

The Architecture of a Mobile Emergency Plan Deployment System

FÁBIO MEIRA DE OLIVEIRA DIAS
MARCELO TÍLIO MONTEIRO DE CARVALHO

Grupo de Tecnologia em Computação Gráfica / TeCGraf, Pontifícia Universidade Católica do Rio de Janeiro,
Rua Marquês de São Vicente 225, Rio de Janeiro, RJ, Brasil, CEP 22453-900

{fmdias, tilio}@tecgraf.puc-rio.br

Abstract. This paper describes the implementation of a workflow management system to support mobile
GIS workgroup applications and highlights the design of the workflow definition language the system
offers. The system features a hierarchical execution model in which each instance is able to delegate the
execution of sub-workflows to other active instances. It incorporates instance discovery and event
handling services, that enhance the proper treatment of disconnections, and adopts an optimist replication
strategy to handle workflow context variables. The workflow definition language features special
constructors that improve the legibility of large workflow definitions. The results reported here build on
the experience accumulated with the implementation and deployment of an emergency management
application that offers action plans, easy access to geographic data and tight control over the resources
allocated to face an emergency.

1. Introduction
Workflow management systems are frequently used for
modeling, monitoring and controlling the coordinated
execution of activities performed by workgroups in a
variety of contexts. Combined with geographic data
management features, they provide an environment to
implement GIS workgroup applications, such as
emergency management applications. Going one step
further, the growing computational power of portable
computers makes it possible to create mobile versions of
such applications. However, many existing solutions do
not work satisfactorily in the presence of frequent
disconnections and in heterogeneous environments. In
fact, one can argue that several limitations are not due to
the state of current technology, but rather they are
intrinsic to any system subject to a degree of mobility
[23].

We describe in this paper the major decisions that
guided the design of the next version of InfoPAE [7,8],
an emergency management application that offers
sophisticated action plans, easy access to vital
geographic data and tight control over the resources
allocated to face an emergency. The sytem is built upon
a workflow management system that supports mobile
GIS workgroup applications, subjected to discon-
nections. We also highlight the major features of XPAE,
the workflow definition language the system offers.

Several strategies are seamlessly integrated to ad-
dress the challenges of mobile GIS workgroup
applications. The system features a hierarchical
execution model in which each instance is able to
delegate the execution of sub-workflows to other active
instances. The model offers flexible consensus
mechanisms and adequately deals with disconnections.
The system also incorporates instance discovery and

event handling services, that enhance the proper
treatment of disconnections, and adopts an optimist
replication strategy to handle workflow context vari-
ables.

The workflow definition language, XPAE, has
special constructors that improve the legibility of large
workflow definitions. Although not limited to, its major
application is the definition of emergency plans. Indeed,
its design builds on the experience accumulated during
the last three years with the implementation of over fifty
emergency plans for large industrial facilities.

The first significant project regarding distributed
execution of workflows was Exotica/FMQM (FlowMark
on Message Queue Manager) [3]. The system was later
modified to take into account disconnected clients
(Exotica/FMDC) [2]. Domingos [9] proposed a
hierarchical structure with a core system connected to a
high-speed network, which maintains the official
information about the execution of workflows and data
updates executed by the participants. The CoAct
(Cooperative Activity Model) transaction model [17]
was also extended to support mobile users. Grigori [11]
proposed combining a cooperative protocol with a
traditional workflow model.

The efforts described above adopted different
strategies to deal with workflow execution. In some
cases, the emphasis was on the distribution of the
process over several machines, without taking into
account disconnection. In other cases, disconnection had
to be programmed, which is not a viable alternative in
mobile environments and which may even permanently
stop the execution, when coupled with pessimistic
strategies. Also, process structuring is frequently
lacking, which limits the applicability of the
mechanisms developed. Indeed, most of the solutions

found in the literature for such an environment were not
fully implemented, or were adapted from solutions
originally designed for less complex environments or
addressed only part of the problem. By contrast, the
solution proposed here seamlessly integrates several
strategies and has a fully operational, concise
implementation.

As for emergency management systems, FRIEND
[5], INCA [15] and MokSAF [18] are representative
examples. In particular, the MokSAF system supports
route planning by combining AI techniques with GIS.
Other examples of multi-agent systems with internal
planning components are RETSINA [20] and HIPaP
[21]. A survey of cooperative multi-agent systems
appears in [19].

The XPAE workflow definition language shares
some of the concepts of XRL [1], a language that
supports the exchange of workflow specifications across
companies. XPAE is also consistent with the Workflow
Management Coalition [27] proposal. We preferred not
to adopt any of the Web services flow languages [4,24]
to express emergency plans mostly to retain flexibility
and to maintain compatibility with legacy emergency
plans.

The paper is organized as follows. Section 2 gives
the motivation for the work described in the next
sections. Section 3 covers the workflow definition
language. Section 4 describes the major decisions that
guided the design of the system. Finally, Section 5
contains the conclusions.

2. Motivation
The major motivation for the work reported in this paper
is the implementation of mobile emergency management
applications, a class of mobile GIS applications
designed to improve the response to emergency
situations. Such systems must handle emergency plans,
as well as conventional and geo-referenced data, in a
mobile environment. An emergency plan is a predefined
workflow procedure that helps guiding the actions of
emergency teams during an event. Therefore, an
emergency plan describes instructions to human beings
and consists of actions that are meant to be manually
executed, most of the time.

Throughout the paper, we will use an example
based on an overly simplified emergency situation. First,
we suppose that the emergency team is composed of an
officer-in-charge, an officer-on-duty and several sub-
teams with specific responsibilities.

The emergency situation, broadly speaking, is:
- when the emergency is reported, the officer-on-

duty starts the emergency plan from his post and
characterizes the scenario of the emergency;

- he may rapidly close the case and file a report
using the system, if the emergency was a minor
one;

- otherwise he summons the officer-in-charge,
who then takes control of the emergency plan,
perhaps moving the execution to an emergency
room facility;

- the officer-in-charge may access geo-referenced
data, such as a map of the region where the
emergency occurred;

- the officer-in-charge may display on the map the
anticipated or observed scenarios, which act as
anchors to specific emergency sub-plans;

- the officer-in-charge may click on a scenario
and select a specific emergency sub-plan;

- he may assign the sub-plan to the appropriate
operational sub-team, passing control of the sub-
plan to the mobile device of the sub-team;

- the sub-teams and the officer-in-charge then
exchange data and messages using the mobile
devices and the central facility.

Therefore, the system must have a GIS module that
offers a geo-referenced visual space, where scenarios
can be displayed and used as anchors to access
emergency sub-plans, and a workflow execution module
to display and control plan execution. Moreover, these
modules must operate in a mobile environment so that
the sub-teams and the officer-in-charge may exchange
data and messages. This requires a balanced integration
of the modules since emergency control, to some extent,
shifts from the geo-referenced visual space to the
workflow control interface.

The workflow definition language must, in turn,
treat scenarios as first class objects and must provide
specific constructs to help create emergency plans.
Indeed, emergency plans are highly structured and
follow specific standards. For example, one of the
InfoPAE customers structures a plan into well
determined phases, which are: (1) emergency
identification and immediate actions; (2) mobilization of
the emergency teams; (3) characterization of the
emergency scenario; (4) combat procedures; and (5)
closing procedure.

In general, an emergency scenario or simply, a
scenario is characterized by well-defined attributes,
usually indicating the nature of the emergency, the
product involved (if applicable), the facility where the
emergency occurred and the environmental conditions
under which the emergency took place. An example of a
scenario would be “spill of oil type II at the pier, with
high tide and south wind”.

Each scenario is associated with one or more
methods, specified as workflows describing the actions
the emergency teams must follow and defined according
to a specific combat logic. Each action, or group of
actions, may be associated with people or institutions to
be contacted, types of resources required to perform the

action, emergency teams to be mobilized and general
documentation to be used.

There is also considerable similarity, if not
redundancy, between methods for different scenarios of
the same plan. In fact, they frequently differ only on the
associated information.

Users also strongly suggested that it should be
possible to invoke methods by clicking on the location
of the accident, visualized on the user interface. This
can be achieved indirectly by geo-referencing the
scenarios and creating a scenario information layer.
Since methods are always linked to scenarios, they
become implicitly geo-referenced objects that can be
activated from the scenario information layer.

Finally, any sub-plan should also be explicitly geo-
referenced by accessing a system variable that gives the
location of the mobile device where the sub-plan is
being executed (assuming that the mobile device has a
GPS).

3. The design of XPAE
The workflow definition language, XPAE, includes

elements to:
- define sub-plans
- define classes of (geo-referenced) scenarios
- associate methods to scenarios
- structure elementary actions
- hyperlink actions, and other parts of a plan, to

objects and documents in a database
- help reduce plan redundancy

Table 1 enumerates the major elements of XPAE,
some of which we discuss in more detail in what
follows.

Element Group Elements

Related to plans “plan”, “call”

Related to scenarios “type_of_scenario”, “scenario”,
“class_of_scenario”, “method”

Related to variables “variable” , “value”, “domain”

Related to action
control and
execution

“do”, “ask”, “group”, “test”,
“repeat”, “classify”, “associate”

Related to the
repository

“user”, “permission”,
“resource”, “style”, “include”

Table 1 XPAE Elements

The element “plan” defines a collection of actions,
structured as a workflow. To facilitate its definition, a
plan may be decomposed into sub-plans (or sub-
workflows) and it may declare classes of scenarios
equipped with methods. A plan may be executed as an
independent process and it may be executed by more
than one process. If executed by a separate process, it

may be interruptible or cancelable. A sub-plan behaves
exactly as a subroutine, callable from the plan where it
was defined. Parameter passing is always by value.
Without going into details, in general, scope rules are
fairly rigid to avoid side-effects.

Inter-process communication is based on the event
handling service described in section 4.3 and is not
discussed here, for brevity.

The element “type_of_scenario” corresponds to the
declaration of a type of scenario. It includes a list of
attributes and, optionally, indicates a geo-referenced
attribute of the list. An attribute has a name and a type,
which in the present implementation is just “scalar”,
“geo-referenced” or a type of scenario defined in the
plan. The element “scenario” describes a scenario of a
given type. The element “class_of_scenario” declares a
class of scenarios and indicates the class type, the class
variable and one or more a methods, defined as plans.

The element “variable” represents a variable
declaration to be used in a plan. In the current
implementation, the variable type can be “scalar”, “geo-
referenced” or one of types of scenario defined in the
plan. The element “value” defines a constant and the
element “domain”, a set of constants.

There is an internal pseudo-variable, HERE, whose
value is always the location of the mobile device where
the plan is being executed (assuming that the mobile
device has a GPS).

The element “do” defines an elementary action the
emergency team must perform. The element “ask”
requests information from the user and sets internal
control variables. The element “group” (in all its
variations) captures the usual workflow action
structuring constructs. Finally, the element “test” is the
usual if-then-else construct and the element “repeat”,
also defined in the XRL language, represents the usual
iteration construct.

The element “classify” defines classifications,
whereas the element “associate” links a syntactical
element of the plan with an object in the database, such
as a document, report, etc. Both are applicable to a
variety of syntactical elements.

The element “repository” represents, in XML, one
or more plans and objects in the database. This is the
initial element of the XML document.

Finally, the semantics of the XPAE language is
defined with the help of Petri nets, as suggested in [1].
Furthermore, the implementation of the language, using
the facilities and services described in Section 4, is
straightforward and will not be discussed for brevity.

4. System design

4.1. Execution model
The system internally models a workflow definition as a
graph, much in the same way that the semantics of the
language is specified using Petri net concepts. Omitting
the details, elements of the graph can be of two types:
Place or Transition. A Transition, in turn,
can be a Workflow or a Task. A Place works as a
container for tokens, which determine the control flow
during execution of the workflow. At the same time,
each Workflow can be a sub-graph corresponding to
the definition of a sub-workflow. Finally, an
AutomaticTask represents an automatic activity
whose execution is performed by means of a call to a
method called execute defined in the Action
interface.

To increase flexibility, along the lines of adaptable
workflows [6,11,14], a hierarchical execution model is
supported, in which each instance is able to delegate the
execution of sub-workflows to other active instances. As
each sub-workflow can be composed by other sub-
workflows, it is possible to delegate the execution of
each one of them to different instances of the system,
recursively. Therefore, the delegated instances have the
autonomy to manage the execution of any workflow
under its responsibility, be it based upon a complete
definition or just part of a larger definition.

The execution model may be abstracted as a tree in
which the edges represent a delegation. Intermediary
nodes act simultaneously as servers and clients, with
their parent nodes being the servers and their child nodes
being the clients. When the execution of each delegated
workflow terminates, the event is informed to the
instance from which the delegation originated. Even-
tually, the execution is completed in the node corre-
sponding to the root of the delegation tree.

This hierarchical execution model indeed offers
increased flexibility. However, we must analyze its be-
havior in the presence of disconnections, specifically,
what happens when: (1) the execution of a sub-
workflow ends and it is not possible to contact the
originating instance; and (2) the disconnection periods
last too long. The first problem is dealt with by
postponing the actual termination to the moment when
communication becomes possible and with the second
problem by implementing a leasing mechanism
according to which each delegation is subject to an
expiration time. When this period is over, the sub-
workflow is made available once again. Therefore, if
there is any equipment failure or an excessive delay in
the execution of a critical activity, the execution of the
workflow as a whole does not risk being permanently
hindered.

The execution model also allows an activity or a
sub-workflow to be delegated to more than one instance,

simultaneously. The user decides when to adopt multiple
delegations either at workflow design time or during
workflow execution. In the current implementation,
execution of the (parent) workflow proceeds when the
first instance of the sub-workflow successfully
terminates. Different strategies might be adopted as
well, such as waiting for the termination of all sub-
workflow instances or requiring a given quorum (using
the service described in Section 4.4).

The design decisions described above might have
delicate consequences when used inappropriately. If a
sub-workflow is delegated to more than one instance
and each one of them further delegates other nested sub-
workflows, a large number of cancellations might result,
for example, when the first successful termination
reported automatically invalidates the other delegations.
In order to avoid this kind of situation, the system does
not permit the occurrence of recursive delegations,
which does not solve the problem completely, but
simplifies it considerably. Naturally, other strategies
could have been adopted.

Finally, recall from the definition of the XPAE
language in Section 3, that a sub-workflow that
represents a method for a given scenario is implicitly
geo-referenced, if scenario is geo-referenced. In such
cases, the system supports a geo-referenced partial
representation of the global workflow execution, based
on scenarios, that is quite useful to help visualize the
current state of the execution, the location of the teams
and other resources associated with the sub-workflows.
In general, using the internal pseudo-variable HERE, the
workflow designer may geo-reference any plan. For
example, he may decide to geo-reference rescue sub-
plans of the global emergency plan to automatically
control the location of the rescue teams, that is, the
teams that are executing the rescue plans.

4.2. Instance Discovery Service
Instance discovery refers to a (network) service that
allows each instance of the system to rapidly identify
(on the network) other instances that are simultaneously
operational at a given time (on fixed or mobile devices).

To implement this service, the system features a
protocol that incorporates concepts from service discov-
ery architectures, such as Jini [26] and SLP (Service
Location Protocol) [12]. The instance discovery protocol
first broadcasts identification requests to which
accessible instances reply informing of their existence.
Each reply message contains a reference that permits the
use of its interface for communication. Upon receiving a
reply, the protocol collects the corresponding reference
and adds it to its list of known instances. After that, it
sends an acknowledgement with the reference of its
associated instance, allowing further communication
between the parties involved.

However, in the presence of disconnections, a
reference to a remote instance does not guarantee that it
can be successfully used. The correct behavior of the
system would be to inform its known peer instances
prior to disconnection, which might not happen due to
failures. Therefore, each known instance is periodically
pinged to check that it is still up and running. If an
instance cannot be contacted, its reference is removed
from the list of known instances.

Once the (network) instance discovery service is
equated, it is a simple matter to implement, for example,
a geographic location service that permits an instance of
the system to identify the geographic location of mobile
instances that are simultaneously operational. Indeed,
this service can be implemented by a simple query on
the value of the HERE pseudo-variable of the mobile
instances, after running the (network) instance discovery
service.

4.3. Event Handling Service
An inter-process communication mechanism built into
the workflow management system can be very useful,
for example, to notify abnormal occurrences during the
execution of a workflow. In general, Hagen [13] argues
that the use of events can be beneficial to the integration
of heterogeneous tools with no common API, such as
conferencing systems and other groupware tools.

However, in a distributed environment with discon-
nections, the task of transmitting notifications becomes
non trivial. It is not possible, for example, to determine
the time that it takes for a notification to reach its
destiny, to detect if the notification was lost or to
guarantee the order in which the notifications reach the
destination.

An event handling service is implemented that
allows the registration of events of interest, such as
starting and ending the execution of activities or work-
flows, updating context variables, (dis)connecting other
instances or communicating the geographical location of
events, resources, etc. to peer systems. The service
offers a generic registration and notification interface
that allows its use with relatively heterogeneous
components.

For example, the event handling service permits
implementing a more sophisticated geographic location
service that allows an instance of the system to identify
the last known geographic location of mobile instances.
Indeed, it suffice to use this service to periodically
register the value of the HERE pseudo-variable of the
mobile instances.

In the current implementation, notifications are
retained when immediate delivery is not possible and a
configurable number of attempts are made until the
message is finally discarded. In certain cases, however,
it might be necessary to provide increased delivery

guarantees and more sophisticated strategies. In
particular, the service indeed permits registering
intermediaries to relay the notification generated by the
originator of the event to its final destination.

The service implements the concept of lease [10],
similar to that of Jini [26] and other similar systems,
coupled with a renewal mechanism that permits to
extend the period during which the registrations are
valid. Together, these features enable the development
of sophisticated strategies that take into account the fact
that some machines might remain disconnected for a
period longer than expected or even indefinitely.

4.4. Data Replication Service
Each workflow has a set of context variables, which
determine the control flow during execution, among
other purposes. Therefore, to achieve the desired level of
autonomy of each delegation, the system must create
and maintain replicas of the context variables.

In the presence of failures or intermittent
communication, optimist replication schemes offer a
number of advantages over pessimist schemes. In
particular, they improve user autonomy, as they allow
reading and writing of any data at any time. On the other
hand, they possibly lead to inconsistent local states,
thereby requiring consensus mechanisms to guarantee
convergence to a common state.

In view of these observations, an optimist data
replication service is implemented to handle replication
of workflow context variables. A replica is created
whenever a delegation occurs and is destroyed when the
delegation ends upon notification of the originating
instance. When a delegation is about to complete, a
consistency check is triggered. Conflict resolution can
be either manual or automatic, using one of the simple
algorithms the system implements. In both cases, the
delegated instance must ensure that conflict resolution
does not compromise the execution of the sub-workflow
involved. In some cases, however, it might be necessary
to perform compensating steps, which must be included
in the workflow definition. This type of strategy is
frequently used to handle exceptions in workflow
execution [16,25].

The resolution methods developed are similar to
those found in many systems. For example, the method
EARLIEST chooses the earliest between the current
values in the originating and delegated instances and the
method OVERWRITE discards the update to the
originating instance and retains the current value in the
delegated instance.

The user may also define application-specific
resolution methods, perhaps using geographic operators
to suit his needs. For example, consider an emergency
plan to recover oil from an oil spill at seashore. Suppose
that the team controlling the execution of this plan (the

originating instance) delegates to several sub-teams the
cleaning procedures. Suppose also that all these
instances share a context variable defining the area
cleaned. However, due to environmental conditions, the
exact area each instance cleans may actually vary from
the original specification. Then, an application-specific
resolution method would replace the area at the
originating instance with the overlay of all areas the
delegated instances report, which is the total area
cleaned.

5. Conclusions
We described in this paper the major design decisions of
a workflow management system that supports mobile
GIS workgroup applications, subjected to discon-
nections.

The workflow definition language is carefully
designed to help specify large emergency plans, among
other applications. The system offers an execution
model, based on the concepts of sub-workflow and
delegation, which is sufficiently general to
accommodate, equally well, other workflow definition
languages. The model permits adjusting the degree of
flexibility to the desired level, while supporting
workflow execution in the presence of disconnections.
The system features an integrated infrastructure to deal
with the major problems of instance discovery, event
handling and data replication.

With the help of simple examples, we indicated
how the execution model and the infrastructure can be
combined with GIS features to address the specific
needs of a sample mobile GIS application.

Our future work includes the execution of extensive
testing in real mobile devices. Tha availability of our
chosen environment (Java) in such devices is constantly
increasing at the same time that the required tech-
nologies such as GPS become more commonplace. We
expect to enhance the system towards being more
spatial-aware, which will certainly make it more
relevant in the context of GIS applications.

Finally, we stress that the design of the system and
of the workflow definition language profited from the
experience accumulated during the last three years with
the implementation of the InfoPAE system and the
specification of emergency plans for over fifty large
industrial facilities.

References

 [1] W. M. P. van der Aalst, “The Application of Petri
Nets to Workflow Management”, The Journal of
Circuits, Systems and Computers (1998) 21–66.
[2] G. Alonso, R. Günthör, M. Kamath, A. Agrawal, A.
Abbadi, C. Mohan, “Exotica/FMDC: Handling
Disconnected Clients in a Workflow Management

System”, Proc. 3rd Int’l Conf. on Cooperative
Information Systems. Vienna (1995).
[3] G. Alonso, A. Agrawal, A. Abbadi, C. Mohan, R.
Günthör, M. Kamath, “Exotica/FMDC: A Persistent
Message-Based Architecture for Distributed Workflow
Management”, Proc. of the IFIP WG8.1 Working Conf.
on Information Systems Development for Decentralized
Organizations. Trondheim, Norway (1995).
[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J.
Klein, F. Leymann, K. Liu, et. al., Business Process
Execution Language for Web Services (Version 1.1).
BEA, IBM, Microsoft, SAP and Siebel (2003).
[5] B. Bruegge, K. O'Toole, D. Rothenberger, “Design
Considerations for an Accident Management System”.
Proc. of the Conference on Cooperative Information
Systems (1994) 90–100.
[6] C. Bussler, “Adaptation in Workflow Manage-
ment”. Proc. of the 5th Int’l Conf. on the Software
Process (ICSP5), Computer Supported Organizational
Work. Illinois, USA (1998).
[7] M. T. Carvalho, M. A. Casanova, F. Torres, A.
Santos, “INFOPAE - an Emergency Plan Deployment
System”. Proc. International Pipeline Conference.
Calgary, Alberta, Canada (2002).
[8] M. A. Casanova, T. Coelho, M. T. M. Carvalho, E.
T. L. Corseuil, H. Nóbrega, F. M. Dias, C. H. Levy,
“The Design of XPAE – An Emergency Plan Definition
Language”. Proc. IV Workshop Brasileiro de
Geoinformática (GEOINFO). Caxambu, Minas Gerais,
Brasil (2002) 25–32.
[9] H. J. Domingos, J. L. Martins, N. Preguiça, S. Du-
arte, “A Workflow Architecture to Manage Mobile
Collaborative Work”. Proc. First Workshop on Mobile
Computing (1999).
[10] J. Gray, D. Cheriton, “Leases: an efficient fault-
tolerant mechanism for distributed file cache consis-
tency”. Proc. of the 12th ACM Symp. on Operating
Systems Principles. ACM Press. (1989) 202–210.
[11] D. Grigori, H. Skaf-Molli, F. Charoy, “Adding
Flexibility in a Cooperative Workflow Execution
Engine”. Proc. High Performance Computer and
Networking (HPCN Europe 2000). Amsterdam, The
Netherlands (2000) 227–236.
[12] E. Guttman, “Service Location Protocol: Automatic
Discovery of IP Network Services”. IEEE Internet
Computing 3(4) (1999) 71–80.
[13] C. Hagen, G. Alonso, “Beyond the Black Box:
Event-based Inter-Process Communication in Process
Support Systems”. Proc. of the 19th IEEE Int’l Conf. on
Distributed Computing Systems. Austin, Texas (1999).
[14] Y. Han, A. Sheth, C. Bussler, “A Taxonomy of
Adaptive Workflow Management”. Proc. CSCW
Workshop on Adaptive Workflow System. Seattle, USA
(1998).

[15] W. Iba, M. Gervasio, “Adapting to User Prefer-
ences in Crisis Response”. Proc. of Intelligent User
Interfaces (1999) 87–90.
[16] S. Jablonski, C. Bussler, Workflow Management:
Modeling Concepts, Architecture, and Implementation.
International Thomson Computer Press (1996).
[17] J. Klingemann, T. Tesch, J. Wäsch, “Enabling
Cooperation among Disconnected Mobile Users”. Proc.
Conf. on Cooperative Information Systems (1997) 36–
46.
[18] T. Lenox, T. Payne, S. Hahn, M. Lewis, K. Sycara,
MokSAF: How should we support teamwork in human-
agent teams? Technical Report CMU-RI-TR-99-32,
Robotics Institute, CMU (1999).
 [19] V. Lesser, “Cooperative Multiagent Systems: A
Personal View of the State of the Art”. Knowledge and
Data Engineering 11(1) (1999) 133–142.
[20] M. Paolucci, D. Kalp, A. Pannu, O. Shehory, K.
Sycara, “A Planning Component for RETSINA Agents”.
Agent Theories, Architectures, and Languages (1999)
147–161.
[21] M. Paolucci, O. Shehory, and K. Sycara, “Inter-
leaving planning and execution in a multiagent
teamplanning environment”. Technical Report CMU-RI-
TR-00-01, Robotics Institute, CMU (2000).
[22] E. Pitoura, G. Samaras, Data Management for
Mobile Computing. Kluwer Academic Publishers
(1998).
[23] M. Satyanarayanan, “Fundamental Challenges in
Mobile Computing”. Proc. of the 15th Annual ACM
Symp.on Principles of Dist. Computing (1996) 1–7.
[24] W3C Note: XML Pipeline Definition Language
(Version 1.0) (2002).
[25] H. Waechter, A. Reuter, “The ConTract Model”. In:
Elmagarmid, A. (ed.): Database Transaction Models for
Advanced Applications. Morgan Kaufmann Publishers,
San Mateo (1992) 219–263.
[26] J. Waldo, “The Jini architecture for network-centric
computing”. Comm. of the ACM 42(7). ACM Press
(1999) 76–82.
[27] Workflow Management Coalition (WfMC): Work-
flow Management Coalition Terminology and Glossary.
Technical Report WFMC-TC-1011 3.0. Brussels (1999).

