

Population Training Approach to Unconstrained
Numerical Optimization

Alexandre C. M. de Oliveira

DEINF/UFMA - Av. dos Portugueses,
65.085-580 S. Luís MA Brazil.
acmo@deinf.ufma.br

Luiz A. N. Lorena

LAC/INPE - Av. dos Astronautas,
12201-970 S. José dos Campos SP Brazil

lorena@lac.inpe.br

Abstract.
This paper describes the preliminary results of an

evolutionary approach based on population training in
heuristics for minimization of unconstrained
functions. The population-training algorithm has
dynamic size population ranked by an adaptation
coefficient. Computational tests are presented and its
performance is compared with a steady-state genetic
algorithm that combines some well-succeeded
features of other genetic algorithms.

1. Introduction

The basic idea of genetic algorithms is to store a
population of individuals (or chromosomes),
representing candidate solutions for concrete
problems, that evolves along the time (or generations)
through a competition process, where the most
adapted (better fitness) have better survival and
reproduction possibilities. The evolutionary process is
based on individuals' selection and modification of the
solutions that they represent through genetic operators
as crossover and mutation.

In function parameter optimization, real-coded
genetic algorithms have been successively applied
and authors have reported the easiness and flexibility
of its implementation [1]. On the other hand, with
fixed-length binary coding, there exists a fixed
amount of precision that an algorithm can be hoped to
achieve, and some precision matters have to be
considered before an application.

Several test functions can be found in literature
and, frequently, many researchers have used them to
study the performance of optimization algorithms.
This work uses some of well-known test functions,
such as michalewicz, rosembrock, schwefel,
langerman, griewangk, and rastringin [1][2][3][4].
There exist many applications related to function
parameter optimization well suitable to evolutionary
algorithm application, such as neural network
training, fuzzy set optimization, inverse problems, and
others.

This work describes the preliminary results of an
evolutionary approach based on population training in
heuristics applied to minimization of unconstrained
functions. Some experiments are presented, aiming to
compare this new approach with a standard real-coded

genetic algorithm with static size population ranked
by individual fitness.

Population training approach consists in training a
dynamic size population with respect to a specific-
problem heuristic. In this case, the evolutionary
process privileges well-adapted individuals in
selection and improves its surviving time.

This paper is organized as follows. Section 2
presents a standard genetic algorithm that employs a
steady-state population updating and others well-
known features. Section 3 presents the foundations of
the population-training algorithm. Section 4 shows
computational results using test functions taken from
the literature. The main conclusions are presents at the
end of this paper.

2. Steady-State Genetic Algorithm

A standard genetic algorithm was built,
incorporating well-known operators found in the
literature, such as roulette wheel selection [5], blend
crossover [6], and non-uniform mutation [1]. In this
work, the standard genetic algorithm will be called
Steady-State Genetic Algorithm (SSGA).

SSGA employs a steady-state method to update
the population [7]. In this method, each descendant
replaces one of the low-fitness individuals found in
the population. Explaining better, each crossover
generates one descendant that replaces a lower-fitness
individual in the population. Then, a new lower-
fitness individual is found and marked to be replaced
after the next crossover, and so on.

This updating method was chosen because it does
not work with temporal gaps, where a population is
enough explored before be replaced by another entire
one (generation updating). Instead, the population
contains individuals generated in all epochs, as well
as the updating method employed by the population-
training algorithm, presented in following. In both
approaches, the offspring directly compete with their
parents for selections and crossover.

The SSGA codes the function variables directly as
real numbers in individuals of a static size population
that evolves along the generations always preserving
the best individual.

In order to compare the difference between the
behaviors of both approaches, some experiments were
made. The first experiment with SSGA employs the
2-dimension Langerman's function. An initial
population was generated and evolved along the
generations. In the Figure 1, it is showed the
population over the function landscape through four
snap images: after 100, 500, 1000 and 5000
generations. Notice that a reasonable diversity is
maintained in the first 500 evaluations, but quickly
individuals are grouped around the three promising
regions (about 1000 generations). At the end, the
population abandons one of these regions, staying
around two local minimums, one of the which is the

global minimum (about F(9.76,0.68) = -1.081). One
can see the best niche pointed out by lower arrow.

This experiment was repeated with the 2-
dimension Schwefel's function that has several local
minimums. Once again, the SSGA population
converges quickly to lower value surfaces on search
space. A snap image is showed in Figure 2, after 1000
generations. One can concludes that, in spite its
simplicity, SSGA is able to achieve solutions in 2-
dimension fashion and has a wanted behavior in these
cases.

Figure 1. SSGA on 2-dimension contour map of Langerman's function after 100, 500, 1000 and 5000
generations.

Figure 2. SSGA on 2-dimension contour map of Schwefel's function after 1000 generations.

3. Population Training Algorithm

The Population Training Algorithm (PTA) ranks a

dynamic size population by a so-called adaptation
coefficient. This new attribute considers both the
objective function value and the error with respect to
a specific training heuristic. The training heuristic is
used to extract some information about the problem
and guides the evolution process aiming performance
improvement. A similar idea have been employed in
Constructive Genetic Algorithm (CGA) proposed by
Lorena and Furtado (2000) to clustering problems [8],
and recently applied to permutation problems [9].

In CGA, the adaptation coefficient is also used to
penalize schemata (individuals with incomplete
information). In this work, the adaptation coefficient
of an individual sk is calculated by:

 δ(sk) = d⋅(Gmax - g(sk)) - (g(sk) - f (sk)) (1)

where Gmax is a constant upper bound to the
objective function values; d is a proportionality
constant with values in [0,1]; g(sk) is the objective
function value for sk; and f(sk) is the objective
function value for a better neighbor of sk, obtained by
the training heuristic. In (1) there are two
components:

• Interval 1 (I1): d⋅(Gmax-g(sk)) measures the
maximization of the difference between the upper
bound Gmax and objective function value;
• Interval 2 (I2): g(sk)-f(sk) measures the error
obtained with respect a training heuristic
Before the initial population is generated, the

upper bound Gmax is set, by the selection of an
individual with higher objective function value, inside
a small group of them, which was generated at
random. The constant d is a parameter to be tuned.
 Each individual that is generated receives a
ranking value δ. Firstly, the function objective value
g(sk) is calculated. Then, a training heuristic is applied
to sk, trying improve it. If it fails, sk is well-adapted

with respect to that heuristic. Otherwise, the amount
I2 is non-zero and is subtracted from I1, penalizing
the individual. Thus, once Gmax is not changed along
the generations, the higher rankings in minimization
problems are obtained by individuals with lower
values of g(sk) and g(sk)-f(sk). In other words, the
original problem is modeled as a new one:
maximizing the interval I1 and minimizing the
interval I2.

In the Figure 3, the effect of each one of the two
intervals, I1 and I2, is showed separately. The
individuals with maximum I1 are positioned in most
promising regions (Figure 3a), whilst the individual
with minimum I2 are positioned in plateaus or regions
from where they are likely to be a local minimum
(Figure 3b). The entire population fills a meaningful
piece of search space. The unfilled pieces are that
where g(sk) closes to Gmax (high values) and the
individuals initially generated in there are
progressively eliminated by an adaptive rejection
threshold, to be explained later.

3.1. The training heuristic

For better understanding the I2 interval is
indispensable to explain the heuristic employed to
train the population and the evolution process. In the
performed experiments, the following well-known
local optimizers (acting as heuristics) to numerical
optimization are tested: the down-hill simplex [10],
and the popular finite-difference gradient method.
These methods are computationally expensive,
because their complexity is a function of the
dimension of the problem (number of variables on
objective function). Besides, the training method shall
to be applied to each individual when it is generated.
For this reason a third method was built and tested,
achieving good results: the in-line search method.

Figure 3. Interval minimization effect on 2-dimension contour map of Schwefel's function after 1000
generations: a) individuals with d.(Gmax-g) values about 80% of the best δδδδ ; b) individuals with (g-f) values

equal to zero (well-trained by a heuristic)

g (x)

g(s1)
g(sk)

g(sr)
g(s3)

g(s2)

0

s3 sr s2 s1 sk
Figure 4. One-dimension example of the in-line search method

The in-line search method is based on the idea that

it can be better to walk to well-adapted individuals.
Thus, an individual sr is chosen at random from the set
of well-adapted ones. This set is defined through a
percentage of population. For example, the 20% better
ranked individuals form the set of individuals from
where one will be selected as reference point sr to in-
line search method. Then, a fixed number of
individuals (s1, s2, ..., sn) are sampled along the line
between sk and sr and the best objective function
evaluation is held on as f(sk) value. In order to
extrapolate the region between sk and sr, the method
take other samples after sr.

The Figure 4 shows a one-dimension example of
the in-line search method being performed. In this
case, two individuals are selected between sk and sr
and a third one is selected after sr, extrapolating the
interval. Notice that the second sample, s2, had got the
best objective function value. Then, g(s2) is assigned
to f(sk).

3.2. The recombination process

The ranked individuals in expression (1) are
maintained in descendent order, i.e., the first
individuals are better adapted than the last ones. In
this work, the selection operator was built to
privileges the well-adapted individuals. Two
individual are selected: one come from the population
elite and the other come from the entire population.
The elite group is the same used to choose the
reference point in the in-line search method. A similar
selection operator has been employed on Constructive
Genetic Algorithms and is called base-guide selection
[8]. After the selection of two individuals, the blend
crossover (BLX-α, with α=0.25) is also applied to
generate another individual, and this new individual
can undergo a non-uniform mutation [1] with low
probability (about 1%). Then, the new individual is
evaluated (δ-calculation) and updated in the dynamic
size population, according to its adaptation
coefficient. The updating process, as well as the entire
evolution process, is explained at following.

3.3. The evolution process

The updating process of PTA privileges the well-
adapted individuals that are placed in the top of the
ranked population. An adaptive rejection threshold, α,
provides a progressive elimination of the ill-adapted
individuals. It will be related to evolution time
(generation).

The population at the evolution time α, denoted by
Pα, is dynamic and its size varies accordingly the
value of the adaptive parameter α, and can be emptied
during the process. The parameter α is now compared
to the ranks in expression (1), thus yielding the
following expression:

α ≥ δ(sk) = d⋅(Gmax - g(sk)) - (g(sk) - f (sk)) (2)

At the time they are created, individuals receive
their corresponding rank δ(sk). At each generation,
these δ are compared with the current evolution
parameter α. If the condition in (2) is satisfied, the
individual sk is eliminated.

Considering that the well-adapted individuals need
to be preserved for recombination, the evolution
parameter α is started from the lowest δ value (taken
from the bottom of the ranked population), and then
increases with step proportional to actual population
size |P|.

 l
Gr

Pk bottop +
δ−δ

⋅⋅+α=α || (3)

where k is a proportionality constant, l is the
minimum increment allowed, Gr is the remaining
number of generations, and (δtop-δbot) is the actual
range of values of δ.

One can observe that the adaptive increment of α
is affected by the own environment (population size,
best and worst δ's, etc). Thus, once the PTA achieves
very good regions and does not get to improve the
best rank, the parameter α goes eliminating the
individuals until the population is emptied. The
Figure 5 shows four snap images after 100, 500, 1000
and 5000 generations for 2-dimension Langerman's
function.

Notice that dynamic population fills great part of
the search space and, along the generations, and the
offspring are attracted to promising regions, like
SSGA, but the density of individuals is reasonably
greater. Perhaps this fact can contribute for an
intensification of pressure over the local minimums as
well as over the global one. At the end, about
generation 5000, the population was practically

emptied and few individuals are left in two
minimums, including the same global minimum found
by SSGA. The overall numerical results of all
experiments that were made with both SSGA and
PTA approaches are summarized and commented in
next section.

Figure 5. PTA on 2-dimension contour map of Langerman’s function after 100, 500, 1000 and 5000
generations.

4. Computational tests

The SSGA and PTA were coded in ANSI C and
run on Intel Pentium III (450Mhz) hardware. For the
computational tests, some parameters were adjusted in
both approaches. Once adjusted, 20 trials were
performed with 6 test function in the 5-dimensions
and 10-dimension cases, giving 240 trials with each
approach.

The best results found with SSGA were obtained
with non-uniform mutation and blend crossover
probabilities equal to 5% and 100% respectively and
an initial population of 300 up to 1000 individuals.
The blend crossover parameter α is equal to 0.25, as
well as in PTA. The best results found in PTA were
obtained with d parameter set to 0.10. This configures
the proportionality between intervals I1 and I2. The k
and l constants used at the step size of the adaptive
rejection threshold α were set to 1⋅10-2 and 1⋅10-5 in
most of the test functions. But in 10-dimension
Langerman's function, it was not possible to find the
right values to them. The results for this test function
were under the expectation. In PTA, the non-uniform
mutation probability was set to 1%.

The stop criterion is: a) the expected best solution
is found; or b) after 100 generations the best
individual is not changed; or c) the limit of 751000
evaluations of the objective function is reached. The
expected best solutions used on stop criteria are
known in the literature and shown in Table I. Some
executions of SSGA did not reach best solutions and
had an excessive number of functions evaluations.

For each one of the 20 trials, the average (M) of
the solutions found is calculated and the percentage of
the error related to the expected solution can be
calculated by [M-F(s*)], where F(s*) is the expected
best solution.

Table I also shows the comparison between PTA
and SSGA for 5-dimension and 10-dimension test
functions. In 5-dimension, PTA approach presents a
best overall performance, even without considering
the poor performance of SSGA in rosenbrock's
function. PTA obtains 7.66% of average error against
15,88% obtained by SSGA. In 10-dimension, once
again SSGA runs poorly in rosenbrock's function (the
best solution found was 6.10). Excluding the
rosenbrock's result of both, there exist an equilibrium
of performance: PTA with 23.95% of error and SSGA
with 26.75%. In 5-dimention, PTA had better

performance in rosenbrock's, and langerman's
functions, although in this last, both approaches did
not have any success. In 10-dimention, PTA was
better than SSGA in rosembrock's, langerman's, and
michalewicz 's functions.

The running times and the number of objective
function evaluations are showed in Table I (averages).
One can see that SSGA seems to be faster than PTA,
although it perform more calls to the objective
function.

Table 1. Comparison of results
 AVG Solution Error AVG Evaluation / AVG Time (s)

 PTA SSGA
Expected
Solution PTA SSGA PTA SSGA

Rosembrock(5) 0.012 0.351 0.001 0.011 0.350 486024.50 13.0 534000.00 5.7
Rastrigin(5) 0.001 0.001 0.001 0.000 0.000 178334.30 4.8 98992.70 1.1

Griewangk(5) 0.009 0.006 0.001 0.008 0.005 304628.80 8.1 540362.45 5.8
Langerman(5) -0.963 -0.358 -1.400 0.437 1.042 103839.00 2.8 751024.00 8.0

Michalewicz(5) -4.682 -4.687 -4.687 0.005 0.000 83140.80 2.2 92533.80 1.0
Schwefel(5) -2094.672 -2094.908 -2094.914 0.243 0.006 359142.70 9.6 404562.20 4.3

Rosembrock(10) 0.102 6.640 0.001 0.101 6.639 703015.50 18.7 751000.00 8.0
Rastrigin(10) 0.007 0.001 0.001 0.006 0.000 142098.40 3.8 243424.20 2.6

Griewangk(10) 0.009 0.009 0.001 0.008 0.008 353668.30 9.4 574628.80 6.1
Langerman(10) -0.004 -0.003 -1.400 1.396 1.397 422314.40 11.3 751000.00 8.0

Michalewicz(10) -9.555 -7.693 -9.660 0.105 1.967 691504.10 18.4 751000.00 8.0
Schwefel(10) -3942.296 -3952.952 -4189.829 247.533 236.877 368686.50 9.8 544419.20 5.8

 349699.77 9.3 503078.94 5.4

5. Conclusion

This work describes the preliminary results of an
evolutionary approach based on population training in
heuristics applied to minimization of unconstrained
functions. The Population Training Algorithm (PTA)
proposes a new concept of population training,
working with a dynamic population, ranked by an
adaptation coefficient. To compare its performance, it
was built a steady-state genetic algorithm (SSGA) that
combines some well-succeeded features of other
genetic algorithms. Both algorithms are tested with
some well-known test instances (functions) obtaining
comparable good solutions. Some experiments
confirm their good overall behavior seeking for local
optimum. The PTA also has the reinforced effect of
move away from unpromising solutions. Some further
work is allowed on new heuristics for PTA and its
adaptation to constrained problems.

6. References
[1] Michalewicz, Z. Genetic Algorithms + Data
Structures = Evolution Programs. Springer-Verlag,
New York. 1996.

[2] De Jong, K.A, An analysis of the behaviour of a
class of genetic adaptive systems. Ph.D. Dissertation,
Univ. of Michigan, Ann Arbor.1975.

[3] H. Bersini, M. Dorigo, S. Langerman, G. Seront,
& L.M. Gambardella, "Results of the first

international contest on evolutionary optimisation (1st
ICEO)," In Proc. of IEEE-EC 96, pp. 611-615. 1996.

[4] Digalakis, J. & Margaritis, K. An experimental
study of benchmarking functions for Genetic
Algorithms. IEEE Systems Transactions, pp. 3810-
3815. 2000.

[5] Goldberg D.E., Genetic Algorithms in Search,
Optimisation, and Machine Learning. Addison-
Wesley Publishing Company, Inc. 1989.

[6] Eshelman, L.J. Schawer, J.D. Real-coded genetic
algorithms and interval-schemata, in Foundation of
Genetic Algorithms-2, L. Darrell Whitley (Eds.),
Morgan Kaufmann Publishers: San Mateo, pp. 187-
202. 1993.

[7] Davis, L., Handbook of Genetic Algorithms, Van
nostrand Reinhold. 1991.

[8] Lorena, L.A.N & Furtado, J.C. "Constructive
genetic algorithm for clustering problems."
Evolutionary Computation 9(3): 309-327. 2001.

[9] Oliveira, A.C.M. & Lorena, L.A.N. "A
Constructive Genetic Algorithm for Gate Matrix
Layout Problems". IEEE TCAD, Vol. 21, No. 8, pp.
969-974. August 2002.

[10] Nelder, J.A. & Mead, R. “A simplex method for
function minimization”. Computer Journal, Vol. 7, pp.
308-313, 1965.

