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Abstract. Traditional query processing provides exact answers to queries. 

However, in many applications, the response time of exact answers is often 

longer than what is acceptable. Approximate query processing has emerged as 

an alternative approach to give to the user an answer in a short time. The goal 

is to provide an estimated result in one order of magnitude less time than the 

time to compute the exact answer. There is a large set of techniques for 

approximate query processing; however, most of them are only suitable for 

traditional data. This work proposes new algorithms for a set of spatial 

operations that can be processed approximately using 4CRS (Four-Color 

Raster Signature). 

Resumo. Processamento tradicional de consultas visa prover respostas exatas 

para consultas; todavia, em muitas aplicações, o tempo de uma resposta exata 

é frequentemente muito maior do que o desejado. Processamento aproximado 

de consultas tem surgido como uma abordagem alternativa para processar 

consultas em um curto período de tempo, retornando uma resposta estimada 

para o usuário. Existem várias técnicas para processamento aproximado de 

consultas; todavia, muitas delas são aplicáveis apenas a dados tradicionais. 

Este trabalho propõe novos algoritmos para operações espaciais que podem 

ser processadas de forma aproximada usando a assinatura 4CRS (Assinatura 

Raster de Quatro Cores). 

1. Introduction 

A main issue in database area is to process queries efficiently so that the user does not 

have to wait a long time to get an answer. However, there are many cases where it is not 

easy to accomplish this requirement. In addition, a fast answer could be more important 

for the user than receiving an accurate exact one. In other words, the precision of the 

query could be lessened, and an approximate answer could be returned, provided that it 

is much faster than the exact query processing, and it has an acceptable accuracy.  

Approximate query processing has emerged as an alternative for query 

processing in environments for which providing an exact answer can demand a long 

time. The goal is to provide an estimated response in orders of magnitude less time than 



  

the time to compute an exact answer, by avoiding or minimizing the number of disk 

accesses to the base data (Gibbons et al., 1997). 

There are a large set of techniques for approximate query processing available in 

different research areas, as presented by Azevedo et al. (2004). Good surveys of 

techniques for approximate query processing are presented by Barbara et al. (1997) and 

Han and Kamber (2001), where several techniques are described and evaluated, w.r.t. 

data types being reduced and applications where they can be applied. However, most of 

the techniques are only suitable for relational databases. On the other hand, providing a 

short time answer to queries becomes a bigger challenge in spatial database area, where 

the data usually have high complexity and are available in huge amounts. Furthermore, 

this subject is a hot research issue in spatial-temporal databases as pointed by Roddick 

et al. (2004). Besides the complexity and huge amount of data, Roddick et al. (2004) 

emphasize that several spatial applications focus on retrieving approximate summarized 

information about objects that satisfy some spatio-temporal predicate (e.g., “the number 

of cars in the city center 10 minutes from now”), and not focus on exact information 

about the qualifying objects (i.e., the car ids), which may be unavailable, or irrelevant.  

Spatial data consists of spatial objects made up of points, lines, regions, 

rectangles, surfaces, volumes, and even data of higher dimension which includes time 

(Samet, 1990). Examples of spatial data include cities, rivers, roads, counties, states, 

crop coverage, mountain ranges etc. It is often desirable to attach spatial with non-

spatial attribute information. Examples of non-spatial data are road names, addresses, 

telephone numbers, city names etc. Since spatial and non-spatial data are so intimately 

connected, it is not surprising that many of the issues that need to be addressed are in 

fact database issues. 

Spatial DBMS (Database Management Systems) provides the underlying 

database technology for Geographic Information Systems (GIS) and other applications 

(Güting, 1994). There are numerous applications in spatial database systems area, such 

as: traffic supervision, flight control, weather forecast, urban planning, route 

optimization, cartography, agriculture, natural resources administration, coastal 

monitoring, fire and epidemics control (Aronoff, 1989; Tao et al., 2003). Each type of 

application deals with different features, scales and spatiotemporal properties. 

In a traditional SDBMS query processing environment (Figure 1), user queries 

are sent to the database that processes them and returns to the user an exact answer. In 

database updates, new data can be inserted or existing data can be updated or deleted 

from the database. 

On the other hand, in a SDBMS set-up for providing approximate query 

answers, a new component is added, the approximate processing engine (Figure 2). In 

this new framework, queries are sent directly to the approximate processing engine. It 

processes the query and returns an approximate answer to the user, along with a 

confidence interval showing the response accuracy. If the precision is not sufficient for 

the user to take his decision, the query can be processed by the SDBMS, providing an 

exact answer to the user.  

The approximate processing engine stores reduced representation of real data to 

perform the approximate processing. Therefore, it is also possible, to execute the query 



  

partially over approximate data and partially over real data, when it is not guaranteed 

that some approximations (or synopses) of objects do not produces the desired accuracy 

or if the real representation of objects are so simple that it has the same processing costs 

of computing the exact or the approximate answer. For instance, to compute the area of 

a polygon of few vertices could be executed in almost the same time as the time to 

process the same query over a synopsis of the real data. 
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Figure 1. Tradition SDBMS query 

processing environment. 

Figure 2. SDBMS set-up for providing approximate 

query answers. 

One important issue regards to the approximate processing engine is related to 

the maintenances of data. When new data arrives or stored data is updated, it is also 

required to store the representations of new objects in the engine or update the existing 

synopses. Therefore, it is also important that synopses can be computed quickly. In the 

case of deletion of objects, the existing synopses must be deleted as well. Thus all 

information that comes or leaves the SDBMS must be sent to the approximate engine in 

order to keep it up-to-date. 

 This work is concerned with the use of raster signatures in approximate query 

processing in spatial databases. We extended the proposals of Azevedo et al. (2004, 

2005) of using Four-Color Raster Signature (4CRS) (Zimbrao and Souza, 1998) for fast 

and approximate processing of queries over polygon datasets.  We propose several new 

algorithms for a set of spatial operations that can be processed approximately using 

4CRS. 4CRS stores the main data characteristics in an approximate and compact 

representation that can be accessed and processed faster than real data. By doing so, the 

exact geometries of objects are not processed during query execution, which is the most 

costly step of a spatial operation, since it requires to search and to transfer large objects 

from disk to main storage (Brinkhoff et al., 1994; Lo and Ravishankar, 1996). Also, the 

exact processing needs to use CPU-time intensive algorithms to decide whether the 

objects match the query condition (Brinkhoff et al., 1993). As a result, the approximate 

query answer is returned in a shorter time than the time to return an exact answer. On 

the other hand, the answer is estimated and not exact, so a precision measure is also 

returned as a confidence interval that allows the user to decide if the accuracy of the 

response is sufficient. In general, this approximate answer is enough for many 

applications.  

 It is important to emphasize that the main target of this work is to present our 

proposals of algorithms, while the experimental evaluation of them is a current work 



  

being developed on Secondo (Güting et al., 2005), which is an extensible DBMS 

platform for research prototyping and teaching. However, the experimental results of 

evaluating approximate processing against exact processing presented by Azevedo et al. 

(2004, 2005) demonstrated the efficiency of using 4CRS for approximate query 

processing. Azevedo et al. (2004) evaluated an algorithm for computing polygon 

approximate area and an algorithm for computing the approximate area of polygon × 

window intersection (window query). According to those evaluations, the approximate 

processing is 3.5 times and 14 times faster than the exact processing in response time, 

while 52 times and 14 times faster relate to number of disk accesses, respectively. The 

response error is also quite small, an average of -2.62% and 1%, respectively. Azevedo 

et al. (2005) evaluated an algorithm for estimating the overlapping area of polygon join. 

In this case, the approximate processing varies from 5 to 15 times faster than the exact 

processing in response time and from 5 to 10 times faster relate to number of disk 

accesses. Approximate answers have an average error of 0.6%. 

This work is divided in sections, as follows: Section 2 presents scenarios and 

applications where approximate query processing can be applied; Section 3 presents our 

proposals of algorithms for approximate processing of several spatial operations; and, in 

Section 4, we present the conclusions and future work. 

2. Scenarios and Applications 

There are many scenarios and applications where a slow exact answer can be replaced 

by a fast approximate one, provided that it has the desired accuracy. Hellerstein et al. 

(1997) emphasize that in Decision Support Systems the increasing in business 

competitiveness is requiring an information-based industry to make more use of its 

accumulated data, and thus techniques of presenting useful data to decision makers in a 

timely manner are becoming crucial. They propose also the use of approximate query 

processing during a drill-down query sequence in ad-hoc data mining, where the earlier 

queries in the sequence are used solely to determine what the interesting queries are. 

Papadias et al. (2001) proposes the approximate query processing for spatial OLAP. 

Gibbons et al. (1997) highlight that an approximate answer can provide feedback 

on how well-posed a query is.  Besides, it can be used when the query requests 

numerical answers, and the full precision of the exact answer is not required, e.g., a 

total, average, or percentage for which only the first few digits of precision are of 

interest (such as the leading few digits of a total in millions, or the nearest percentile of 

a percentage). 

Ioannidis and Poosala (1995) and Gibbons et al. (1997) propose the use of 

approximate query processing to define most efficient execution plan for a given query. 

Das et al. (2004) propose its use in selectivity estimation in Spatial Database 

Management Systems (SDBMS) in order to return approximate results that come with 

provable probabilistic quality guarantees. 

An approximate answer can also be used as an alternative answer when the data 

is unavailable in data warehousing environments and in distributed data recording as 

pointed by Gibbons et al. (1997), Faloutsos et al. (1997) and Jagadish et al. (1995) or in 

mobile computing as highlighted by Madria et al. (1998). In mobile computing, it can be 

advantageous to relax completeness or precision criteria so that an approximate answer 



  

can be sent to the user in cases of slow network link, temporary non-availability, or even 

low resources of internet connection or available memory for query processing (Madria 

et al., 1998). 

Dobra et al. (2002) indicates to use approximate query processing in order to 

make decisions and infer interesting patterns on-line, such as over continuous data 

streams. In stream environment usually only limited memory resources are available to 

query processing related to the volume of data. Thus, we need algorithms that can 

summarize the data streams involved in a concise and reasonably accurate synopsis (or 

approximations of the real data) that can be stored in small amount of memory and can 

be used to provide approximate answers to user’s queries along with some reasonable 

guarantees of answer’s accuracy. For example, in applications for trend analysis and 

fraud/anomaly detection in telecom-network data, where the goal is to identify generic, 

interesting or “out-of-the-ordinary” patterns rather than provide results that are exact to 

the last decimal. 

3. Approximate query processing using Four-Color Raster Signature 

The 4CRS signature was first used to improve the processing of spatial joins of polygon 

datasets. It was proposed by Zimbrao and Souza (1998) as a filter in the second step of 

the Multi-Step Query Processor (MSQP) (Brinkhoff et al., 1994), in order to reduce 

exact geometry test of spatial objects.  4CRS is a polygon raster signature represented by 

a small bit-map of four colors upon a grid of cells. Each grid cell has a color 

representing the percentage of the polygon’s area within cell: Empty (0% of 

intersection); Weak (the cell contains an intersection of 50% or less with the polygon); 

Strong (the cell contains an intersection of more than 50% with the polygon and less 

than 100%); and, Full (the cell is fully occupied by the polygon). The grid can have its 

scale changed in order to obtain a more accurate representation (higher resolution) or a 

more compact one (lower resolution). Further details of 4CRS signature can be found in 

Zimbrao and Souza (1998) and Azevedo et al. (2004). 

The 4CRS characteristics and the good results obtained using 4CRS as 

geometric filter in polygon join processing motivated its use on approximate query 

processing. This new approach has the goal not solely to reduce the number of objects 

that have their exact geometry processed. Instead, we propose to return to the user an 

approximate answer that is obtained processing the query over the 4CRS signatures of 

polygons, without accessing the object’s real representation, and not executing the exact 

geometry step (the most expensive one). Hence, new algorithms must be designed, 

implemented and evaluated to concern to the requirements of this new of approach. 

3.1 Approximate Operations 

There are many operations that could benefit from a fast and approximate query 

processing, so that the user could have an answer in a short time instead of waiting a 

long time for an exact answer. In this work we present our proposals of approximate 

query processing algorithms based on the classification proposed by Güting et al. (1995) 

and Güting and Schneider (1995) in the Rose Algebra. They divide the spatial 

operations into four groups.  



  

• Spatial operators returning numbers: area, number of components, distance, 

diameter, length, perimeter; 

• Spatial predicates: equal, different, disjoint, inside, area disjoint, edge disjoint, 

edge inside, vertex inside, intersects, meet, adjacent, border in common; 

• Operators returning spatial data types values: intersection, plus, minus, 

common border, vertices, contour, interior; 

• Spatial operators on set of objects: sum, closest, decompose, overlay, fusion. 

In this work, we will show directions for designing and implementing 

approximate processing algorithms for those operations. In this section we enumerated 

these operations, and, in the next section (Section 3.2), we present our proposals of 

algorithms. 

3.2 Approximate Operations using 4CRS signature 

This section presents directions for researching of approximate processing algorithms 

for the operations presented in Section 3.1. In order to make the descriptions simpler, 

we present similar operations in the same section. 

3.2.1 Approximate Area of Polygon 

The algorithms that return the approximate area of polygon and the approximate area of 

polygon within cell are proposed by Azevedo et al. (2004), while the algorithm that 

returns the approximate area of polygon join are proposed by Azevedo et al. (2005), 

those works that this work extends. The first two algorithms are based on the expected 

area of polygon within cell and the last is based on the expected area of intersection of 

two types of cells. These definitions are presented in details in those works. Therefore, 

we will present here only short explanations of those definitions, which are used to 

describe our new proposals of algorithms. 

The expected area of polygon within cell corresponds to a sum of estimatives of 

the area of polygon within cell types. For example, an expected area of polygon within 

an Empty cell is equal to 0% (zero percent), since there is no portion of the polygon 

inside the cell. For Weak, Strong and Full cells the estimatives are 25%, 75% and 100%, 

respectively. 

The expected areas of intersection of two types of cells are used to estimate the 

intersection of two polygons, which is approximately answered as the intersection of 

their 4CRS signatures. For example, the expected area corresponding to a combination 

of an Empty cell with any other type of cell results in an expected area of 0% (zero 

percent). Similarly, when two Full cells overlap, the expected area is 100%. More 

details about expected area are presented in Azevedo et al. (2004, 2005). 

3.2.2 Distance 

The distance between two polygons can be estimated from their 4CRS signatures, 

computing the distance among cells corresponding to polygons’ borders (Weak and 

Strong cells). The result can be estimated as the average of the minimum and maximum 

distances computed as follow. The minimum distance is the distance between the outer 



  

borders of cells (borders adjacent to borders of Empty cells), while the maximum 

distance is computed from the inner borders of these cells (i.e., borders opposite to the 

outer borders). The minimum and maximum distances can be used to define a 

confidence interval for the computed approximate distance. Figure 3 presents an 

example of computing the distance between two polygons using their 4CRS. The 

polygons are presented in Figure 3.a, while Figure 3.b shows their 4CRS signatures. 

Figure 3.c is a zoom of a cell combination used to compute the approximate distance, 

highlighting the minimum and maximum distances between two cells.   

 

... ... ... 

 

Distância 

máxima 
Distância 

mínima 

(a) (b) (c)  

Figure 3. Example of computing the minimum and maximum distance between 

two polygons from their 4CRS signatures. 

3.2.3 Diameter 

The diameter of a spatial object is defined as the longest distance between any of its 

components. Therefore, in the case of polygons, the diameter is the longest distance 

between the faces that compose the polygon. So, the diameter can be computed using 

the same algorithm to compute distance between polygons, since each face has a 

different 4CRS signature, as presented in Figure 4.  

 

Figure 4. Example of computing the diameter of a polygon made by three faces 

from its 4CRS signature. 

3.2.4 Perimeter and Contour 

The perimeter operation calculates the sum of the length of all cycles of a region (or 

polygon) value. If we intend to compute only the sum of the length of the outer cycles 

and not consider the holes of a polygon, the contour operator can be used to eliminate 

holes first. The perimeter of a polygon can be computed from its 4CRS signature. A 

simple proposal is to compute the perimeter as the average of the outer perimeter and 

the inner perimeter. Figure 5 presents an example of outer and inner perimeters of a 

polygon. Figure 5.a and Figure 5.b show the polygon and its 4CRS signature, 

respectively. Figure 5.c presents the outer perimeter of the 4CRS signature, and Figure 

5.d presents the inner perimeter. The outer perimeter can be computed as the sum of the 



  

length of edges corresponding to the borders of cells of type different from Empty, those 

are adjacent to Empty cells (for example, cell c’ presented in Figure 5.b, whose Top and 

Left edges would be considered as part of the outer perimeter) or adjacent to the border 

of the signature’s MBR (for example, cell c’’ presented in Figure 5.b, whose Top and 

Left edges would also be considered as part of the outer perimeter). MBR (Minimum 

Bounding Rectangle) is the smallest rectangle that encloses a spatial object. It is the 

most popular geometric key. MBR reduces a spatial object’s complexity to four 

parameters that retain its most important characteristics: position and extension.  The 

signature’s MBR is the smallest rectangle that encloses the object’s signature, and its 

coordinates are in power of two (Zimbrao and Souza, 1998). On the other hand, the 

inner perimeter could be computed as the sum of length of edges of cells adjacent to the 

cells that were considered when computing the outer perimeter.  
 

 
(a) (b) (c) 

 
(d) 

 

c’ 
 

c’’ 

 

Figure 5. Example of outer and inner perimeter of polygon from its 4CRS 

signature. 

The calculus of the contour of a polygon can be approximately computed from 

its 4CRS signature similarly to the calculus of the perimeter of a polygon. We can 

connect the medium points of Weak and Strong cells in order to compute the contour of 

the polygon, and we can assume that the maximum contour corresponds to the cells that 

compose the outer perimeter (Figure 5.c) and the minimum contour corresponds to cells 

that compose the inner perimeter (Figure 5.d). 

3.2.5 Equal and Different 

In exact processing, the equal and different operations returns exactly if two objects are 

equal or not, respectively. On the other hand, in approximate processing using 4CRS is 

not always possible to state that objects are equal or different with 100% of confidence. 

In this case, the equality and inequality is defined as a function that returns a value in the 

interval [0,1] that indicates a true percentage of the equality (or inequality) of objects. 

We call this value as “affinity degree”. By doing so, we can test if two objects are equal 

(or different) using their 4CRS signatures. For each comparison of pair of cells we 

compute an affinity degree. The final affinity degree is equal to the sum of the 

individual degrees divided by the number of comparisons of pair of objects, if no trivial 

case occurs. So, for instance, when comparing a pair of Empty cells, we can state that 

the polygons are 100% equal, since Empty cells do not have any intersection with 

polygon. Similarly, two polygons are equal when comparing Full cells. On the other 

hand, when comparing Weak and Strong cells a different reasoning must be used. Our 

proposal is to use for these cases the concept of expected area employed by the 

algorithm that computes the approximate area of polygon × polygon intersection 

(Azevedo et al., 2005). In other words, for exact cases (comparisons of Empty ×Empty 

and Full × Full cells) the equality (or affinity degree) is 1, while for other cases the 



  

affinity degree is equal to the expected area. For instance, the overlap of Weak × Weak 

cells contributes with 0.0625, while the overlap of Strong × Strong cells contributes 

with 0.5625, which represent the intersection of polygon intersection using their 4CRS 

signatures’ cells. The answer is computed as the sum of the affinity degrees divided by 

the number of comparisons. It is important to highlight that if exists at least one overlap 

of different cell types we can state that the objects are not equal.  

The algorithm that returns if two objects are equal is presented in Figure 6. The 

algorithm returns 0 if the polygons are not equal, otherwise it returns an affinity degree 

that shows a measure of equality of the objects.  

 1. real equal(signat4CRS1, signat4CRS2) 
 2.   if signat4CRS1.lengthOfCellSide ≠ signat4CRS2.lengthOfCellSide then 
 3.      return 0; 
 4.   if signat4CRS1.nCells ≠ signat4CRS2.nCells then 
 5.      return 0; 
 6.   if signat4CRS1.mbr ≠ signat4CRS2.mbr then 
 7.      return 0; 
 8.   affinityDegree = 0; 
 9.   nRuns=0; 
 10.  for each c1 cell of signat4CRS1 do 
 11.    for each c2 cell of signat4CRS2 that overlaps c1 do 
 12.       if c1.type==c2.type then 
 13.          if c1.type==Empty or c1.type==Full then 
 14.             affinityDegree += 1; 
 15.          else if c1.type==Weak then 
 16.             affinityDegree += 0.0625; 
 17.          else 
 18.             affinityDegree += 0.5625; 
 19.       else 
 20.         return 0; 
 21.       nRuns++; 
 22.  return affinityDegree / nRuns; 

 

Figure 6. Algorithm that returns if two polygons are approximately equal. 

In the case of the operation different, we can use a similar reasoning, and we 

propose an algorithm similar to “equal” algorithm (Figure 6). If the objects’ signatures 

have different cell size or different number of cells or different MBRs then they are 

different. In other words, we must change the lines 3, 5 and 7 of the algorithm to return 

1 instead of zero. The other changes must be done in the loop that evaluate the overlap 

of pair of cells (line 12 to line 20). The overlap of empty or full cells represents an 

affinity degree equals to zero (line 14 - “affinityDegree += 0”). The overlap of two Weak 

cells represents that the polygons has affinity degree equal to “1 – 0.0625” to be 

different (line 16 – “affinityDegree += 1 – 0.0625”). In the case of Strong cells overlap, 

the affinity degree is equal to “1 – 0.5625” (line 18 – “affinityDegree += 1 – 0.5625”). If 

exists an overlap of different cell types then the objects are different (line 20 – “return 

1”). 

3.2.6 Disjoint, Area Disjoint, Edge Disjoint 

Two objects are disjoint if they have no portion in common. In the case of area disjoint, 

the objects do not have area in common, but they can have overlap of their edges. On 

the other hand, two objects are edge disjoint if they do not have overlap of edges. 4CRS 

signatures can be used to estimate if two objects are disjoint, area disjoint or edge 

disjoint. In some cases it is also possible to return an exact answer. 



  

When comparing the 4CRS signatures of two polygons, if there are only overlap 

of Empty cells × any other type of cells, we can state that the polygons are disjoint, and, 

consequently, they are also area disjoint and edge disjoint. On the other hand, if there is 

at least one overlap of a Full cell × Weak or Strong or Full cell, we can state that the 

objects are not disjoint nor area disjoint nor edge disjoint. It is also possible to state that 

two polygons are edge disjoint if there is no overlap of Weak × Strong cells, i.e., or one 

polygon is inside the other, or it is outside the other. Therefore, an approximate answer 

is returned to the user only when there are intersections of Weak × Strong cells, 

otherwise we can return an exact answer. 

Our proposal is to use the expected area of overlap of two cells to estimate the 

answer for these cases, and to return to the user an affinity degree of the answer. Thus, a 

weight of 100% is assigned to pair of cell comparisons where it is possible to have an 

exact answer. In the cases that an approximate value is computed, we propose to use the 

complement value of the expected area of polygon intersection, since we are interested 

in estimating disjunction of polygons, which is opposite to estimating the intersection 

area of polygons. 

Figure 7 presents an algorithm to compute an affinity degree about disjunction of 

two polygons. This algorithm can be also used to determine if two objects are area 

disjoint.    
 1. real disjoint(signat4CRS1, signat4CRS2) 
 2.    interMBR = intersectionMBR(signat4CRS1, signat4CRS2); 
 3.    if interMBR is NULL then /*Does not exist MBR intersection*/  
 4.       return 1; 
 5.    if (signat4CRS1.lengthOfCellSide < signat4CRS2.lengthOfCellSide) then 
 6.       s4CRS = changeScale(signat4CRS1, signat4CRS2.lengthOfCellSide); 
 7.       b4CRS = signat4CRS2; 
 8.    else  
 9.      if (signat4CRS1.lengthOfCellSide > signat4CRS2.lengthOfCellSide) then 
 10.        b4CRS = signat4CRS1; 
 11.        s4CRS = changeScale(signat4CRS2,signat4CRS1.lengthOfCellSide); 
 12.     else /* (signat4CRS1.lengthOfCellSide == signat4CRS2.length OfCellSide)*/
 13.        s4CRS = signat4CRS1; 
 14.        b4CRS = signat4CRS2; 
 15.   affinityDegree = 0; 
 16.   nRuns = 0; 
 17.   for each b4CRS cell b that is inside interMBR do 
 18.      for each s4CRS cell s that intersects cell b do 
 19.         if ( (b.type == Empty) or (s.type == Empty) ) then 
 20.            affinityDegree += 1; 
 21.         else 
 22.           if ( (b.type == Weak) and (s.type == Weak or s.type == Strong ) ) or 
 23.              ( (b.type == Strong ) and (s.type == Weak)) then 
 24.              affinityDegree += (1 - expectedArea[s.type,b.type]); 
 25.           else /*Full × Full*/  
 26.              return 0; 
 27.         nRuns++; 
 28.   return affinityDegree / nRuns; 

 

Figure 7. Algorithm for returning if two objects are disjoint. 

The algorithm to evaluate if two polygons are edge disjoint is very similar to the 

algorithm proposed in Figure 7. The only difference is in the part that compares Full  × 

Full cells that correspond to line 22  that must be changed by “affinityDegree += 1”).   



  

3.2.7 Inside (Encloses), Edge Inside, Vertex Inside 

From the 4CRS signatures of two polygons is possible to state that a polygon P1 is 

inside a polygon P2 if all cells of 4CRS signature of P1, different from Empty, are 

overlapped by Full cells of the 4CRS signature of P2. On the other hand, if there is an 

overlap of at least P1 cell of type different from Empty with an Empty cell of P2, we can 

state that P1 is not inside P2. In the case of overlap of Weak × Strong cells or Weak × 

Weak cells or Strong × Strong cells, it is not possible to return an exact answer. Hence 

we need to define an approximate value for these cases of cell overlaps. We propose to 

use the expected area of polygon intersection for estimating the answer. The algorithm 

for inside and edge inside operations are the same. However, the vertex inside operation 

cannot be approximately processed using 4CRS signature, since information about 

polygon’s vertices is not stored by the signature. It is possible to return if a polygon is 

not vertex inside related to other polygon when they do not intersect, or that the polygon 

is vertex inside when it is completely inside the other polygon. On the other hand, when 

the polygons intersect, but one polygon is not inside the other, it is not possible to return 

an approximate answer for this operation using 4CRS signatures. 

 1. real inside(signat4CRS1, signat4CRS2) 
 2.  if (signat4CRS1.lengthOfCellSide > signat4CRS2.lengthOfCellSide) then 
 3.    return 0; 
 4.  if (signat4CRS1.lengthOfCellSide < signat4CRS2.lengthOfCellSide) then 
 5.      s4CRS = changeScale(signat4CRS1,signat4CRS2.lengthOfCellSide); 
 6.      b4CRS = signat4CRS2; 
 7.  else 
 8.    s4CRS = signat4CRS1; 
 9.    b4CRS = signat4CRS2; 
 10. interMBR = intersectionMBR(s4CRS, b4CRS); 
 11. if interMBR is NULL then /*Does not exist MBR intersection*/ 
 12.    return 0; 
 13. affinityDegree = 0; 
 14. for each b4CRS cell b that is inside interMBR do 
 15.    for each s4CRS cell s that intersects cell b do 
 16.       if b.type == Empty  and s.type ≠ Empty  then 
 17.          return 0; 
 18.       else 
 19.       if (b.type == Weak or b.type == Strong ) then 
 20.          if (s.type == Weak or s.type == Strong ) then 
 21.             affinityDegree += expectedArea[s.type,b.type]; 
 22.          else  
 23.             if (s.type == Empty ) then 
 24.                affinityDegree += 1; 
 25.             else /*s.type == Full */ 
 26.                return 0; 
 27.       else /*b.type == Full × any s.type*/ 
 28.          affinityDegree += 1; 
 29.       nRuns++; 
 30.  return affinityDegree / nRuns; 

 

Figure 8. Algorithm for returning if a polygon P1 is inside other polygon P2, 

according to their 4CRS signature. 

Figure 8 proposes an algorithm for returning if a polygon P1 is inside other 

polygon P2, according to their 4CRS signature. It is important to note that, according to 

the algorithm that computes the grid of cells (Zimbrao and Souza, 1998), if the cell size 

of signat4CRS1 is greater than the cell size of signat4CRS2, polygon P1 represented by 

assinat4CRS1 is bigger than polygon P2 represented by assinat4CRS2. Hence P1 is not 

inside P2. 



  

3.2.8 Intersects and Intersection 

While the intersect operation returns if two polygons intersect, the intersection operation 

returns the polygon resulting from the intersection. 

For the intersect operation an affinity degree is returned. This value is computed 

using the expected area of polygon intersection. Figure 9 presents an algorithm to 

evaluate if two polygons intersect. It is important to highlight that in many cases it is 

possible to return an exact answer. 

 1. real intersects(signat4CRS1, signat4CRS2) 
 2.  interMBR = intersectionMBR(signat4CRS1, signat4CRS2); 
 3.  if (signat4CRS1.lengthOfCellSide < signat4CRS2.lengthOfCellSide) then 
 4.    s4CRS = changeScale(signat4CRS1, signat4CRS2.lengthOfCellSide); 
 5.    b4CRS = signat4CRS2; 
 6.  else  
 7.    if (signat4CRS1.lengthOfCellSide > signat4CRS2.lengthOfCellSide) then 
 8.       b4CRS = signat4CRS1; 
 9.       s4CRS = changeScale(signat4CRS2,signat4CRS1.lengthOfCellSide); 
 10.   else 
 11.      s4CRS = signat4CRS1; 
 12.      b4CRS = signat4CRS2; 
 13. affinityDegree = 0; 
 14. for each b4CRS cell b and s4CRS cell s that intersects and are inside interMBR do 
 15.      if (b.type == Full ) and (s.type ≠ Empty) then 
 16.         return 1; 
 17.      else 
 18.        if (b.type == Strong ) and  
 19.           ( (s.type==Strong ) or (s.type==Full ) then 
 20.           return 1; 
 21.        else 
 22.           if (b.type == Weak) and (s.type==Full ) then 
 23.              return 1; 
 24.           else 
 25.              if (b.type == Empty) and (s.type==Empty) then 
 26.                 affinityDegree += 1; 
 27.           else 
 28.              affinityDegree += expectedArea[s.type,b.type]; 
 29.       nRuns++; 
 30.    return affinityDegree / nRuns; 

 
Figure 9. Algorithm to evaluate if two polygons intersect. 

In the case of the algorithm that returns the polygon resulting from the 

intersection of two polygons evaluating their 4CRS signatures, we propose the 

following approach: to create a new 4CRS signature from the intersection of the 4CRS 

signatures of the polygons, and generate a polygon connecting the medium points of the 

border cells of the new signature (Weak and Strong cells). The cell types of the new 

signature can be set according to the following values: if the value resulting from the 

intersection of the pair of cells is in the interval (50%, 100%) then the type of the new 

cell is Strong; and, if the value is in the interval (0%, 50%] the type of the new cell is 

Weak. 0% and 100% of intersection define cell types equal to Empty and Full, 

respectively. Figure 10 presents the algorithm for computing the polygon resulting from 

the intersection of 4CRS signatures. It is important to highlight that, along with the 

polygon that represents the intersection, an affinity degree is also returned in order to 

show a degree of similarity between the approximate polygon and the polygon that 

would represent the exact intersection.  



  

 1. Polygon intersection(signat4CRS1, signat4CRS2, affinityDegree) 
 2.   interMBR = intersectionMBR(signat4CRS1, signat4CRS2); 
 3.   if (signat4CRS1.lengthOfCellSide < signat4CRS2.lengthOfCellSide) then 
 4.     s4CRS = changeScale(signat4CRS1, signat4CRS2.lengthOfCellSide); 
 5.     b4CRS = signat4CRS2; 
 6.   else  
 7.     if (signat4CRS1.lengthOfCellSide > signat4CRS2.lengthOfCellSide) then 
 8.       b4CRS = signat4CRS1; 
 9.       s4CRS = changeScale(signat4CRS2,signat4CRS1.lengthOfCellSide); 
 10.    else 
 11.      s4CRS = signat4CRS1; 
 12.      b4CRS = signat4CRS2;    
 13.  n4CRS = createSignature(interMBR, Empty); /*Create 4CRS signature of Empty cells*/ 
 14.  affinityDegree = 0; 
 15.  for each b4CRS cell b and s4CRS cell s and n4CRS cell n  
 16.                     that intersects and are inside interMBR do 
 17.       if (b.type == Full ) then 
 18.         affinityDegree = 1; 
 19.         n.type = s.type; 
 20.       else if (s.type == Full ) then 
 21.         affinityDegree = 1; 
 22.         n.type = b.type; 
 23.       else if (b.type == Empty) or (s.type == Empty) then 
 24.         affinityDegree = 1; 
 25.         n.type = Empty; 
 26.       else if (b.type == Strong ) and (s.type==Strong ) then 
 27.         affinityDegree = expectedArea[s.type,b.type]; 
 28.         n.type = Strong ; 
 29.       else /* ( (b.type == Strong) and (s.type==Weak) ) or */ 
 30.            /* ( (s.type == Strong) and (b.type==Weak) ) or */ 
 31.            /* ( (b.type == Weak) and (s.type==Weak ) )      */ 
 32.         affinityDegree = expectedArea[s.type,b.type]; 
 33.         n.type = Weak; 
 34.       nRuns++; 
 35.       affinityDegree = affinityDegree / nRuns; 
 36.  return createPolygon(n4CRS); 

 
Figure 10. Algorithm for computing the polygon resulting from the intersection 

of 4CRS signatures. 

3.2.9 Overlay 

The overlay operator is defined by Güting and Schneider (1995) as an operation that 

allows one partition of the plane be superimposed on another, and allows them to be 

combined into area-disjoint regions. Partitions are given as sets of objects with an 

attribute of type in regions. The resulting set of objects contains one object for each new 

region obtained as the intersection of a region of the first partition with a region of the 

second partition. Note that the regions of a partition do not have to completely cover the 

plane. Thus, it is possible that a region of the first partition does not intersect any region 

of the second partition. In this case it will not be part of any new object. An example of 

the overlay operation is presented in Figure 11. The algorithm for computing the 

intersection of polygons from their 4CRS signatures presented in Figure 10 can be used 

to compute the overlay of partitions of plane. 

overlay 

 

Figure 11. Overlaying two partitions of the plane. 



  

3.2.10 Adjacent, Border in Common, Common border 

Two polygons are adjacent if they have at least a portion of their borders in common, 

which is quite similar to evaluate if two polygons have a border in common. Thus, we 

are proposing to use the same algorithm that returns an approximate answer if two 

polygons are border in common and to return if they are adjacent. 

One proposal of operation implementation that returns if two polygons are 

border in common is to employ the expected area, in order to return an affinity degree as 

the answer. Polygon borders are composed by segments; hence, they do not have area. 

Therefore, a common border of two polygons can be found only on the overlap of Weak 

or Strong cells, which are the cells where the borders are. Thus, it is possible to return 

an exact answer when there is no overlap of these types of cells. On the other hand, an 

approximate value is returned. The algorithm is presented in Figure 12. 

 1. real borderInCommon(signat4CRS1, signat4CRS2) 
 2.   interMBR = intersectionMBR(signat4CRS1, signat4CRS2); 
 3.   if interMBR is NULL then /*Does not exist MBR intersection*/ 
 4.     return 0; 
 5.   if (signat4CRS1.lengthOfCellSide == signat4CRS2.lengthOfCellSide) then 
 6.     s4CRS = signat4CRS1; 
 7.     b4CRS = signat4CRS2; 
 8.   else 
 9.    s4CRS = smallerCellSide(signat4CRS1, signat4CRS2); 
 10.    b4CRS = biggerCellSide (signat4CRS1, signat4CRS2); 
 11.  affinityDegree = 0; 
 12.  nOverlaps = 0; 
 13.  for each b4CRS cell b that is inside interMBR do 
 14.     for each s4CRS cell s that is inside cell b do 
 15.       if b.type == Weak or b.type == Strong then 
 16.         nOverlaps += 1; 
 17.         if s.type == Weak or s.type == Strong then 
 18.            affinityDegree += expectedArea[s.type,b.type]; 
 19.       else 
 20.         if s.type == Weak or s.type == Strong then 
 21.            nOverlaps += 1; 
 22.            if b.type == Weak or b.type == Strong then 
 23.               affinityDegree += expectedArea[s.type,b.type]; 
 24.  return affinityDegree / nOverlaps;  

Figure 12. Algorithm to return if two polygons have a border in common. 

One proposal of algorithm to return an approximate answer as the border in 

common of two polygons is to adapt the algorithm presented in Figure 12 in order to 

create segments connecting the medium points of the overlap of Weak × Weak cells, 

Weak × Strong cells and Strong × Strong cells. An affinity degree can be returned using 

the same idea as presented in the algorithm proposed in Figure 12. 

3.2.11 Plus and Sum 

The plus operator computes the union of two objects, while the sum operator computes 

the union of a set of objects.  

If two polygons do not have MBR intersection, then the polygon that represents 

the union of these objects is composed by the faces of these two polygons. On the other 

hand, when the polygons have MBR intersection, a new 4CRS signature is created, 

according to the algorithm presented in Figure 13. A new polygon is computed from the 

4CRS generated signature, connecting the medium points of Weak and Strong cells 

(function computePolygon). 



  

 1. Polygon union(signat4CRS1, signat4CRS2) 
 2.   interMBR = intersectionMBR(signat4CRS1, signat4CRS2); 
 3.   if interMBR is NULL then /*Does not exist MBR intersection*/ 
 4.      polygon1 = computePolygon(signat4CRS1); 
 5.      polygon2 = computePolygon(signat4CRS2); 
 6.      polygon.addFaces(polygon1); 
 7.      polygon.addFaces(polygon2); 
 8.      return polygon; 
 9.   if (signat4CRS1.lengthOfCellSide > signat4CRS2.lengthOfCellSide) then 
 10.     b4CRS = signat4CRS1; 
 11.     s4CRS = changeScale(signat4CRS2,signat4CRS1.lengthOfCellSide); 
 12.  else 
 13.     if (signat4CRS2.lengthOfCellSide > signat4CRS1.lengthOfCellSide) then 
 14.         b4CRS = signat4CRS2; 
 15.         s4CRS = changeScale(signat4CRS1,signat4CRS2.lengthOfCellSide); 
 16.  unionMBR = computeUnionMBR(s4CRS.mbr,b4CRS.mbr) 
 17.  /*Create 4CRS signature with only Empty  cells*/ 
 18.  n4CRS = createSignature(unionMBR, b4CRS.lengthOfCellSide, Empty );  
 19.  for each b4CRS cell b that intersects n4CRS cell n do 
 20.     n.type = b.type; 
 21.     for each s4CRS cell s that intersects n4CRS cell n do 
 22.        if n.type == Empty or s.type == Full  then 
 23.           n.type = s.type; 
 24.        else if n.type == Weak and s.type == Strong then 
 25.           n.type = s.type; 
 26.     polygon = computePolygon(n4CRS); 
 27.  return polygon; 

 

Figure 13. Algorithm to compute the union of two polygons using their 4CRS 

signatures. 

3.2.12 Minus 

The minus operator applied on polygon P1 related to polygon P2 is composed by the 

portion of P1 that does not have intersection with P2. One proposal for this operation 

using their 4CRS is to set to Empty the cells of P1 signature that is overlapped by cells 

of types Strong and Full of P2 signature. In order to compute the polygon from the 

resulting 4CRS signature we must consider that Full cells can be part of the new 

polygon’s border, besides Weak and Strong cells. The algorithm is presented in Figure 

14. 

3.2.13 Fusion 

The fusion operator is defined by Güting and Schneider (1995) as an operation that 

merges the values of a specified (set of) spatial attribute(s) based on the equality of the 

values of another (set of) non-spatial attribute(s). For each group of equal non-spatial 

attribute values a (set of) new spatial value(s) is created as the geometric union of a set 

of spatial values of the group. In Figure 15, a partition of districts with their land use is 

given. The task is to compute the regions with the same land use. Neighbor districts 

with the same land use are replaced by a single region (i.e., their common boundary line 

is erased). In Figure 15, each of the hatched areas on the left is part of an object 

describing a district. On the right, after the application of the fusion operator, all areas 

belonging to the same group form a single regions value and are hatched in the same 

way. The algorithm presented in Figure 13 can be used to compute the union of the 

regions resulting from the fusion operation. 



  

1. Polygon minus(signat4CRS1, signat4CRS2) 
2.  interMBR = intersectionMBR(s4CRS, b4CRS); 
3.  if interMBR is NULL then /*Does not exist MBR intersection*/ 
4.    return createPolygon(signat4CRS1); 
5. if (signat4CRS1.lengthOfCellSide > signat4CRS2.lengthOfCellSide) then 
6.  b4CRS = signat4CRS1; 
7.    s4CRS = changeScale(signat4CRS2,signat4CRS1.lengthOfCellSide); 
8.  else 
9.    if (signat4CRS2.lengthOfCellSide > signat4CRS1.lengthOfCellSide) then
10.      b4CRS = changeScale(signat4CRS1,signat4CRS2.lengthOfCellSide); 
11.     s4CRS = signat4CRS2; 
12.    else 
13.      b4CRS = signat4CRS1; 
14.      s4CRS = signat4CRS2; 
15.  for each b4CRS cell b that is inside interMBR do 
16.     for each s4CRS cell s that intersects cell b do 
17.       if s.type == Strong  or s.type == Full  then 
18.         b.type = Empty; 
19.  polygon = createPolygon(s4CRS1, ConsiderAlsoFullCellsAsBorder); 
20.  return polygon;  

Figure 14. Algorithm to compute the minus operation of two polygons using 

their 4CRS signatures. 
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Figure 15. Merging a partition of districts concerning the same land use. 

3.2.15 Closest 

The closest operator yields that object of an object set whose spatial value is nearest to a 

spatial reference value. In approximate processing using 4CRS signatures, we can 

employ the algorithm for computing the distance, presented in Section 3.2.2, to find the 

nearest object. A proposal for affinity degree calculus is to use the following formula “1 

– (maximum distance – minimum distance) / distance”. For instance, if the minimum 

distance from this object to the reference value is equal to 80 and maximum distance is 

equal to 110, we can estimate the distance between objects as equal to (80 + 110) / 2 = 

95, and an affinity degree equal to 68%, since 1 - (110-80)/95 = 1 – 30 / 95 = 0.68. 

3.2.16 Decompose 

The decompose operator takes a collection of objects with a spatial attribute. It produces 

a new collection of objects as follows: For each object in the operand set its attribute 

value is decomposed into its components (a component is a point, a block, or a face). If 

there are n components, then n copies of the original object are produced each of which 

has one component as the value of a new attribute. 

In this work we are concerned with polygons represented by their 4CRS 

signatures. The components of polygons are faces, and the components of a signature of 

a polygon are signatures for each face. Hence the decompose operator applied on a 

4CRS signature of a polygon produce new objects where each object has an attribute 

with value equal to a signature of a face of the original polygon.  



  

4. Conclusions 

This work proposed new algorithms for approximate query processing in spatial 

databases using raster signatures. The target is to provide an estimated result in orders of 

magnitude less time than the time to compute an exact answer, along with a confidence 

interval for the response. We extended the proposals of Azevedo et al. (2004) and 

Azevedo et al. (2005) of using Four-Color Raster Signature (4CRS) (Zimbrao and 

Souza, 1998) for fast and approximate processing of queries on polygon datasets.  By 

doing so, the exact geometries of objects are not processed during the query execution, 

which is the most costly step of the spatial query processing since it requires to search 

and to transfer large objects from disk to the main storage (Brinkhoff et al., 1994; Lo 

and Ravishankar, 1996). Also, the exact processing algorithm needs to use complex 

CPU-time intensive algorithms for deciding whether the objects match the query 

condition (Brinkhoff et al., 1993). There are many scenarios and applications where a 

slow exact answer can be replaced by a fast approximate one, provided that it has the 

desired accuracy, as presented in Section 2. 

We proposed to use 4CRS for approximate processing of many spatial 

operations. These operations were enumerated in Section 3.1 according to the 

classification proposed by Güting et al. (1995) and Güting and Schneider (1995) in the 

Rose Algebra. In Section 3.2 we presented proposals of algorithms for those operations, 

which are the main contributions of this work. The experimental evaluation is not 

addressed in this work; it is on going work developed on Secondo (Güting et al., 2005), 

which is an extensible DBMS platform for research prototyping and teaching. 

As future work, we plain to implement and to evaluate algorithms involving 

other kinds of datasets, for example, points and polylines, and combinations of them, 

point × polyline, polyline × polygon and polygon × polyline. Azevedo et al. (2003) 

proposed a raster signature for polylines named Five-Colors Directional Raster 

Signature (5CDRS). In that work, 5CDRS signature was employed as a geometric filter 

for processing spatial joins in multiple steps of datasets made by polylines. The results 

obtained were quite good. Our proposal is to evaluate 5CDRS signature for approximate 

query processing of polyline datasets. Besides, we also expect to evaluate the 5CDRS 

and 4CRS signatures together, testing the approximate query processing of queries 

involving polylines and polygons. The results obtained employing both signatures as 

geometric filter in multi-step spatial join were also quite good, as presented by Monteiro 

et al. (2004). 
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