
The Spatial Star Schema Benchmark

Samara Martins do Nascimento
1
, Renata Miwa Tsuruda

2
, Thiago Luís Lopes Siqueira

2,3
,

Valéria Cesário Times
1
, Ricardo Rodrigues Ciferri

2
, Cristina Dutra de Aguiar Ciferri

4

1
Informatics Center, Federal University of Pernambuco, UFPE, 50.670-901,

Recife, PE, Brazil, +55 81 2126-8430

2
Department of Computer Science, Federal University of São Carlos, UFSCar, 13.565-905,

São Carlos, SP, Brazil, +55 16 3351-8573

3
São Paulo Federal Institute of Education, Science and Technology, IFSP, 13.565-905,

São Carlos, SP, Brazil, +55 16 3351-9608

4
Department of Computer Science, University of São Paulo at São Carlos, USP, 13.560-970,

São Carlos, SP, Brazil, +55 16 3373-8172

{smn, vct}@cin.ufpe.br, {renata_tsuruda, ricardo}@dc.ufscar.br,

prof.thiago@ifsp.edu.br, cdac@icmc.usp.br

Abstract. Spatial Data Warehouses (SDWs) enable the simultaneous processing of

multidimensional queries and spatial analysis. In the literature, little attention has

been devoted to the development of benchmarks for analyzing the performance of

query processing over SDWs. In this paper, we propose a novel benchmark, called

Spatial SSB, designed specifically to perform controlled experimental performance

evaluation of SDWs environments. The Spatial SSB proposes a non-redundant SDW

schema and controls: the generation of data, the query selectivity and the data dis-

tribution in the extent. In addition, the Spatial SSB provides the increase of the data

volume, varies the complexity of spatial objects’ geometries, and generates a cer-

tain number of objects that intersect an ad hoc spatial query window.

1. Introduction

The experimental performance evaluation of databases systems is carried out mainly using

benchmarks to provide a supervised generation of synthetic data and a controlled execution of

queries over the synthetic datasets [Barbosa, Manolescu and Yu, 2009]. According to Gray

(1993), the research on conventional data warehouse (DW) reached maturity enough to moti-

vate the creation of benchmarks focused in its analysis, such as the TPC-H benchmark [Poess,

M. et al., 2000] and the Star Schema Benchmark (SSB) [O'Neil, P. et al., 2009]. Conventional

DW stores strictly numeric and alphanumeric data that can be represented by standard data

types of SQL. On the other hand, a spatial data warehouse (SDW) consists of a DW that stores

spatial data in one or more dimensions or in at least one measure of a fact table [Stefanovic, N.

et al., 2000] [Malinowski, E. et al., 2008]. In this sense, the storage of spatial data in DWs al-

lows SOLAP (Spatial On-Line Analytical Processing) query processing, which are based on

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

73

predicates that refer to data stored as vector geometries and then enable the simultaneous pro-

cessing of multidimensional queries and spatial analysis [Rigaux et al., 2002].

However, existing benchmarks for DW do not consider spatial predicates, and the single

benchmark in the literature for SDW, called Spadawan (Spatial Data Warehouse Benchmark)

[Siqueira et al., 2010], has some drawbacks, such as: (i) it does not support one-dimensional

vector objects (e.g. lines); (ii) it does not enable the adjustment of the complexity of the spatial

objects (i.e. number of points that compose the geometry of each spatial object), such as an in-

crease in the number of vertices of polygons; (iii) it does not allow a controlled distribution of

spatial data in the extent; (iv) it does not enable queries to retrieve spatial objects based on a

given percentage of the extent and therefore on a given selectivity; and (v) it does not define a

specific scale factor to generate increasing volumes of spatial data. These are important issues

that are tackled by our proposed benchmark.

In this paper, we propose the Spatial Star Schema Benchmark (Spatial SSB) to evaluate

the performance of SOLAP queries over SDWs. Our benchmark extends the SSB to enable the

storage and the processing of spatial data in dimension tables. The Spatial SSB manipulates on-

ly synthetic data, ensuring an accurate control over the selectivity of both conventional and spa-

tial data. Also, it defines specific characteristics that can significantly degrade the performance,

e.g. the increase of data volume and the increase of the complexity of polygons. Furthermore,

aiming at generating synthetic data, we developed a data generator called Spatial Geometry

Generator, used to produce the location and distribution of regions, nations, cities, streets and

addresses, which are represented respectively by the following spatial data types: polygons,

lines and points. Also, the Spatial SSB provides predefined spatial hierarchies, e.g. region_geo

 nation_geo  city_geo  street_geo  c_address_point_geo, with the granularity level of

region being the highest and the granularity level of address being the lowest. Regarding the

workload, the proposed SOLAP queries of the Spatial SSB were obtained by modifying the ex-

isting SSB queries, reusing the complex operations regarding conventional data and additionally

including spatial predicates in each query, to allow the evaluation of topological relationships

among spatial attributes.

In order to investigate the impact of different properties for generating synthetic data,

we conducted two experiments. Firstly, we investigated the effects of increasing the complexity

of spatial data, i.e. the number of points that compose the geometry of each spatial object. Sec-

ondly, we tackled the increase of the number of spatial objects according to a given scale factor.

The test configurations included the Spatial SSB’s SDW schema and a workload composed of

spatial and multidimensional queries with controlled query selectivity as well.

 This paper is organized as follows. Section 2 surveys related work, Section 3 presents

the proposed benchmark Spatial SSB, Section 4 details the workload, Section 5 discusses the

spatial data generation process, Section 6 describes the experiments using the Spatial SSB and

finally, Section 7 concludes the paper.

2. Related Work

TPC-H [Poess, M. et al., 2000] and SSB [O'Neil, P. et al., 2009] are well-known benchmarks

for conventional DWs. TPC-H is a decision support benchmark that consists in a suite of busi-

ness oriented analytical queries and a voluminous fact constellation DW. It represents historical

data from orders and sales of a company. SSB is based on TPC-H, but provides a simpler star

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

74

schema [Kimball and Ross, 2002] that was designed by applying several modifications on the

original TPC-H schema. However, both the TPC-H and SSB benchmarks cannot be used for

SDWs, since they do not allow the generation and storage of spatial data and do not provide the

evaluation of spatial predicates.

The Spadawan, on the other hand, is a benchmark aimed at performance analysis of

SDWs. However, this benchmark only supports point and polygon geometries to represent spa-

tial data. Also, it does not allow varying the amount of points of polygons, thus making it im-

possible a further analysis over the complexity of spatial objects. Spadawan proposes the

growth of the spatial data volume by the replication of the geographic objects. However, the

increase of the spatial data volume is not based on the scale factor. Another limitation of

Spadawan is that it does not include changes to all SSB queries and does not provide combina-

tions of query windows that refer to different spatial granularity levels in the same query.

In this paper, we propose the Spatial SSB, a benchmark for SDWs based on a star sche-

ma that allows performance evaluation of queries involving spatial predicates. Spatial SSB ad-

vances in the state of the art overcoming all the aforementioned limitations, since it considers

other spatial data types such as lines to represent street networks, ensures a greater control over

the selectivity of both conventional and spatial data and generates multidimensional and spatial

data automatically. In addition to ensuring the automatic generation of data using its own data

generator, the Spatial SSB allows the investigation of how increasing data volumes impair que-

ry processing performance, by providing a means of varying the number of points denoting the

shape of each spatial object (i.e. points of the geometry) or by selecting a database scale factor.

Furthermore, the proposed set of Spatial SSB’s queries also includes innovative aspects since

they range from simple queries, with only one level of spatial granularity, to complex queries

based on more than one query window that are related to different levels of granularity.

3. The Spatial SSB

The Spatial SSB schema is shown in Figure 1 and was adapted from the SSB schema to include

spatial data. It is composed of a fact table Lineorder, two dimension tables to store convention-

al data (i.e. Part and Date) and six spatial dimension tables to store geometries (i.e. Customer,

Supplier, Region, Nation, City and Street). The tables Customer and Supplier reference the spa-

tial dimension tables Region, Nation, City and Street through foreign keys, maintain conven-

tional attributes and the spatial attributes c_address_point_geo and s_address_point_geo that

store the geometries of Customer and Supplier addresses, respectively. The spatial dimension

tables were created following a predefined spatial hierarchy (e.g. region_geo  nation_geo 

city_geo  street_geo  s_address_point_geo) according to the granularity levels. This hierar-

chy is defined in terms of the containment spatial relationship [Malinowski, E. et al., 2008].

The Spatial SSB schema is considered hybrid since it eliminates any redundancy in the

storage of geometries. As the separate storage of spatial and conventional attributes has been

recommended in SDW [Siqueira et al., 2009], we have designed a non-redundant schema based

on the claim that computing additional joins is less costly than storing a large amount of redun-

dant spatial data in the spatial dimension table and processing them to answer SOLAP queries.

However, we have not created a spatial dimension table for Customer and Supplier addresses

because all spatial objects that represent them are distinct, are points and have a 1:1 association

with the dimension table primary key values. For this case, the joint storage of spatial and con-

ventional data does not impair the performance of SOLAP queries [Mateus et al., 2010]. For

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

75

each spatial dimension table, a specific spatial data type was used to represent the spatial attrib-

ute. Polygons were used in regions, nations and cities, while lines modeled streets and points

represented addresses.

The cardinality of the Spatial SSB schema depends on the conventional scale factor

(CSF) that corresponds to the SSB’s scale factor and on the introduced spatial scale factor

(SSF). The CSF and the SSF may vary independently for conventional and spatial data. How-

ever, SSF must be equal or less than CSF to guarantee a 1:1 association among addresses (i.e.

addresses of suppliers and customers) considering conventional and spatial data. For greater

CSF or SSF values, larger data volumes will be generated (e.g., SSF = 10 generates ten times

more spatial data than SSF = 1). For instance, it is possible to increase the number of spatial

objects, to assess how an increasing number of geometries impact the query processing perfor-

mance.

Figure 1. Spatial SSB schema

4. Workload

The Spatial SSB extends all the SSB queries by including spatial predicates based on different

query windows (QWs), according to the granularity of the spatial dimension tables and also

considering an empty area. The empty area represents oceans, aiming at identifying how an area

without intersection with the spatial objects can impact the query processing cost and the query

selectivity. The QWs can be (i) predefined, or (ii) can be generated and placed on the extent to

comply with a given query selectivity. Each QW overlaps a specific area of the extent, retriev-

ing a number of spatial objects and evaluating the spatial relationship intersection.

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

76

For the predefined QWs, five of them correspond to a different granularity level (i.e. re-

gion, nation, city, street and address), and the last QW intersects the empty area. These six

QWs are quadratic, have a correlated distribution with spatial data and their sizes are propor-

tional to the spatial granularity. Aiming at controlling the query selectivity, the Spatial SSB en-

ables the retrieval of spatial objects based on a given percentage of the spatial data volume.

Thus, the Spatial Geometry Generator computes the QW that will retrieve a given number of

spatial objects. As a result, the acquisition of a number of objects through the use of an ad hoc

query window is not defined a priori, but can vary according to user requests.

The Spatial SSB queries assess the performance of conventional and spatial predicates.

Regarding the selectivity of a query, it is given by multiplying the Filter Factor (FF) and the

cardinality of the table, then obtaining the number of required tuples from the fact table. FF is

calculated from the conventional and spatial predicates chosen, which determine the conven-

tional filter factor (CFF) and the spatial filter factor (SFF), respectively. As a result, FF = CFF *

SFF. Note that the predefined query windows produce fixed values for the SFF, while the query

windows generated to comply with a given selectivity vary the values of the SFF and they can

reduce or increase the value of the FF. The Spatial SSB queries have the additional properties:

use of one or two query windows and the definition of queries for each spatial data type that

enable the query selectivity variation.

The queries are shown in Figures 2 to 6 and described in Table 1. The query selectivity

values for the six predefined QWs are available at http://gbd.dc.ufscar.br/spatialssb/. Figure 7

shows an example of predefined QW that intersects 5 regions (i.e. R1 to R5), but does not in-

tersect the empty area (i.e. EA). In this example, there are five objects distributed in the extent.

The replacement of the conventional predicate of the original queries Q1.1, Q2.1, Q3.1 and

Q4.1 of the SSB produced different levels of granularities for the new queries of the Spatial

SSB (i.e. region, nation, city, street, address and empty area), obtaining different selectivity

results shown in Tables 2, 3, 4 and 5. The results given on the variation of selectivity are based

on the modified conventional predicate, and for all examples, the region granularity level was

used, without considering the empty area of the extent.

 Figure 2. Query Q1.1 of Spatial SSB Figure 3. Query Q2.1 of Spatial SSB

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

77

 Figure 4. Query Q3.1 of Spatial SSB Figure 5. Query 4.1 of Spatial SSB

 Figure 6. Query Q4.3 of Spatial SSB Figure 7. QW on the extent of Regions

Table 1. Queries of The Spatial Star Schema Benchmark

Query Characteristics

Q1.1 Returns the increased revenue that is resulted from the elimination of discounts in the company, at

a certain scale of percentage for products shipped in a given year, intersects for the different levels

of granularity, as shown in Figure 2.

Q1.2 Changes made to the conventional predicates of the query Q1.1, as follows: (i) d_yearmonthnum =

199401, (ii) lo_quantity is between 26 and 35 and (iii) lo_discount is between 4 and 6.

Q1.3 Modifies the conventional predicates of Spatial SSB query of type Q1.1, are used: (i)

d_weeknuminyear = 6; (ii) d_year = 1994; (iii) lo_quantity is between 36 and 40, and (iv)

lo_discount is between 5 and 7.

Q2.1 Compares the revenues for some brands of products, grouped by years of orders, intersects for the

different levels of granularity, as shown in Figure 3.

Q2.2 Changes made to the previous query type by using p_brand1 between 'MFGR#2221' and

'MFGR#2228'.

Q2.3 This is obtained by changing the traditional predicate of query Q2.1 of Spatial SSB. The modifica-

tion is done to use p_brand1 = 'MFGR # 2221'.

Q3.1 Provide the revenues associated with sales and order transactions for a certain period of time. This

query uses two QWs for each granularity level, with the spatial predicate intersects, as shown in

Figure 4.

Q3.2 Changes were made at conventional predicate that was before analyzed in a certain range of years

in order to be computed according to months per year to vary the selectivity.

Q4.1 Query Q4.1 aims to measure the profit from the subtraction of costs from revenues. It is illustrated

in Figure 5.

Q4.2 It is an extension of Q4.1, changing the conventional predicate to consider the calculation of prof-

its within a period of time, i.e. in 1997 or 1998.

Q4.3 The conventional and spatial predicates were changed of query Q4.1, to obtaining different selec-

tivity results, as shown in Figure 6.

Table 2. Variation of Selectivity of Query Q1
Query Q1 Selectivity

Q1.1 0.39% to 1.95%

Q1.2 0013% to 0065%

Q1.3 0.0015% to 0.0075%.

Table 3. Variation of Selectivity of Query Q2

Query Q2 Selectivity

Q2.1 0.16% to 0.80%.

Q2.2 0032% to 0.16%

Q2.3 0.02% to 0.1%

Table 4. Variation of Selectivity of Query Q3

Query Q3 Selectivity

Q3.1 3.43% to 85.71%

Q3.2 0.048% to 1.19%

Table 5. Variation of Selectivity of Query Q4

Query Q4 Selectivity

Q4.1 1.6% to 40%

Q4.2 0.046% to 11.42%

Q4.3 0.05% to 1.14%.

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

78

5. Data Generation

Aiming at automating the conventional data loading process of the Spatial SSB, we implement-

ed a component called VisualTPCH+SSB, which is responsible for creating the schemas and

loading data from the SSB data generator. This component is described in Section 5.1. In addi-

tion, for the generation of spatial data, we implemented the Spatial Geometry Generator to pro-

duce the location and distribution of geometries for regions, nations, cities, streets and ad-

dresses, which is detailed in Section 5.2. Together, these components give rise to VisualSpa-

tialSSB tool that is available at http://gbd.dc.ufscar.br/spatialssb/.

5.1 The VisualTPCH+SSB Component

The VisualTPCH+SSB component manages the storage, generation and load of data for SSB

schema. The schema is graphically displayed and significant features are available: deleting at-

tributes of a table, renaming tables and deleting tables. The component also offers a graphical

visualization of aggregation levels of the generated schema and interactive features, as high-

lighting the direct ancestral or descendent of the graph of materialized views, deleting vertices

and visualizing the SQL command that generates a given vertex (i.e. materialized view) are

available. Finally, the data generator of VisualTPCH+SSB loads a dataset for each of the con-

sidered benchmarks.

5.2 The Spatial Geometry Generator

The Spatial Geometry Generator component of the Spatial SSB benchmark generates rectangles

to guide the creation of spatial geometries. Each rectangle is a MBR (Minimum Bounding Rec-

tangle) as described as follows and shown in Figure 8. The generation of spatial data contained

in the MBRs is based on the quadtree space-partitioning model that considers quadrants that are

formed from a recursive partitioning of the extent [Ghazel, M. et al., 2000]. The space is recur-

sively decomposed into four sub-regions, called “quadrants”, which may have different sizes,

but are similar in its shape. Figure 8 also illustrates the empty area in a dark color.

The extent size is 0 to 1 in both horizontal and vertical axes. The extent is partitioned

according to a given predefined amount of regions, nations and cities. The spatial data are gen-

erated according to a predefined spatial hierarchy, e.g. region_geo  nation_geo  city_geo 

street_geo  c_address_point_geo. The number of regions is not limited, enabling to partition

the extent area in n disjoint regions. Initially, the partition occurs in the x axis, dividing the ex-

tent in two sub-regions (Figure 8b) and after that, one partition in the y axis, forming three sub-

regions (Figure 8c), and finally, another partition in the y axis, forming four sub-regions (Figure

8d). If necessary, a new partition occurs in the southwest sub-region, dividing it into two sub-

regions (Figure 8e), and following this, new partitioning may occur in this southwest sub-region

and so on (Figure 8f e 8g). This partitioning is always done clockwise.

 8a 8b 8c 8d 8e 8f 8g

Figure 8. Extent partitioning

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

79

 The distribution of spatial data in the MBR initially considers a margin of M = 0.1% in

all sides of the MBR, and thus generates the points inside the margin limit M (Figure 9). Then,

the total amount of points (i.e. the complexity of the polygon) is divided by the number of sides

of the MBR (i.e. 4 sides), and the points are evenly distributed among the sides, as shown in

Figure 10. This distribution of spatial data ensures that the generated geometries will be poly-

gons. The points were generated applying a random function to one of the axes. For the x axis,

we consider this coordinate growing and continuous and generate the y axis from the random

function; and, when dealing with the y axis, we consider, now, this coordinate growing and con-

tinuous and vary the x axis from the random function, as can be seen in Figure 10. Figure 11

shows the algorithm to generate points.

 Figure 9. Margin of MBR, (a) (b) (c) (d) (e)

 Where M = 0.01*L Figure 10. Generation of polygons on MBR

Algorithm 1: CreatePoint (n, x1, y1, x2, y2)

 Input: n number of points (the polygon complexity); x1, y1, x2, y2 coordinates of points that form the extent.

 Output: A file that stores the coordinates of points that compose the polygons.

 1 Read the number of regions.

 2 Margin ← 0.1%; // the margin in x and y axes are defined here.

 3 Auxiliary ← n / 4

 4 Write in the file the first point of the geometry.

 5 While it does not reach the end of the last calculated point within the range of margin.

 6 Uniformly and randomly increment a coordinate in an axis and Generate the points in the other axis.

 7 FinalResult ← write in the file the generated points.

Figure 11. Extent partitioning algorithm

In Algorithm 1 of Figure 11, in line 1, the number of regions that are generated is read.

In line 2, a margin of 0.1% in the MBR is created to accommodate the generation of points rep-

resenting the spatial object’s geometry. Therefore, margin sizes in the x and y axes are calculat-

ed and the ranges of the coordinates, in both x and y axes, are generated. In line 3, an auxiliary

variable divides the total number of points by the number of sides (always considering a MBR)

and each side will now have nearly the same number of generated points. In line 4, the first

point of the geometry will be written to the file, as well as the x position (after the computation

of the margin) and the y position. A loop is done to check if the generated points are still within

the range referenced in this margin and if the points are being generated in a growing and con-

tinuous way in both axes.

The number of nations is not limited, enabling the partition of a given region in n dis-

joint nations. For generating the data distribution of regions, we slightly modified the algorithm

to represent data distribution in MBRs (Figure 11), as follows. The subdivision of the MBRs is

performed within the geometries for regions. A margin for x axis is obtained from the subtrac-

tion of the coordinates xn and x0 (last and first point in the axis x of the region), and then multi-

plying this result by 0.02. Similarly, a margin for y axis is obtained from the subtraction of the

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

80

coordinates yn and y0 (last and first point in the axis y of the region), and then multiplying this

result by 0.02. With each new subdivision, new margins are generated and it is within this space

that data distribution are generated. An example of this subdivision can be seen in Figure 12a,

in which a MBR is shown with regions and within each region there are the MBRs of nations,

in this example, three nations were generated by region. The points distributed into the margin

to compose the boundaries of the polygons were generated using a random function that is simi-

lar to the random function of regions. The polygons of generated nations can be seen in Figure

12b.

The algorithm for generating city geometries that also were represented by polygons fol-

lows the generation of nations. The coordinates of cities use the points referring to the sides of

nation geometries added to the generated points within the margin. The amount of points is

previously known and is uniformly distributed to all sides of the polygon. Each city geometry

contains lines to represent streets. We generated streets as a rectangular grid of lines that inter-

sect each other, with the same number of lines in each axes. We consider a margin in both x and

y axes to take it as starting points to the generation of lines. We also consider five thousand

points to represent a street. The generation of lines can be seen in Figure 13. The generation of

addresses (i.e. point geometries) considers a distribution of one address per street and no ad-

dress is generated at the intersection of streets, as shown in Figure 14.

 a. MBR b. Points Figure 13. Street Figure 14. Address

 Figure 12. Generation of nations

6. Experimental Evaluation

The Spatial Geometry Generator, which is the spatial data generator of the Spatial SSB, allows

that a varying number of spatial objects be distributed in the extent and each spatial object be

represented by a varying set of points that represents the complexity of the spatial object. Thus,

in addition to increasing the data volume by considering the scale factors CSF and SSF defined

for the SDW schema of the Spatial SSB benchmark, this enlarged volume of data can also be

achieved by varying the complexity of geometries of spatial objects.

The characteristics of the proposed Spatial SSB benchmark were investigated through

two sets of experimental tests, considering three types of Spatial SSB queries: (i) The Query

Q2.2 was chosen because it uses one QW for each level of granularity, and this QW is

predefined; (ii) The Query Q3.1 was selected because two predefined QWs for a given level of

granularity were used; and (iii) The Query Q4.3 was chosen because it uses two QWs related to

different levels of granularity, and these ad hoc QWs were specified by an user defined

percentage of intersection with the extent, which retrieved 5% of the spatial objects stored in

the SDW. The goal of performing experiments based on the query Q4.3 is to increase the

complexity of processing queries with low selectivity by using two QWs related to two

different levels of spatial granularity, but that retrieve a small percentage of the spatial objects.

The tests illustrate the flexibility of the proposed Spatial SSB benchmark for building ad hoc

QWs, using predefined QWs and controling selectivity.

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

81

The first set of tests aimed at checking the impact of increasing the complexity of spatial

objects on the query processsing of SDWs, i.e. increasing the number of points of each

geometry of the spatial objects stored in SDWs. These test results are discussed in Section 6.1.

The second set of tests investigated the impact of increasing the number of spatial objects.

These test results are detailed in Section 6.2. Finally, all the experiments were conducted on a

computer with 2.66 GHZ Intel Core i5 processor, 3GB of main memory, 5400 RPM SATA 320

GB hard disk, operating system Linux Ubuntu 9.10, PostgreSQL 8.2.5 and PostGIS 1.3.3.

6.1 Increasing the Complexity of Objects

In this section, we verify the impact of SOLAP query processing performance caused by an

increasing number of points that represent each spatial object. We used a database with CSF

and SSF equal to 1. The generation of spatial data created 5 disjoint regions, 5 nations per

region, totaling 25 nations, 1,250 cities, 26 streets, 2,000 addresses for Supplier and 30,000

addresses for Customer. We investigated three configurations that varied from each other

according to the number of points generated per region and per nation: 200 points, 20,000

points and 200,000 points. For each dataset, we collected the elapsed time in milliseconds.

The Query Q2.2 was issued against the nation granularity level, with a total of 25 na-

tions in the extent. The results are shown in Table 6, indicating an increase in query processing

cost of 289%, when this time is compared between the smallest number of points and the larg-

est number of points. The greater the number of points used for representing spatial objects, the

greater the data volume that impaired the query processing cost. Therefore, the Spatial SSB can

be used to generate datasets storing spatial objects with distinct complexities, and this can in-

troduce increasing query processing costs.

Another test was conducted, using the Query Q3.1 and two QWs for the same level of

granularity. We considered the level of granularity of regions, obtaining a total of 5 spatial ob-

jects. Table 6 shows the performance results. An increase of 5,814% was obtained when the

spatial object representation was changed from 200 to 200,000 points. Therefore we also can

conclude that increasing the data volume through varying the complexity of spatial objects was

directly related to processing performance losses for the Query Q3.1.

The Query Q4.3 proposes the use of two QWs for different levels of spatial granularity.

For this test, it was considered the level of granularity of: (i) customer region, with a total of 5

spatial objects, and supplier nation, with a total of 25 spatial objects. Table 6 depicts the

performance results, showing that there was an increase of 10,063% in the elapsed time of Q4.3

when the representation of an object changed from 200 points to 200,000 points.

Table 6. Elapsed time to process each SOLAP query (milliseconds)

Number of Points Q2.2 Q3.1 Q4.3

200 363,060 53,299 18,362

20,000 494,942 56,812 24,621

200,000 1,414,542 3,152,581 1,866,190

6.2 Increasing the Number of Spatial Objects

In this section, we verify the impact of SOLAP query processing performance caused by an

increasing number of spatial objects. We used the same workbench described in Section 6.1.

However, we generated data with CSF and SSF equal to 2, which produced twice the data vol-

ume of the datasets described in Section 6.1. Therefore, the generation of spatial data created 5

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

82

distinct regions, 5 nations per region, totaling 25 nations, 2,500 cities, 52 streets, 4,000

addresses for Supplier and 60,000 addresses for Customer. Besides, we considered the level of

granularity city, with 2,500 spatial objects, except for the query Q4.3 that used two levels of

granularity: customers’ nation and suppliers’ city. For each dataset, we collected the elapsed

time in milliseconds.

The performance results described in Table 7 and Figure 15 show that a significant in-

crease in query processing costs was obtained for the CSF and SSF equal to 2, when compared

to the same spatial complexity with a CSF and SSF equal to 1 (i.e. Table 6). For instance, the

Query 2.1 spent 363,060 milliseconds for handling spatial objects composed of 200 points con-

sidering CSF and SSF equal to 1, while the same query spent 3,764,143 milliseconds for pro-

cessing spatial objects composed of 200 points considering CSF and SSF equal to 2. Consider-

ing each query individually, Table 7 indicates an increase of 54% for the Query Q2.2 with re-

gard to query processing costs, when comparing the smallest set of points, i.e. 200 points, with

the largest, 200,000 points. For the queries Q3.1 and Q4.3, the increase was of 113% and 94%,

respectively.

Table 7. Elapsed time to process each query (in milliseconds)

Number of Points Q2.2 Q3.1 Q4.3

200 3,764,143 1,944,788 2,636,336

20,000 4,310,462 2,144,696 3,438,380

200,000 5,813,175 4,145,552 5,133,934

Figure 15. Performance comparison: datasets with scale factor 1 vs scale factor 2

It is noted that the increased volume of data, whether caused by the complexity of the

spatial objects or caused by the number of spatial objects, highly impaired the SOLAP query

processing performance. Therefore, the Spatial SSB can be used to generate datasets storing an

increasing number of spatial objects, and this property introduces increasing query processing

costs.

7. Conclusion

In this paper we proposed a new spatial data warehouse benchmark called Spatial SSB (Spatial

Star Schema Benchmark). It is composed by a set of SOLAP queries that was derived from

changes made to SSB workload to incorporate spatial predicates for different spatial granularity

levels. The dataset is synthetic and is created by a specific data generator, called Spatial Ge-

ometry, to generate points, lines and polygons. The proposed benchmark allows controlling spa-

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

83

tial distribution, the geometric shapes, the data volume, the data complexity and the data selec-

tivity encompassing the main spatial data types.

 As future work, we aim to add other types of spatial hierarchies such as those described

in [Malinowski, E. et al., 2005] [Malinowski, E. et al., 2008] [Stefanovic, N. et al., 2000]. An-

other indication of additional research is to incorporate different spatial data types such as com-

plex polygons and vague spatial objects in data generation and in spatial and multidimensional

query processing as well [Viswanathan and Schneider, 2011]. Also, an interesting investigation

concerns the verification of how data distribution and some SOLAP query issues can affect the

performance of a spatial data warehouse.

References

Barbosa, D., Manolescu, I, Yu, J. (2009) “Application Benchmark”. Encyclopedia of Database

Systems, Springer, p. 99-100.

Ghazel, M., Freeman, G.H. and Vrscay, E.R. (2000) “An effective hybrid fractal-wavelet image

coder using quadtree partitioning and pruning”. In: IEEE CCECE. p. 416-420.

Gray, J. (1993) “Database and Transaction Processing Performance Handbook”. The Bench-

mark Handbook for Database and Transaction Systems, Morgan Kaufmann, 2nd Edition. p. 99-

100.

Kimball, R. and Ross, M. (2002) “The Data Warehouse Toolkit: The Complete Guide to Di-

mensional Modeling”. John Wiley & Sons, Inc.

Malinowski, E. and Zimányi, E. (2005) “Spatial Hierarchies and Topological Relationships in

the Spatial MultiDimER Model”. In: BNCDB. p. 17-28.

Malinowski, E. and Zimányi, E. (2008) “Advanced Data Warehouse Design: From Conven-

tional to Spatial and Temporal Applications (Data-Centric Systems and Applications)”. Spring-

er.

Mateus, R.C., Siqueira, T.L.L., Times, V.C., Ciferri, R.R. and Ciferri, C.D. (2010) “How does

the spatial data redundancy affect query performance in geographic data warehouses?”. In

JIDM, v.1, n.3, p. 519-534.

O'Neil, P., O'Neil, E., Chen, X. and Revilak, S. (2009) “The Star Schema Benchmark and

Augmented Fact Table Indexing”. In: TPCTC. p. 237-252.

Poess, M. and Floyd, C. (2000) “New TPC benchmarks for decision support and web com-

merce”. In SIGMOD Record, v.29, p. 64-71.

Rigaux, P., Scholl, M. and Voisard, A. (2002) “Spatial Databases with Application to GIS”.

Morgan Kauffman.

Siqueira, T.L.L., Ciferri, C.D., Times, V.C., Oliveira, A.G. and Ciferri, R.R. (2009) “The im-

pact of spatial data redundancy on SOLAP query performance”. In JBCS, v. 15, n. 2, p. 19-34.

Siqueira, T.L.L., Ciferri, C.D., Times, V.C. and Ciferri, R.R. (2010) “Benchmarking Spatial

Data Warehouses”. In: DaWaK. p. 40-51.

Stefanovic, N., Han, J. and Koperski, K. (2000) “Object-BasedSelective Materialization for Ef-

ficient Implementation of Spatial Data Cubes”. In IEEE TKDE, v. 12, n. 6, p. 938-958.

Viswanathan, G., Schneider, M. (2011) “OLAP Formulations for Supporting Complex Spatial

Objects in Data Warehouses”. In: DaWaK. p. 39-50.

Proceedings XII GEOINFO, November 27-29, 2011, Campos do Jordão, Brazil. p 73-84.

84

