An Analysis of Application of An Aggregation-Disaggregation Algorithm for Nearly Completely Decomposable Markov Chains to Hypercube Queueing Model

L. Luque¹, S.V. Carvalho¹

¹Laboratory for Computing and Applied Mathematics - LAC
Brazilian National Institute for Space Research - INPE
C. Postal 515 – 12245-970 – São José dos Campos - SP
BRAZIL
E-mail: leandro@lac.inpe.br, solon@lac.inpe.br

Keywords: Markov chain, hypercube queueing model, decomposition, iterative aggregation-disaggregation, nearly completely decomposable.

Markov chain models are used in a variety of applications, including, among others, queueing systems, inventory problems and maintenance models. A Markov model is especially useful in determining the steady state probabilities (long-run behavior) for the modeled system. The standard procedure for obtaining these steady state probabilities involves the solution of a set of linear equations. Unfortunately, when modeling real systems, the state space and hence the number of equations is often very large and, therefore, the computation of the stationary probabilities through traditional methods becomes impractical in terms of computer memory and computation time.

An example of a Markov chain-based model which may present these computational restrictions is the hypercube queueing model, proposed by Larson (1974) and studied by several authors (Brandeau & Larson, 1986; Burwell et al., 1993; Chelst & Jarvis, 1979; Chelst & Barlach, 1981; Gau & Larson, 1988; Halpern, 1977; Jarvis, 1985; Larson, 1975; Larson & Odoni, 1975; Mendonça & Morabito, 2000; Swersey, 1994). The hypercube model is a valuable tool for planning server-to-customer service systems. The computational restrictions due to the fact that the identity of individual service units is preserved on the state space to calculate some performance measures and to allow complex dispatch policies.

For moderately sized models the steady state probabilities can be obtained in a number of ways, such as through Gaussian elimination method or Gauss-Seidel iterative method, but for large systems, the solution becomes impractical through the traditional direct and iterative methods. For systems with homogenous service units (with the same service time), Larson developed an approximate procedure based on a system of N non-linear equations which is computationally much less time and memory-consuming than exact methods, but with low accuracy for unbalanced systems (Luque & Carvalho, 2006).

As in many practical applications (mainly in emergency service systems of big cities), the service units are non-homogeneous and appear in great number and given the lack of efficient methods for the solution of the model, the study of alternative methods of solution for hypercube queueing model becomes important.

In large models, often the structure of the Markov chain can be exploited, in an approximate or exact solution procedure, to reduce the computational load and memory requirements. Some examples of special structures that can be exploited are exactly and weakly lumpable, single input or exit state decomposable, mandatory sets and nearly completely decomposable (Kim & Smith, 1991). The structure of interest in this paper is the near completely decomposable-NCD (another commonly used terminology is nearly uncoupled or nearly separable). This class of Markov chains is characterized by a clustering of the states into groups, with strong interactions between states in the same group, and weak interactions between states in different groups (Courtois, 1977; Meyer, 1989; Simon & Ando, 1961).

In this paper we will study the application of Koury, McAllister and Stewart-KMS (Stewart, 1994) aggregation-disaggregation algorithm which exploits the near completely decomposable structure of Markov chains to hypercube queueing model. This study will be carried out in two parts. Firstly, the KMS algorithm will be applied to the original hypercube Markov chain. Secondly, a partitioning algorithm (Dayar, 1998; Dayar & Stewart, 2000; Sezer & Šiljak, 1986) will be applied to the original Markov chain before the application of KMS algorithm. The models that will be used in this study will be generated randomly with variations in some parameters, such as number of servers, traffic intensity etc.
REFERENCES


