A Hierarchical Fair Competition Genetic Algorithm for Numerical Optimization

Alexandre C. M. Oliveira Luiz A. N. Lorena Stephan Stephany Airam J. Preto
DEINF/UFMA LAC/INPE LAC/INPE LAC/INPE
S. Luís MA. S. José dos Campos SP S. José dos Campos SP S. José dos Campos SP
Brasil. lorena@lac.inpe.br stephan@lac.inpe.br airam@lac.inpe.br
acmo@deinf.ufma.br

Abstract.
The philosophy of evolution of the species, which is copied by evolutionary algorithms, is intended to be unfair. The best individuals compete against the worst ones and generally supplant them. The competition is unfair because individuals with different skills are included in the same scenario, being evaluated in a rudimentary way: only the best will survive. However, the population diversity is important to preserve important features that not always make the individual a strong competitor. This diversity can be reached keeping the competition among individuals fairer. In this work, an adaptive hierarchical fair competition genetic algorithm is implemented in a parallel environment and is applied to standard numerical optimization problems taken from the literature. The code was paralleled using the MPI (Message Passing Interface) communication library and executed in a distributed memory parallel machine, a PC cluster.

1. Introduction
The basic idea of genetic algorithms is to store a population of individuals (or chromosomes), representing candidate solutions for concrete problems, that evolves along the time (or generations) through a competition process, where the most adapted (better fitness) have better survival and reproduction possibilities. The evolutionary process is based on individuals' selection and modification of the solutions that they represent through genetic operators as crossover and mutation. In function parameter optimization, real-coded genetic algorithms have been successively applied and authors have reported the easiness and flexibility of its implementation [1].

Sequential GAs have been shown to be very successful in many applications and in very different domains. However some problems could be better addressed with some form of Parallel GA (PGA). For some kind of problems, the population needs to be very large and the memory required to store each individual might be considerable. In some cases, this makes it impossible to run an application efficiently using a single processor. Besides, sequential GAs may get trapped in a suboptimal region of the search space thus becoming unable to find better quality solutions, especially for very large search space. PGAs can search in parallel different search subspaces or in different visions of such subspaces, thus making it less likely to become trapped by low-quality subspaces.

However, the most important advantage of PGAs is that in many cases they provide better performance than single population-based algorithms. The reason is that multiple populations permit speciation, a process by which different populations evolve in different directions. Thus, Parallel GAs are not only extensions of the traditional GA sequential model, but they can represent even a new paradigm that searches the space of solutions differently. The only problem that one has to face to use PGAs is to choose the parallel model to be adopted.

A recent parallel model, the Hierarchical Fair Competition (HFC), was proposed by (Hu et al., 2002) and is inspired by stratified competition often observed in society[2]. Subpopulations are stratified by fitness in castes or classes of individuals with different skills. Individuals move from low-fitness to higher-fitness subpopulations if and only if they exceed the fitness-based admission threshold of the receiving subpopulations.

HFC was applied to real-world analog circuit synthesis problem using a genetic programming (HFC-GP)[2]. This work describes the preliminary results of the HFC using a real-coded genetic algorithm (HFC-GA) applied to numerical optimization. The HFC-GA was paralleled using the Message-Passing Interface (MPI).

This paper is organized as follows. In section 2, are presented some parallel evolutionary models. Section 3
takes the guidelines of the HFC model. An adaptive hierarchical fair competition genetic algorithm and the results obtained for numerical optimization are presented in Section 4.

2. Parallel Evolutionary Models

The way in which GAs can be paralleled depends upon elements such as: a) how individual’s evaluation and genetic operators are performed; b) whether single or multiple (how many?) subpopulations (demes) are used; c) how individuals are exchanged; etc. Some of the models found in the literature can be classified into classes[3]:

a) MasterSlave (global) parallelization;

b) Subpopulations with migration;

c) Subpopulations with static overlapping;

d) Subpopulations with dynamic overlapping.

In Master-Slave model, only evaluation of individuals and genetic operators are paralleled and such parallel processes are all dependents of the master process. This kind of global parallelization simply shows how easy it can be to transpose any genetic algorithm onto a parallel processor, without changing anything of the nature of the algorithm.

Multiple-deme (subpopulations) GAs are the most popular parallelization model. Depending upon number and the size of the demes, they can be called coarse or fine-grained models.

Coarse-grained algorithms are a general term for a subpopulation model with a relatively small number of demes with many individuals. These models are characterized by the relatively long time they require for processing a generation within each deme, and by their occasional communication for exchanging individuals (migration operator).

In fine-grained models, on the other hand, the population is divided into a large number of small demes. Inter-deme communication is realized either by using a migration operator, or by using overlapping demes.

The communication between demes can be performed, basically, by migration or overlapping (static or dynamic). The migration of individuals is controlled by several parameters, such as:

a) The topology that defines the connections between demes;

b) The frequency of migration and the amount of individuals exchanged;

c) The strategy of migration, i.e., the profile of the individuals to be exchanged.

In overlapping schema, overlapping areas are defined between demes, following some kind of topology, where some individuals belong to more than one deme. The improvement obtained by one deme is propagated through all demes by these areas.

In coarse-grained models, many topologies can be defined to connect the demes, but the most common models are the island model and the stepping-stones model. In the basic island model, migration can occur between any subpopulations, whereas in the stepping stone demes are disposed on a ring and migration is restricted to neighboring demes.

Choosing the frequency for migration and which individuals should migrate appears to be more complicated than the choice of the topology. Migrations should occur after a time long enough for allowing the development of goods characteristics in each subpopulation.

The greater advantage of the coarse-grained and fine-grained models is the possibility of better exploring the parallel potentialities. However, the coarse-grained model, in general, has smaller cost to be implemented (minor complexity of hardware and software).

3. Hierarchical Fair Competition model

The premature convergence of genetic algorithms is a problem to be overcome. The convergence is desirable, but must be controlled in order that the population does not get trapped in local optima. Even in dynamic-sized populations, the high-fitness individuals supplant the low-fitness or are favorites to be selected, dominating the evolutionary process. The philosophy of evolution of the species, which is copied by evolutionary algorithms, is unfair because individuals with different skills are put in the same scenario and are evaluated in one-dimensional way: only the best will survive.

On the other hand, the population diversity is important to keep samples of solutions dispersed in search space, increasing the probability of finding out the global optima in multi-modal optimization problems. The population diversity could be reached keeping the competition among individuals fairer.

The Hierarchical Fair Competition (HFC) model is originated from an effort to avoid the premature convergence in traditional evolutionary algorithms[2]. The fair competition is obtained in HFC model by
dividing the individuals in independent castes or classes according with their skills.

Such model is frequently observed in several advanced societies. In human society, competitions are often organized in to hierarchy of levels. None of them will allow unfair competition. For example, a primary student will not normally compete against graduate students in academic system. Even in cruel ecological systems, one can observe mechanisms of parental care to protect the young and allowing them to grow up and develop their full potentials.

Figure 2 – Fair competition in educational system.

In HFC model, multiple demes are organized in a hierarchy, in which each deme can only accommodate individuals within a specified range of fitness. The universe of fitness values must have a deme correspondence. Each deme has an admission threshold that determines the profile of the fitnesses in each deme. Individuals are moved from low-fitness to higher-fitness subpopulations if and only if they exceed the fitness-based admission threshold of the receiving subpopulations. Thus, one can note that HFC model adopts a unidirectional migration operator, where individuals can move to superior levels, but not to inferior ones.

The following figure illustrates the topology of HFC model. The arrows indicate the moving direction possibilities. The access deme (primary level) can send individuals to all other demes and the elite deme only can receive individuals from the others. One can note that, with respect to topology, HFC model is a specific case of island model, where only some moves are allowed.

Considering, the frequency of migration, authors have proposed that individuals must be moved away in regular intervals, using admission buffers to collect qualified candidates from other populations. The strategy to determine what individuals must be exchanged is not flexible. All individuals with fitness outside the fitness range of their deme (superior individuals) must be exported to admission buffer of the appropriate subpopulation. The amount of individuals to be exchanged cannot be determined and will depend upon the number of superior individuals of each level at each exchange time.

An important feature can be incorporated to the HFC model: to work with a heterogeneous evolutionary environment. Once each subpopulation evolves individuals with different profiles, subpopulations can have different sizes, evolutionary operators and other parameters [2]. The HFC model allows employing different strategies of exploration and exploitation in each subpopulation.

Figure 3 - HFC topology

The fitness range is determined considering the problem at hand and the number of demes. The authors suggest an adaptive schema using a calibration stage with few generations to capture an initial range of fitness values, based upon average μ, standard deviation σ, and the best fitness f_{min}. Afterwards, the initial population is divided into subpopulations, according to the individuals’ fitness and moved to their respective demes. In regular generation intervals, the admission thresholds of all demes (but the access deme) are updated (update stage), evaluating μ, σ, and f_{min} again. The calibration and update stages together are employed to avoid the need of previous knowledge about the problem at hand, incorporating an adaptive feature to the algorithm.

For maximization problems, the admission threshold A_{Li} of each level can be calculated by the following formula:

Access level 0: $A_{L0} = +\infty$ \hspace{2cm} (1)

Elite level N-1: $A_{LN-1} = f_{\text{min}} - \sigma$ \hspace{2cm} (2)

Admission threshold of the other intermediary levels L_i (i=1,...,N-2), where N is the number of demes, is given by:

$A_{Li} = \mu + (L_i-1) x (f_{\text{min}} - \sigma - \mu)/(N - 2)$, \hspace{2cm} (3)
4. Computational tests

An Adaptive Hierarchical Fair Competition Genetic Algorithm (AHFCGA) was implemented using Message-Passing Interface (MPI) and was applied to numerical optimization problems. In this section, the novelties of this implementation and the computational tests are presented.

4.1 The AHFCGA

Some new features were implemented in this version of AHFCGA that was relevant to reach a greater fidelity to the HFC model. Differently that has been done by the authors, in previous works, the moving of the individuals is fully asynchronous and individuals belonging to superior levels do not participate anyway of the evolutionary process in an inferior level. In other words, the superior individuals are put on output buffer to be exported as soon they are generated or selected.

At beginning, all processors in parallel do the calibration stage. The average of $f\mu$, $f\sigma$, and f_{\min} are considered in calculation of the admission thresholds (see (1), (2) and (3)). In the following update stages, the same process is done, but $f\mu$, $f\sigma$, and f_{\min} of the access level is not considered, due to the greater instability that can be inserted in the system. The authors suggest somewhat similar, except by considering only elite deme for calculations [2].

After the calibration stage, each deme has three kinds of individuals: the inferior, the belonging and the superior ones. The access deme has no inferior individual and the elite deme has no superior one. In previous works, the superior individuals are kept in deme a number of generations afterwards they are exported to their respective demes. This feature allows the synchronous exchange of individuals, once all demes can run a fixed number of generation and stopping for receiving individuals. In this work, an asynchronous exchange is implemented. Whenever a superior individual is selected, it moved to output buffer and it is not matched to crossover operation, not participating of the evolutionary process in that deme. Another individual is then selected out in his place to crossover. In the same way, whenever a superior individual is generated by crossover, it is moved to output buffer immediately.

When output buffer is full or after a maximum number of iterations, the evolutionary process is stopped and all superior individuals are exported, emptying the buffer. In following, incoming individuals (from inferior levels) are received (if there exist) and moved from admission buffer to regular subpopulation. The sending and receiving movements are made asynchronously. There is no exact time to exchange.

The pseudo-code of the AHFCGA is presented in following. The procedure $\text{EvolveDeme}(P, \text{MAX_GEN})$ runs a real-coded GA until the output buffer is full or a maximum number of iterations. The worst individual is always chosen to be replaced by the incoming individual (steady-state updating)[4]. The stop criteria can be a specific number maximum of generations or the success to find the best-known solution. The procedure $\text{Complement_Population}(P)$ is run only in access level, filling the free space caused by exported individuals. One can say that access level would work as permanent generator of individuals, feeding the whole population with new genetic material during all time life[2].

```
Initialize\_Population(P);
Calibration\_stage;
do
  if (UPDATING\_TIME) then
    Compute\_Local ($f\mu$, $f\sigma$, $f_{\min}$);
    Compute\_Global ($f\mu$, $f\sigma$, $f_{\min}$);
    Send (Admission\_Thresholds, ALL\_DEMES);
  end_if
  EvolveDeme(P, MAX\_ITERATIONS);
  while (OUTPUT\_BUFFER NOT EMPTY)
    Send (Individual, RESPECTIVE\_DEME);
  end_while
  if (ACCESS\_DEME) then
    Complement\_Population(P);
  else
    while (THERE\_EXIST\_INCOMING\_INDIVIDUAL)
      Receive (Individual, ANY\_WHERE);
      Update\_Population(P, Individual);
    end_while
  endif
  while (NOT STOP\_CRITERIA);
```

4.2 The Test functions

There exist many applications related to function parameter optimization (numerical optimization) well suitable to evolutionary algorithm application, such as neural network training, fuzzy set optimization, inverse problems, and others.

Several test functions can be found in literature and, frequently, many researchers have used them to study the performance of optimization algorithms. In this work, a small set of well-known test-functions was used as benchmark. The test functions rosenbrock, schwefel, griewangk, and rastringin are specially interesting due to be generalized functions, i.e., they can be set with n-dimensional variables. In the Figure 4, the test functions are shown.

$$f_{\text{rosenbrock}} = \sum_{i=1}^{n} \left(100 \cdot (x_{i+1}^2 - x_i^2 + (x_i - 1)^2)\right), \quad -5.12 \leq x_i \leq 5.12$$

$$f_{\text{schwefel}} = 10^n \cdot \sum_{i=1}^{n} (-x_i \sin (\sqrt{|x_i|})), \quad -500 \leq x_i \leq 500$$

$$V = 41898.28 + 10^n$$

$$f_{\text{griewangk}} = 20 + \sum_{i=1}^{n} (x_i^2 - 10 \cos (2 \pi x_i)), \quad -5.12 \leq x_i \leq 5.12$$

$$f_{\text{rastringin}} = 1 + \sum_{i=1}^{n} \left(\frac{x_i^2}{4000}\right) - \prod_{i=1}^{n} \left(\cos \left(\frac{x_i}{\sqrt{i}}\right)\right), \quad -600 \leq x_i \leq 600$$

Figure 4 – Test functions
The parameter \(N \) of the test functions is the number of variables to be optimized in order to minimize the value of \(f \). In the experiments, \(N \) was set with high values to try the effectiveness of the implementation for large-scale problems. More information about the benchmark can be obtained in [5-6].

4.3 The experiments

For the computational tests, some parameters of AHFCGA were set. Following the suggestion found in [2], the calibration stage was run with 10 generations and the update stage procedure was called in intervals of 10 generations. The whole execution was limited to \(2 \times 10^6 \) of objective function calls (reached by anyone of processors). The population and buffer sizes were set as 500 each. Other genetic parameter settings, as mutation rate, and evolutionary operators can be found in [4].

Once adjusted, 5 trials were performed with each one of the 4 test functions. The best-found solution (FS), number of function calls (FC) and execution time (ET) were considered to evaluate the algorithm performance. FS is the average of all best solutions found in all trials; ET is the average of all worst execution times in all trials and FC is increased whenever an individual is evaluated with respect to objective function (fitness).

The access deme has the feature of complementing the population and thus it has always a greater number of function calls. The following equations show how FS, FC and ET are calculated:

\[
FS = \text{average}^T(\min^D(FS_{id}))
\]
\[
FC = \text{average}^T(\text{average}^D(FC_{id}))
\]
\[
ET = \text{average}^T(\max^D(ET_{id}))
\]

where \(<operation>T\) means an operation over all trials (5 trials), \(<operation>D\) means the operation over all demes (from 4 up to 8 demes).

In order to better evaluate the AHFCGA performance, it was employed a Sequential Real-coded GA (SRGA) similar to it with respect to parameters and genetic operators. A first attempt of exploring a heterogeneous evolutionary environment was made in this work. Different set of evolutionary operators was used in access and elite demes. In the access deme, a more aggressive blind mutation was employed to cause population instability (no convergence). Whereas, in the elite deme, a local search operator had the objective of accelerating the convergence rate.

Table I – Comparison between AHFCGA and a SRGA without local search

<table>
<thead>
<tr>
<th>Problem</th>
<th>Function(N)</th>
<th>Expected solution</th>
<th>AHFCGA Function calls</th>
<th>Time(s) Processors</th>
<th>SRGA Function calls</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gri(300)</td>
<td>0.001</td>
<td>18.148.679.200</td>
<td>9.621.071</td>
<td>5</td>
<td>0.024</td>
<td>20(\times)1000.400.232</td>
</tr>
<tr>
<td>Gri(500)</td>
<td>0.008</td>
<td>14.652.728.600</td>
<td>2.735</td>
<td>5</td>
<td>2.724.560</td>
<td></td>
</tr>
<tr>
<td>Ros(300)</td>
<td>0.001</td>
<td>492.450</td>
<td>292.324</td>
<td>5</td>
<td>3.853.870</td>
<td></td>
</tr>
<tr>
<td>Ros(500)</td>
<td>0.001</td>
<td>293.881</td>
<td>508.006</td>
<td>8</td>
<td>4.929.760</td>
<td></td>
</tr>
<tr>
<td>Sch(300)</td>
<td>-125.694.872</td>
<td>18.148.679.200</td>
<td>9.621.071</td>
<td>5</td>
<td>0.024</td>
<td>20(\times)1000.400.232</td>
</tr>
<tr>
<td>Sch(500)</td>
<td>-209.491.454</td>
<td>14.652.728.600</td>
<td>2.735</td>
<td>5</td>
<td>2.724.560</td>
<td></td>
</tr>
<tr>
<td>Ras(300)</td>
<td>0.001</td>
<td>16.798</td>
<td>292.324</td>
<td>5</td>
<td>3.853.870</td>
<td></td>
</tr>
<tr>
<td>Ras(500)</td>
<td>0.001</td>
<td>47.210</td>
<td>508.006</td>
<td>8</td>
<td>4.929.760</td>
<td></td>
</tr>
</tbody>
</table>

Table II – Comparison between AHFCGA and a SRGA running in 5 processors with local search

<table>
<thead>
<tr>
<th>Problem</th>
<th>Function(N)</th>
<th>Expected solution</th>
<th>AHFCGA Function calls</th>
<th>Time(s) Processors</th>
<th>SRGA Function calls</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gri(50)</td>
<td>0.001</td>
<td>6.760.905.000</td>
<td>609.786</td>
<td>5</td>
<td>0.015</td>
<td>20(\times)1000.733.453</td>
</tr>
<tr>
<td>Gri(100)</td>
<td>0.002</td>
<td>8.079.508.750</td>
<td>1.211.795</td>
<td>5</td>
<td>0.017</td>
<td>20(\times)1000.524.392</td>
</tr>
<tr>
<td>Gri(150)</td>
<td>0.003</td>
<td>9.670.970.750</td>
<td>1.945.880</td>
<td>5</td>
<td>0.003</td>
<td>20(\times)1000.982.266</td>
</tr>
<tr>
<td>Gri(200)</td>
<td>0.005</td>
<td>13.756.132.500</td>
<td>2.753.484</td>
<td>5</td>
<td>0.003</td>
<td>20(\times)1000.577.098</td>
</tr>
<tr>
<td>Ros(50)</td>
<td>0.027</td>
<td>9.470.336.750</td>
<td>814.264</td>
<td>5</td>
<td>0.003</td>
<td>20(\times)1000.982.266</td>
</tr>
<tr>
<td>Ros(100)</td>
<td>0.007</td>
<td>8.947.193.500</td>
<td>2.089.806</td>
<td>5</td>
<td>0.003</td>
<td>20(\times)1000.982.266</td>
</tr>
<tr>
<td>Ros(150)</td>
<td>0.014</td>
<td>10.846.004.250</td>
<td>2.425.631</td>
<td>5</td>
<td>0.053</td>
<td>20(\times)1000.982.266</td>
</tr>
<tr>
<td>Ros(200)</td>
<td>0.016</td>
<td>15.308.611.500</td>
<td>5.785.164</td>
<td>5</td>
<td>0.056</td>
<td>20(\times)1000.423.300</td>
</tr>
<tr>
<td>Sch(50)</td>
<td>-20.949.145</td>
<td>0.001</td>
<td>-20.949.144</td>
<td>6.659.924.000</td>
<td>555.838</td>
<td>-20.949.144</td>
</tr>
<tr>
<td>Sch(100)</td>
<td>-41.898.291</td>
<td>-40.003.274</td>
<td>7.704.175.000</td>
<td>1.577.992</td>
<td>-41.898.289</td>
<td>20(\times)1000.338.660</td>
</tr>
<tr>
<td>Sch(150)</td>
<td>-62.847.436</td>
<td>-56.017.438</td>
<td>9.200.378.750</td>
<td>1.344.362</td>
<td>-62.847.433</td>
<td>20(\times)1000.759.500</td>
</tr>
<tr>
<td>Sch(200)</td>
<td>-83.796.582</td>
<td>-71.696.182</td>
<td>10.634.924.250</td>
<td>2.823.487</td>
<td>-83.796.577</td>
<td>20(\times)1000.866.245</td>
</tr>
<tr>
<td>Ras(50)</td>
<td>0.001</td>
<td>0.001</td>
<td>1.287.368.000</td>
<td>120.828</td>
<td>0.000</td>
<td>20(\times)1000.691.235</td>
</tr>
<tr>
<td>Ras(100)</td>
<td>0.001</td>
<td>0.001</td>
<td>6.190.600.750</td>
<td>1.450.926</td>
<td>0.000</td>
<td>1.208.324.330</td>
</tr>
<tr>
<td>Ras(150)</td>
<td>0.001</td>
<td>1.048</td>
<td>6.569.484.250</td>
<td>1.745.440</td>
<td>0.000</td>
<td>3.930.745.200</td>
</tr>
<tr>
<td>Ras(200)</td>
<td>0.001</td>
<td>6.950</td>
<td>10.451.448.000</td>
<td>2.057.527</td>
<td>0.001</td>
<td>14.795.927.100</td>
</tr>
</tbody>
</table>
In the first set of trials, it was explored variations in the number of demes without local search in both algorithms (AHFCGA and SRGA). Both algorithms were stopped either by getting the expected solution or when the maximum of 20×10^6 objective function calls.

In the second set of trials, it was explored the local search operator in both algorithms: with certain probability (about 1%), the local search is applied to the offsprings.

Observing the Table I (first set of trials), one can see that both overall performances were quite similar in terms of FS. None of them found the expected solution, but AHFCGA has reached good FS in Gri(300) and Gri(500), whereas SRGA in Ras(300). Considering FC, AHFCGA seems to perform better, but they are also similar because both have reached the maximum top of 20×10^6 function calls. The FC, which is showed in AHFCGA’s column, is just the average of all four demes. At last, with respect to ET is correct to suppose that AHFCGA have presented greater execution times probably due to the overhead inherent to the algorithm complexity. SRGA is free of exchange of individuals between population and buffers. Besides, the communication time between processors always affects the execution time of parallel algorithms and in this work the best configuration that minimizes its cost were not found.

The Table I shows set of trials with different number of processors. Other tests were made and, for while, it was not found indications that the number of processors meaningfully affects the algorithm performance. The table shows only the best set of trials.

The Table II (second set of trials) shows set of trials with 50 up to 200 dimension problems (number of variables N) running in 5 processors. Both algorithms apply local search to 1% of the offsprings. Both overall performances seem similar, except by functions Sch(N) and Ras(N), where SRGA has reached all expected solutions in all trials.

With respect to FC, AHFCGA has presented the less values, in average, however the elite deme has reached the maximum top of 20×10^6 function calls, due to the local search operator. Finally, SRGA presented the lower execution times in all set of trials.

5. Conclusion

This work describes the preliminary results of a parallel implementation of an Adaptive Hierarchical Fair Competition Genetic Algorithm (AHFCGA) applied to the minimization of numerical functions. Some new features were implemented in order to reach a greater fidelity to the general Hierarchical Fair Competition model as the fully asynchronous exchange of individuals and the fully stratified subpopulation. A heterogeneous evolutionary environment with local search operator also was implemented. The potential of such model may show up when applied to very large optimization problems. In numerical optimization, these problems would have more than 100 variables as it is commonly seen in real-world problems in areas such as engineering. However, in early experiments with AHFCGA show poor results in comparison with a standard sequential genetic algorithm. The probable cause that AHFCGA needs careful adjustment of its parameters to avoid that each deme prematurely converge to a local optimum. This causes the stopping of the migration of individuals among demes and makes the whole population to converge prematurely. Besides, according to the problem, the asynchronous AHFCGA behavior may lead to an unbalanced load distribution among processors. Next, it is intended to perform a comprehensive set of tests in order to adjust the algorithm parameters, accelerate the convergence and improve the load balancing. Further step would be to compare the proposed model with standard parallel genetic algorithms, as the island or stepping-stones models.

Acknowledgements

The authors acknowledge FAPESP for support received in the research project “Paraléllização de Aplicações em Física dos Materiais num Ambiente de Memória Distribuída” (proc. 01/03100-9) and CNPq for partial financial support (proc. 300837/89-5).

References

