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Abstract. 
This paper describes the preliminary results of an 

evolutionary approach based on population training in 
heuristics for minimization of unconstrained 
functions. The population-training algorithm has 
dynamic size population ranked by an adaptation 
coefficient. Computational tests are presented and its 
performance is compared with a steady-state genetic 
algorithm that combines some well-succeeded 
features of other genetic algorithms. 

1. Introduction 
 

The basic idea of genetic algorithms is to store a 
population of individuals (or chromosomes), 
representing candidate solutions for concrete 
problems, that evolves along the time (or generations) 
through a competition process, where the most 
adapted (better fitness) have better survival and 
reproduction possibilities. The evolutionary process is 
based on individuals' selection and modification of the 
solutions that they represent through genetic operators 
as crossover and mutation. 

In function parameter optimization, real-coded 
genetic algorithms have been successively applied 
and authors have reported the easiness and flexibility 
of its implementation [1]. On the other hand, with 
fixed-length binary coding, there exists a fixed 
amount of precision that an algorithm can be hoped to 
achieve, and some precision matters have to be 
considered before an application.  

Several test functions can be found in literature 
and, frequently, many researchers have used them to 
study the performance of optimization algorithms. 
This work uses some of well-known test functions, 
such as michalewicz, rosembrock, schwefel, 
langerman, griewangk, and rastringin [1][2][3][4].  
There exist many applications related to function 
parameter optimization well suitable to evolutionary 
algorithm application, such as neural network 
training, fuzzy set optimization, inverse problems, and 
others. 

This work describes the preliminary results of an 
evolutionary approach based on population training in 
heuristics applied to minimization of unconstrained 
functions. Some experiments are presented, aiming to 
compare this new approach with a standard real-coded 

genetic algorithm with static size population ranked 
by individual fitness. 

Population training approach consists in training a 
dynamic size population with respect to a specific-
problem heuristic. In this case, the evolutionary 
process privileges well-adapted individuals in 
selection and improves its surviving time. 

This paper is organized as follows. Section 2 
presents a standard genetic algorithm that employs a 
steady-state population updating and others well-
known features. Section 3 presents the foundations of 
the population-training algorithm. Section 4 shows 
computational results using test functions taken from 
the literature. The main conclusions are presents at the 
end of this paper. 

 
2. Steady-State Genetic Algorithm  
 

A standard genetic algorithm was built, 
incorporating well-known operators found in the 
literature, such as roulette wheel selection [5], blend 
crossover [6], and non-uniform mutation [1]. In this 
work, the standard genetic algorithm will be called 
Steady-State Genetic Algorithm (SSGA).  

SSGA employs a steady-state method to update 
the population [7]. In this method, each descendant 
replaces one of the low-fitness individuals found in 
the population. Explaining better, each crossover 
generates one descendant that replaces a lower-fitness 
individual in the population. Then, a new lower-
fitness individual is found and marked to be replaced 
after the next crossover, and so on.  

This updating method was chosen because it does 
not work with temporal gaps, where a population is 
enough explored before be replaced by another entire 
one (generation updating). Instead, the population 
contains individuals generated in all epochs, as well 
as the updating method employed by the population-
training algorithm, presented in following. In both 
approaches, the offspring directly compete with their 
parents for selections and crossover.   

The SSGA codes the function variables directly as 
real numbers in individuals of a static size population 
that evolves along the generations always preserving 
the best individual.  



 

 

In order to compare the difference between the 
behaviors of both approaches, some experiments were 
made. The first experiment with SSGA employs the 
2-dimension Langerman's function. An initial 
population was generated and evolved along the 
generations. In the Figure 1, it is showed the 
population over the function landscape through four 
snap images: after 100, 500, 1000 and 5000 
generations. Notice that a reasonable diversity is 
maintained in the first 500 evaluations, but quickly 
individuals are grouped around the three promising 
regions (about 1000 generations). At the end, the 
population abandons one of these regions, staying 
around two local minimums, one of the which is the 

global minimum (about F(9.76,0.68) = -1.081). One 
can see the best niche pointed out by lower arrow. 

This experiment was repeated with the 2-
dimension Schwefel's function that has several local 
minimums. Once again, the SSGA population 
converges quickly to lower value surfaces on search 
space. A snap image is showed in Figure 2, after 1000 
generations. One can concludes that, in spite its 
simplicity, SSGA is able to achieve solutions in 2-
dimension fashion and has a wanted behavior in these 
cases.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. SSGA on 2-dimension contour map of Langerman's function after 100, 500, 1000 and 5000 
generations. 

 
 
 

 
Figure 2. SSGA on 2-dimension contour map of Schwefel's function after 1000 generations. 

 

  

  



 

 

3. Population Training Algorithm  
 
The Population Training Algorithm (PTA) ranks a 

dynamic size population by a so-called adaptation 
coefficient. This new attribute considers both the 
objective function value and the error with respect to 
a specific training heuristic. The training heuristic is 
used to extract some information about the problem 
and guides the evolution process aiming performance 
improvement. A similar idea have been employed in 
Constructive Genetic Algorithm (CGA) proposed by 
Lorena and Furtado (2000) to clustering problems [8], 
and recently applied to permutation problems [9].   

In CGA, the adaptation coefficient is also used to 
penalize schemata (individuals with incomplete 
information). In this work, the adaptation coefficient 
of an individual sk is calculated by: 

 δ(sk) = d⋅(Gmax - g(sk)) - (g(sk) - f (sk)) (1) 

where Gmax is a constant upper bound to the 
objective function values; d is a proportionality 
constant with values in [0,1]; g(sk) is the objective 
function value for sk; and  f(sk) is the objective 
function value for a better neighbor of sk, obtained by 
the training heuristic. In (1) there are two 
components: 

• Interval 1 (I1): d⋅(Gmax-g(sk)) measures the 
maximization of the difference between the upper 
bound Gmax and objective function value; 
• Interval 2 (I2): g(sk)-f(sk) measures the error 
obtained with respect a training heuristic   
Before the initial population is generated, the 

upper bound Gmax is set, by the selection of an 
individual with higher objective function value, inside 
a small group of them, which was generated at 
random. The constant d is a parameter to be tuned.  
 Each individual that is generated receives a 
ranking value δ. Firstly, the function objective value 
g(sk) is calculated. Then, a training heuristic is applied 
to sk, trying improve it. If it fails, sk is well-adapted 

with respect to that heuristic. Otherwise, the amount 
I2 is non-zero and is subtracted from I1, penalizing 
the individual. Thus, once Gmax is not changed along 
the generations, the higher rankings in minimization 
problems are obtained by individuals with lower 
values of g(sk) and g(sk)-f(sk). In other words, the 
original problem is modeled as a new one: 
maximizing the interval I1 and minimizing the 
interval I2. 

In the Figure 3, the effect of each one of the two 
intervals, I1 and I2, is showed separately. The 
individuals with maximum I1 are positioned in most 
promising regions (Figure 3a), whilst the individual 
with minimum I2 are positioned in plateaus or regions 
from where they are likely to be a local minimum 
(Figure 3b). The entire population fills a meaningful 
piece of search space. The unfilled pieces are that 
where g(sk) closes to Gmax (high values) and the 
individuals initially generated in there are 
progressively eliminated by an adaptive rejection 
threshold, to be explained later.  
 
3.1. The training heuristic 
 

For better understanding the I2 interval is 
indispensable to explain the heuristic employed to 
train the population and the evolution process. In the 
performed experiments, the following well-known 
local optimizers (acting as heuristics) to numerical 
optimization are tested: the down-hill simplex [10], 
and the popular finite-difference gradient method. 
These methods are computationally expensive, 
because their complexity is a function of the 
dimension of the problem (number of variables on 
objective function). Besides, the training method shall 
to be applied to each individual when it is generated. 
For this reason a third method was built and tested, 
achieving good results: the in-line search method. 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3. Interval minimization effect on 2-dimension contour map of Schwefel's function after 1000 
generations: a) individuals with d.(Gmax-g) values about 80% of the best δδδδ ; b) individuals with (g-f) values 

equal to zero (well-trained by a heuristic) 
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Figure 4. One-dimension example of the in-line search method 

 
The in-line search method is based on the idea that 

it can be better to walk to well-adapted individuals. 
Thus, an individual sr is chosen at random from the set 
of well-adapted ones. This set is defined through a 
percentage of population. For example, the 20% better 
ranked individuals form the set of individuals from 
where one will be selected as reference point sr to in-
line search method. Then, a fixed number of 
individuals (s1, s2, ..., sn ) are sampled along the line 
between sk  and sr and the best objective function 
evaluation is held on as f(sk) value. In order to 
extrapolate the region between sk and sr, the method 
take other samples after sr. 

The Figure 4 shows a one-dimension example of 
the in-line search method being performed. In this 
case, two individuals are selected between sk and sr 
and a third one is selected after sr, extrapolating the 
interval. Notice that the second sample, s2, had got the 
best objective function value. Then, g(s2) is assigned 
to f(sk). 
 
3.2. The recombination process 
 

The ranked individuals in expression (1) are 
maintained in descendent order, i.e., the first 
individuals are better adapted than the last ones. In 
this work, the selection operator was built to 
privileges the well-adapted individuals. Two 
individual are selected: one come from the population 
elite and the other come from the entire population. 
The elite group is the same used to choose the 
reference point in the in-line search method. A similar 
selection operator has been employed on Constructive 
Genetic Algorithms and is called base-guide selection 
[8]. After the selection of two individuals, the blend 
crossover (BLX-α, with α=0.25) is also applied to 
generate another individual, and this new individual 
can undergo a non-uniform mutation [1] with low 
probability (about 1%). Then, the new individual is 
evaluated (δ-calculation) and updated in the dynamic 
size population, according to its adaptation 
coefficient. The updating process, as well as the entire 
evolution process, is explained at following. 
 
 

3.3. The evolution process 
 

The updating process of PTA privileges the well-
adapted individuals that are placed in the top of the 
ranked population. An adaptive rejection threshold, α, 
provides a progressive elimination of the ill-adapted 
individuals. It will be related to evolution time 
(generation). 

The population at the evolution time α, denoted by 
Pα, is dynamic and its size varies accordingly the 
value of the adaptive parameter α, and can be emptied 
during the process. The parameter α is now compared 
to the ranks in expression (1), thus yielding the 
following expression:   

α ≥ δ(sk) = d⋅(Gmax - g(sk)) - (g(sk) - f (sk)) (2) 

At the time they are created, individuals receive 
their corresponding rank δ(sk). At each generation, 
these δ are compared with the current evolution 
parameter α. If the condition in (2) is satisfied, the 
individual sk is eliminated.    

Considering that the well-adapted individuals need 
to be preserved for recombination, the evolution 
parameter α is started from the lowest δ value (taken 
from the bottom of the ranked population), and then 
increases with step proportional to actual population 
size |P|. 

 l
Gr

Pk bottop +
δ−δ

⋅⋅+α=α ||  (3) 

where k is a proportionality constant, l is the 
minimum increment allowed, Gr is the remaining 
number of generations, and  (δtop-δbot) is the actual 
range of values of δ. 

One can observe that the adaptive increment of α 
is affected by the own environment (population size, 
best and worst δ's, etc). Thus, once the PTA achieves 
very good regions and does not get to improve the 
best rank, the parameter α goes eliminating the 
individuals until the population is emptied. The 
Figure 5 shows four snap images after 100, 500, 1000 
and 5000 generations for 2-dimension Langerman's 
function. 



 

 

Notice that dynamic population fills great part of 
the search space and, along the generations, and the 
offspring are attracted to promising regions, like 
SSGA, but the density of individuals is reasonably 
greater. Perhaps this fact can contribute for an 
intensification of pressure over the local minimums as 
well as over the global one. At the end, about 
generation 5000, the population was practically 

emptied and few individuals are left in two 
minimums, including the same global minimum found 
by SSGA. The overall numerical results of all 
experiments that were made with both SSGA and 
PTA approaches are summarized and commented in 
next section. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. PTA on 2-dimension contour map of Langerman’s function after 100, 500, 1000 and 5000 
generations. 

 
4. Computational tests  
  

The SSGA and PTA were coded in ANSI C and 
run on Intel Pentium III (450Mhz) hardware. For the 
computational tests, some parameters were adjusted in 
both approaches. Once adjusted, 20 trials were 
performed with 6 test function in the 5-dimensions 
and 10-dimension cases, giving 240 trials with each 
approach.  

The best results found with SSGA were obtained 
with non-uniform mutation and blend crossover 
probabilities equal to 5% and 100% respectively and 
an initial population of 300 up to 1000 individuals. 
The blend crossover parameter α is equal to 0.25, as 
well as in PTA.  The best results found in PTA were 
obtained with d parameter set to 0.10. This configures 
the proportionality between intervals I1 and I2. The k 
and l constants used at the step size of the adaptive 
rejection threshold α were set to 1⋅10-2 and 1⋅10-5 in 
most of the test functions. But in 10-dimension 
Langerman's function, it was not possible to find the 
right values to them. The results for this test function 
were under the expectation. In PTA, the non-uniform 
mutation probability was set to 1%. 

The stop criterion is: a) the expected best solution 
is found; or b) after 100 generations the best 
individual is not changed; or c) the limit of 751000 
evaluations of the objective function is reached. The 
expected best solutions used on stop criteria are 
known in the literature and shown in Table I.  Some 
executions of SSGA did not reach best solutions and 
had an excessive number of functions evaluations.  

For each one of the 20 trials, the average (M) of  
the solutions found is calculated and the percentage of 
the error related to the expected solution can be 
calculated by [M-F(s*)], where F(s*) is the expected 
best solution.  

Table I also shows the comparison between PTA 
and SSGA for 5-dimension and 10-dimension test 
functions. In 5-dimension, PTA approach presents a 
best overall performance, even without considering 
the poor performance of SSGA in rosenbrock's 
function. PTA obtains 7.66% of average error against 
15,88% obtained by SSGA.  In 10-dimension, once 
again SSGA runs poorly in rosenbrock's function (the 
best solution found was 6.10). Excluding the 
rosenbrock's result of both, there exist an equilibrium 
of performance: PTA with 23.95% of error and SSGA 
with 26.75%.  In 5-dimention, PTA had better 

 

 



 

 

performance in rosenbrock's, and langerman's 
functions, although in this last, both approaches did 
not have any success. In 10-dimention, PTA was 
better than SSGA in rosembrock's, langerman's, and 
michalewicz 's functions.  

The running times and the number of objective 
function evaluations are showed in Table I (averages). 
One can see that SSGA seems to be faster than PTA, 
although it perform more calls to the objective 
function. 

 
 

Table 1.  Comparison of results 
 AVG Solution Error AVG Evaluation / AVG Time (s)  

 PTA SSGA 
Expected 
Solution PTA SSGA PTA SSGA 

Rosembrock(5) 0.012 0.351 0.001 0.011 0.350 486024.50 13.0 534000.00 5.7 
Rastrigin(5) 0.001 0.001 0.001 0.000 0.000 178334.30 4.8 98992.70 1.1 

Griewangk(5) 0.009 0.006 0.001 0.008 0.005 304628.80 8.1 540362.45 5.8 
Langerman(5) -0.963 -0.358 -1.400 0.437 1.042 103839.00 2.8 751024.00 8.0 

Michalewicz(5) -4.682 -4.687 -4.687 0.005 0.000 83140.80 2.2 92533.80 1.0 
Schwefel(5) -2094.672 -2094.908 -2094.914 0.243 0.006 359142.70 9.6 404562.20 4.3 

Rosembrock(10) 0.102 6.640 0.001 0.101 6.639 703015.50 18.7 751000.00 8.0 
Rastrigin(10) 0.007 0.001 0.001 0.006 0.000 142098.40 3.8 243424.20 2.6 

Griewangk(10) 0.009 0.009 0.001 0.008 0.008 353668.30 9.4 574628.80 6.1 
Langerman(10) -0.004 -0.003 -1.400 1.396 1.397 422314.40 11.3 751000.00 8.0 

Michalewicz(10) -9.555 -7.693 -9.660 0.105 1.967 691504.10 18.4 751000.00 8.0 
Schwefel(10) -3942.296 -3952.952 -4189.829 247.533 236.877 368686.50 9.8 544419.20 5.8 

      349699.77 9.3 503078.94 5.4 

 
5. Conclusion   
 

This work describes the preliminary results of an 
evolutionary approach based on population training in 
heuristics applied to minimization of unconstrained 
functions. The Population Training Algorithm (PTA) 
proposes a new concept of population training, 
working with a dynamic population, ranked by an 
adaptation coefficient. To compare its performance, it 
was built a steady-state genetic algorithm (SSGA) that 
combines some well-succeeded features of other 
genetic algorithms. Both algorithms are tested with 
some well-known test instances (functions) obtaining 
comparable good solutions. Some experiments 
confirm their good overall behavior seeking for local 
optimum. The PTA also has the reinforced effect of 
move away from unpromising solutions. Some further 
work is allowed on new heuristics for PTA and its 
adaptation to constrained problems.  
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