Experimental evidence of thermoelectric amplification of acoustic waves in nickel

N. A. S. Rodrigues, C. C. Ghizoni, and L. C. M. Miranda

Citation: J. Appl. Phys. 60, 1528 (1986); doi: 10.1063/1.337283
View online: http://dx.doi.org/10.1063/1.337283
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v60/i4
Published by the American Institute of Physics.

Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors
Experimental evidence of thermoelectric amplification of acoustic waves in nickel

N. A. S. Rodrigues, C. C. Ghizoni, and L. C. M. Miranda
Instituto de Estudos Avançados, Centro Técnico Aeroespacial, 12200-São José dos Campos, Brazil

(Received 30 December 1985; accepted for publication 30 April 1986)

We present experimental results on the detection of an exponentially growing acoustic signal in nickel as a function of the temperature gradient applied to the sample. These results are interpreted as resulting from the onset of the thermoelectric amplification of acoustic waves in the sample.

The interaction of carriers with acoustic waves gives rise to a number of acoustic instabilities in semiconductors and metals. Probably the best known and studied of these instabilities is the amplification of sound in the presence of an external dc electric field. Nevertheless, several other mechanisms are also known to lead to amplification of acoustic waves in solids. In particular, the amplification of acoustic waves by a temperature gradient (the so-called thermoelectric amplification), originally suggested by Bonch-Bruevich and Gulyaev, has been the subject of several theoretical works. The basic idea of the thermoelectric amplification may be summarized as follows. Under the action of a temperature gradient a semiconductor or metal exhibits an electric current such that the carrier drift velocity \(v_d\) is given by

\[v_d = \chi' k_B T / m, \]

where \(\tau\) is the carrier relaxation time, \(\nabla T\) is the temperature gradient in the sample, and \(\chi\) is a factor which depends on the electron scattering mechanism and whether the electrons are nondegenerate or not. Assuming the scattering mechanism to be due to acoustic phonons, for a nondegenerate electron gas \(\chi'\) reduces to \(\chi = 9\pi / 8\), whereas for the degenerate case \(\chi = 3/4 (\pi e_F / k_B T)^{1/2}\), where \(e_F\) is the Fermi energy; i.e., Eq. (1) tells us that there is a thermoelectric field applied to the sample. This thermoelectric field will cause the space charge to drift; if the drift velocity is supersonic (i.e., \(v_d > v_s, v_d\) being the sound velocity in the medium), the bunches of carriers will emit phonons in complete analogy with the Cherenkov effect.

In this communication we report on the detection of the thermoelectric amplification of acoustic waves in nickel. To our knowledge, the results presented here are the first experimental evidences of this phenomenon reported so far. The temperature gradient was established by means of CO\(_2\) laser pulses focused in one of the nickel sample faces. This active face was previously oxidized in a flame to minimize the reflection losses of the CO\(_2\) laser radiation. The detection system consisted of a 28-\(\mu\)m-thick PVF\(_2\) piezoelectric film in intimate contact with the back (nonilluminated) face of the nickel sample. The output signal from the PVF\(_2\) film after being amplified was fed into a programmable digitizer attached to an oscilloscope (Tektronix 7D20). The sample detector system as well as the focusing optics were placed in a vacuum chamber \((10^{-1}\text{ Torr})\) in order to prevent dielectric breakdown in air and to optimize the thermal and the acoustic coupling of the CO\(_2\) laser to the sample. In Fig. 1 we show schematically our experimental arrangement. The sample length \(l\), the laser pulse energy \(E_p\), and pulse duration \(\tau_p\) were chosen such that (i) the heat deposited at the sample surface does not diffuse appreciably during the pulse duration, and (ii) the optical penetration depth is much smaller than the sample length. Define the following parameters: \(k\) the thermal conductivity of the sample; \(\rho\) the density; \(c\) the specific heat; \(\alpha = k / \rho c\) the thermal diffusivity; \(\tau_d = \pi l^2 / \alpha\) the thermal diffusion time; \(\beta\) the optical absorption coefficient of the sample; \(n\) the electron density; and \(\sigma\) the electrical conductivity. Condition (i), entailing that the heat diffusion during the pulse duration is negligible, is satisfied provided \(\tau_d > \tau_p\) or \(l^2 (\alpha / \pi \tau_p)^{1/2}\), whereas condition

![FIG. 1. Schematic arrangement of the experiment set up for studying acoustic wave instability due to a temperature gradient.](image-url)
(ii), ensuring the optical deposition of heat at the surface, is satisfied if $\beta \gg 1$. Thus, to get a well-defined temperature gradient during the pulse duration, one should work with thin samples and short pulses. To get a feeling for the figures involved, let us consider a 500-μm-thick Ni sample ($\rho = 8.9$ g/cm3, $c = 3.94$ J/cm3 °C, $k = 0.9$ W/cm °C, $\alpha = 0.23$ cm2/s, $n = 5.4 \times 10^{22}$ cm$^{-3}$, $v_\gamma = 3 \times 10^5$ cm/s, $\alpha = 1.1 \times 10^{17}$ s$^{-1}$. For a 100-ns laser pulse the thermal diffusion length $(x_{\text{th}})_{1/2}$ is $0.86 \mu m$ and condition (i) is well satisfied. As for the threshold condition for the onset of the thermoelectric amplification one needs a temperature rise in the active face ΔT given by [cf. Eq. (1)]

$$\Delta T = \frac{mu_\gamma}{k_B \tau_{\chi}}.$$

(2)

The temperature rise due to the absorption of the CO$_2$ laser radiation is expressed in terms of the laser pulse energy as

$$\Delta T = \beta E_p / cA,$$

(3)

where A is the area of the illuminated region. Substituting Eq. (3) into Eq. (2) one gets the threshold laser fluence for the onset of the thermoelectric amplification, namely

$$(E_p/A)_{\text{th}} > (cmu_\gamma / \beta k_B \tau_{\chi}).$$

(4)

Now, for a metal irradiated by long-wavelength radiation such that $\sigma > \omega$, the optical absorption coefficient is given by

$$\beta = \frac{8\sigma_0 \omega}{c^2} \left\{ \frac{m\sigma_0 \omega}{n^2} \right\}^{1/2},$$

which for our Ni sample reduces to $\beta = 7.39 \times 10^5$ cm$^{-1}$. The electron relaxation time is estimated using Drude's relation ($\tau = m\sigma_0 / n^2$) to be $\tau = 0.8 \times 10^{-14}$ s. As for the value of χ we have estimated it using the corresponding expression for the degenerate case [$\chi = 3 (\pi e_F/k_B T)^{1/2}/4$] to be $\chi = 18.78$. Substituting these values in Eq. (4) one finally gets the threshold pulse fluence

$$(E_p/A)_{\text{th}} > 3.53 \text{ J/cm}^2.$$
Density of oxidation-induced stacking faults in damaged silicon

F. G. Kuper, J. Th. M. De Hosson, and J. F. Verwey
Department of Applied Physics, Materials Science Centre, University of Groningen, Nijenborgh 18, 9747 AG Groningen, The Netherlands

(Received 21 March 1986; accepted for publication 6 May 1986)

A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

Thermal oxidation of diamond-lapped silicon wafers leads to the growth of extrinsic stacking faults.1 Much research has been done on these stacking faults in an exploratory manner, but only recently, in 1984, Ishihara, Kaneko, and Matsumoto discovered that density and length of stacking faults in diamond-lapped wafers are related to each other, independent of oxidation temperature or surface orientation. This paper explains these experimental findings and reports some experimental results obtained by ourselves. Annihilation of extrinsic stacking faults occurs, if we neglect retrogression, via a Hirsch reaction:

$$1/3[111] + 1/6[\overline{1}2\overline{1}] + 1/6[\overline{1}1\overline{2}] \rightarrow 1/2[011]. \quad (1)$$

Two Shockley partial dislocations, one above and one below the (111) stacking fault plane, eliminate the stacking fault, leaving behind a perfect dislocation bounding the former stacking fault. These two Shockley dislocations must be created by an event during the oxidation. One possibility is an impingement of two stacking faults, the other is the impingement of a stacking fault and a perfect dislocation.

Stacking fault–stacking fault interactions can be divided in two categories. We call them obtuse [(111) with (111)] and acute [(111) with (111) or (111)]. On oxidized (001) silicon wafers with many stacking faults, many acute impingements can be seen that apparently did not give rise to unfaulting reactions. On the other hand, on (001) planes obtuse interaction always seems to cause annihilation, as demonstrated by Hayafuji and Kawado.3 In addition, no obtuse collisions on our etched (001) samples were observed.

Next, it is known that stacking fault dislocation interaction can cause unfaulting. Attention should be paid to the fact that not all dislocations react in the same way. Some lead to an incorrect unfaulting of the stacking fault. Tan4 showed that a Shockley dislocation can turn a stacking fault into a four-layer-thick microtwin, i.e., leading to an incorrect unfaulting. In contrast, the same Shockley dislocation can, after dissociation into two other Shockley dislocations, lead to a correct unfaulting reaction as in reaction (1). Finally, it has to be emphasized that some dislocations do not react at all with stacking faults.

In summary:

(i) An obtuse interaction of stacking faults leads to unfaulting, leaving behind two dislocations.
(ii) An acute interaction of stacking faults does not necessarily lead to unfaulting.
(iii) Only a fraction of the dislocations will cause unfaulting of a colliding stacking fault.

The experiments of Ishihara, Kaneko, and Matsumoto were done with Czochralski (CZ) silicon. The high concentration of carbon and oxygen in this material favors the stacking fault formation. Dieleman and Martens showed that oxidation of (100) float-zone (FZ) silicon induces no stacking faults if the surface is not damaged. So this material is more appropriate to study effects of damage on stacking faults. Therefore, we polished (100) FZ-silicon wafers, B-doped, 1–30 Ω cm, with 3-μm diamond powder prior to oxidation at various temperatures. To avoid stress anneal, the wafers were brought into the furnace already under (dry)