvill
containp and, thereforehwill not be a candidate to be removed anymore.

Another parallel strategy would be to perform the point inside triangle test in
parallel. That is, given a triang[€, after using the uniform grid to select the points that
are candidate to be ih we could perform the test to verify if each point is really inside

169

Proceedings XVI GEOINFO, November 29 " to December 2, 2015, Campos do Jordao, Brazil. p 162-173.

Algorithm 1 Parallel map simplipcation algorithm.

1: M: input map

2: MaxArea: maximum effective area of a point to be removed

3: GridSize: initial resolution of the uniform grid used to separate the polylines.

4: while GridSize > 0do

5 ug! GridSize" GridSize uniform grid

6: for each polylingpin M not simplibed yetio
7 if pis completely inside a cetl from ug then
8
9

Insertpintoc
: end if
10: end for
11: for each celcin ug do //Parallel for loop

12: //lterate in an order based on the pointsO effective areas

13: for each point; in polylines fromc| effectiveArea (v;) <MaxArea do
14: if I pointp| is.insidgVi: 1, Vi, Vi+1, p) then

15: Remove the poing; from its polyline

16: end if

17: end for

18: end for
19: GridSize ! GridSize/ 2
20: end while

in parallel. However, preliminary experiments showed that, because of the uniform grid,
the average number of points that need to be effectively tested in this step is usually small
and, therefore, the performance gain obtained by processing them in parallel would not
be good if compared with the overheads associated with the parallelism.

6. Experimental Evaluation

We evaluated EPLSimp by implementing it in C++ (the library GM-
PXX [Granlund and the GMP development team 2014] was used to provide arbitrary
precision arithmetic) and performing experiments in some small datasets artibcially
generated to contain polylines and control points that would introduce topological errors
in the simplibcation performed bjopoVW Furthermore, experiments were performed

in 3 real-world maps in order to evaluate the performanceRESimp The computer
used has a dual E5-2687 8-core/16-thread Intel Xeon CPU and 128 GB of RAM.

In the brst set of experiments, we used the maps artibcially generated to contain
points in positions where the point-in-triangle tests would give a false negative answer
(similar to the examples presented in section 4) and, therefore, methods sSlago&dV
would create topological errors during the map simplibcation. As expected, because of
the use of exact arithmeti&PLSimpwas able to simplify these maps without creating
any topological inconsistency.

Next, we performed experiments in three datasets to verify the overhead added
by the use of arbitrary precision rational number&PLSimp Dataset 1 was the largest
dataset used in the ACM GISCUP competition 2014. It contains 30000 polyline points
and 1607 control points. Dataset 2 represents the Brazilian county subdivision map avail-

170

Proceedings XVI GEOINFO, November 29 " to December 2, 2015, Campos do Jordao, Brazil. p 162-173.

able in the IBGE (the Brazilian geography agency) website and it contains 300000 poly-
line points and 10000 control points (the control points were positioned randomly in the
map). Dataset 3 represents the United States county subdivision map available in the
United States Census website and it has 4 million polyline points and 10 million control
points (that were also positioned randomly in the map).

The choice of the dimensions of the uniform grid used TgpoVW and
EPLSimp to index the points affects the performance of both methods and it can be
performed using several strategies. For exanifdepoVWautomatically debnes the grid
size by computing the total number of polylines/control points in the map and chooses
the grid dimension estimating the average number of points per cell close to a constant
(this constant was determined experimentally). Since the best grid siZegoVWmay
not be the best grid size f&@PLSimpand since we want to compare the performance of
these two methods, we chose experimentally, for each method and dataset, a conbguration
that presents the best performance (for example, in datasep@8VWandEPLSimused
grids with, respectively512 and2048 cells).

The uniform grid thaEPLSimpuses to classify the polylines that are processed in
parallel was conbgured to have initia®$6& cells and to iteratively reduce the resolution
to half after completely processing each set of polylines that can be processed in parallel.
As mentioned in section 5, this process is repeated until all polylines have been simplibed,
what happens, in the worst case, when the grid has only one cell.

Table 1 presents the wallclock-time (in milliseconds) of the two methods in two
situations: in the prst one they were conbgured to remove the maximum amount of points
that they can remove without creating topological errors. In the second one, they were
conbgured to remove0% of the points. Rownitialize contains the time for initializing
the algorithm and includes the time for creating the data structures (such as the uniform
grids). Rowsimplify contains the time spent in the simplibcation process. In all tests
EPLSimpwas tested using lireads

EPLSimpwas, on average, less than twice slower tliapoVW even though we
store and process all points coordinates using arbitrary precision rational numbers, that
are much more computationally expensive to process than Roating point numbers. This
happens becaudePLSimpwas carefully implemented using techniques such as paral-
lel computing and the uniform grid to accelerate the simplibcation process. It is worth
mentioning that one of the advantages of the uniform grid over other indexing techniques
(such as Quadtrees) is that it is easily parallelizable and can be created by performing a
single pass over the data (this is particularly important for efbciency since the indexing is
performed using coordinates represented by rational numbers).

Table 2 evaluates the scalability BPLSimpconsidering 5 different number of

threads. In these dataseéERLSimphad a speedup @ when two threads were used and

this speedup increased slowly for larger amounts of threads. For example, the running-
time usingl6threads was not much different from the time us&tgreads. Some reasons

for this behavior are: prst, due to AmdahlOs law, sequential parts of the algorithm limits
its scalability; furthermore, some polylines sets may take more time to be simplibed than
others, what causes load imbalance in the threads; Pnally, when several threads run in par-
allel the memory accesses may saturate the memory bus. Anyway, it is worth mentioning

171

Proceedings XVI GEOINFO, November 29 " to December 2, 2015, Campos do Jordao, Brazil. p 162-173.

Table 1. Times (in ms) for the main steps of the map simplibcation algorithms.
Rows Max. represents the time for removing the maximum amount of points from
the map while rows Half represents the time to remove half of the points.

Dataset 1 2 3

Method TopoVW EPLSimp TopoVW EPLSimp TopoVW EPLSIimp
g Initialize 4 22 28 190 1828 5353
< Simplify 39 60 626 445 46069 57095
= Total 43 82 654 635 47897 62448
. Initialize 4 22 28 186 1847 5447
g Simplify 25 41 357 331 23021 48090

Total 29 63 384 517 24868 53537

Table 2. Times (in ms) for initializing and simplifying maps from the 3 datasets
considering different number of threads. The simplibcation was conbgured to
remove the maximum amount of points from the maps.
Initialization Simplibcation
Dataset 1 2 3 1 2 3

1 71 655 26833 176 1574 250237
2 91 568 15483 152 1150 131310
4 54 422 9853 99 689 82641
8 34 240 6552 61 483 62089
16 22 190 5353 60 445 57095

Threads

that typical computers nowadays have 2 or 4 cores and, ther&®leSimpis able to
present a good scalability in those computers.

7. Conclusion and Future Works

This paper presentdePLSimp an algorithm for map simplibcation that does not produce
topological inconsistencies. It uses arbitrary precision numbers to avoid round-off errors
caused by Roating-point arithmetic, which could lead to topological inconsistencies even
in methods designed to avoid these problems, sudiopsVW

EPLSimpwas implemented to be efbcient even though it uses arbitrary precision
numbers, which are much slower to be processed than Roating-point numbers. This efp-
ciency improvement was achieved by using a uniform grid to index the geometric objects
and, also, high performance computing. As a result, using 16 thEERHSimpwas, on
average, less than twice slower thEspoVW even though the latter performs all compu-
tation using inexact Boating-point numbers (that are natively supported by the CPU) and
then can generate OwrongO (or inconsistent) results.

For future work, we intend to develop other GIS algorithms using arbitrary pre-
cision arithmetic. Furthermore, adaptiigPLSimpto simplify vector drawings and 3D
objects is also an interesting future research topic.

172

Proceedings XVI GEOINFO, November 29 " to December 2, 2015, Campos do Jordao, Brazil. p 162-173.

8. Acknowledgement

This research was partially supported by CNPq, CAPES®r{fla sem Fronteiras),
FAPEMIG and NSF grant 11S-1117277.

References

de Berg, M., Halperin, D., and Overmars, M. (2007). An intersection-sensitive algorithm
for snap roundingComputational GeometB6(3):159D165.

Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction of the number
of points required to represent a digitized line or its caricat@@artographica: The
International Journal for Geographic Information and Geovisualizati®@(2):112b
122.

Goldberg, D. (1991). What every computer scientist should know about Roating-point
aritmetic. ACM Computing Survey23(1):5D48.

Granlund, T. and the GMP development team (2014). The gnu multiple precision arith-
metic library.

Gruppi, M. G., Magalkes, S. V. G., Andrade, M. V. A., Franklin, W. R., and Li, W.
(2015). An efbcient and topologically correct map generalization heuristRroceed-
ings of the 17th International Conference on Enterprise Information Systems (LCEIS)

Hershberger, J. (2013). Stable snap rounddgmputational Geometyy6(4):403D416.

Hobby, J. D. (1999). Practical segment intersection with Pnite precision o@putpu-
tational Geometry13(4):199D214.

Jiang, B., Liu, X., and Jia, T. (2013). Scaling of geographic space as a universal rule for
map generalizatiorAnnals of the Association of American Geograph&63(4):844D
855.

Joeo, E. (1998) Causes and Consequences of map generalizaGRC Press.

Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., and Yap, C. (2008). Classroom exam-
ples of robustness problems in geometric computatioBemputational Geometry
40(1):61D78.

Li, C., Pion, S., and Yap, C.-K. (2005). Recent progress in exact geometric computation.
The Journal of Logic and Algebraic Programmirty(1):85D111.

Li, L., Wang, Q., Zhang, X., and Wang, H. (2013). An algorithm for fast topological con-
sistent simplibcation of face featurelurnal of Computational Information Systems
9(2):791Db803.

Ramer, U. (1972). An iterative procedure for the polygonal approximation of plane
curves.Computer Graphics and Image Processit(B):244D256.

Saalfeld, A. (1999). Topologically consistent line simplibcation with the douglas-peucker
algorithm. Cartography and Geographic Information Scien2é(1):7D18.

Visvalingam, M. and Whyatt, J. (1993). Line generalisation by repeated elimination of
points. The Cartographic JournalB0(1):46D51.

173

