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Abstract. Visualization research deals with the use of graphical models to represent data, coupled with suitable 
interaction operations that support an active user exploration of the data representations. Visualization 
techniques can greatly enhance knowledge discovery processes involving geo-referenced data, and the study of 
visual displays to assist users of geographic information, which typically includes spatial and temporal 
attributes, motivates developments in the new field known as Geovisualization. Users of such data are typically 
interested in spatial dynamics, or changes that occur over time, and the capability of simultaneously depicting 
the temporal component of data and the spatial information, in an integrated manner, is necessary to support 
real data analysis tasks. In this paper we introduce several strategies to support visual exploration of spatio-
temporal databases, focusing on assisting end users on the initial stages of a knowledge discovery process. The 
visual approaches proposed are illustrated with an application that demands the exploration of a pluviometric 
database.  

1 Introduction 
Recent developments in Scientific and Information 
Visualization [21] are greatly impacting the geographic 
information sciences. Visualization research deals with the 
use of graphical models to represent data, coupled with 
suitable interaction operations that support an active user 
exploration of the data representations [5,13]. A new field 
of Geographic Visualization (GVis), or Geovisualization, 
has emerged [21] which spans both Scientific and 
Information Visualization, and deals with the effective use 
of visual displays to assist users of geographic 
information. Although the early focus of geographical 
visualizations was mainly on dynamic maps and 
cartographic representations, additional visual 
representations are necessary to enhance and complement 
the use of maps. Georeferenced data, such as those 
contained in environmental data sets, usually include both 
spatial and temporal attributes. Users of geographic 
information are typically interested in spatial dynamics, or 
changes that occur over time. Depicting the temporal 
component of data simultaneously with the spatial 
information, in an integrated manner, is necessary to 
support real data analysis tasks. Data selection, filtering 
and/or quality assessment are necessary activities prior to 
the application of  ‘conventional’ statistical methods or 
mining techniques as part of a KDD (Knowledge 
Discovery in Databases) process [7,8].  Because raw data 

pre-processing is a critical activity when building 
knowledge from data, offering visual support to typical 
user tasks in this context may greatly enhance user 
effectiveness and productivity. Visualization techniques 
have a role to play in a knowledge discovery process, as 
they may be tailored to support either data pre-processing 
or the mining stages, making user participation easier, 
simplifying interpretation of the results and rendering the 
process more understandable [2,20]. 

 In this paper we focus on visual support to the initial 
stages of a knowledge discovery process or a data analysis 
process, and introduce several strategies to support visual 
exploration of databases characterized by including 
attributes of spatial and temporal nature. We assume that 
many user exploration tasks are driven by these attributes, 
and thus focus on providing visual support to these tasks. 
The proposed strategies are illustrated with an application 
involving a pluviometric database provided by the DAEE 
– Departamento de Águas e Energia Elétrica do Estado 
de São Paulo (Water and Energy Department). This 
database contains rain precipitation measures collected in 
different points of the state of São Paulo, and one of its 
uses is in deriving climate features classification models 
for the state of São Paulo. This work is part of a research 
project funded by FAPESP, named InfoVis, whose goal is 
to investigate strategies for making Information 
Visualization techniques more effective and provide an 



  

integrated and accessible tool to support visual data 
exploration of large datasets [19,4,22]. The motivation for 
proposing the strategies introduced in this paper was the 
identification of many difficulties associated with 
processing the DAEE database for input in further steps of 
the climate modeling process. 

This paper is organized as follows. In Section 2 we 
review related work dealing with the visualization of data 
with spatial and temporal attributes. In Section 3 we 
identify two typical tasks faced by a user of a geographical 
database containing data measured at geographical 
locations over time, and describe in general terms the 
visual strategies conceived to support such tasks. These 
strategies integrate conventional spatial visualizations 
based on maps with dynamic visual queries and innovative 
temporal visualizations. Section 4 actually introduce these 
strategies and describe how they were applied in the visual 
exploration of the DAEE database, simplifying the 
execution of multiple activities requiring information on 
the spatial location and temporal distribution of 
measurements collected in multiple collection stations. 
Conclusions and further work are in Section 5. 

2 Visualization of Spatio-Temporal Data 
In this section we discuss several research initiatives that 
investigate and implement visualization techniques to 
support analysis of data with spatial and temporal 
attributes. The goal is not to provide an exhaustive list of 
techniques or systems, but rather to identify different 
approaches to assist domain specialists in processing and 
analyzing spatio-temporal data, their advantages and 
limitations. 

Visualization of spatial data is widely employed in 
Cartography. From 1993 the International Cartographic 
Association started paying special attention to establishing 
connections with related disciplines, Scientific 
Visualization in particular. A Commission on 
Visualization has been created that evolved, in 1999, into 
a Commission on Visualization and Virtual Environments1 
A list of research themes elaborated by this commission 
includes as a major topic the integration of visual and 
computational approaches into tools to support knowledge 
acquisition from spatial data, with emphasis on 
exploratory tools that do not require pre-defined 
hypotheses [16]. MacEachren et al. [15] believe that 
visualization has a role to play in all stages of the KDD 
process, and discuss the integration of Geographic 
Visualization and KDD into visual exploration tools to 
assist knowledge building from great volumes of spatio-
temporal data. Geographically referenced data with spatial 
                                                           
1 www.geovista.psu.edu/sites/icavis/ 

attributes may come, for example, from earth monitoring 
systems and environmental studies. Repeated observations 
of the environmental processes produce the temporal 
attribute. These authors argue that the difference between 
GVis and KDD lies in the emphasis placed by the former 
on the human visual system, versus the emphasis on the 
automated computational approaches by the latter.  

Research at the GeoVISTA Center (Geographic 
Visualization Science, Technology, and Applications 
Center2), from the Pennsylvania State University, is 
focused on developing user-centered methods and 
technologies to solve problems involving geo-spatial data 
using visual exploration and analysis. GeoVista Studio is 
an environment that allows end users to create 
visualization applications with a visual programming 
scheme: users define applications by connecting available 
JavaBeans components. Dynamically linked visual 
representations such as maps, scatterplot matrices and 
parallel coordinate visualizations may be used for 
exploration and analysis. Component based programming 
allows incorporating JavaBeans components developed by 
third parties [17]. 

SPIN!, Spatial Mining for Data of Public Interest3 is 
a project at the Fraunhofer Institute for Autonomous 
Intelligent Systems4 targeted at proposing innovative 
approaches for analyzing geo-referenced data. Their 
solution integrates capabilities of spatial data mining 
techniques with those of a Geographical Information 
System (GIS) for interactive visual exploration. 
Implementation also uses JavaBeans and a client-server 
architecture, thus meeting requirements of scalability and 
platform independence. This project uses the Descartes 
system5, which automatically generates thematic maps 
from heuristics provided for interactive visualization [18]. 
Integrating visualization with GIS’s also offers a solution 
for exploratory analysis of spatially referenced data, an 
approach exemplified by the integrated use of XGobi, a 
system for multivariate data visualization, with ArcView, a 
geographical information system [25,26]. Using a different 
approach, GeoMiner, a prototype at the Simon Fraser 
University6, employs visualizations in the form of maps, 
diagrams and tables to show the results of mining 
processes [10]. 

DEVise (Data Exploration and Visualization)7, offers 
configuration mechanisms and creates visualizations. A 
mapping model defines how to transform data into visual 

                                                           
2 www.geovista.psu.edu 
3 www.ccg.leeds.ac.uk/spin/overview.html 
4 ais.gmd.de/index.en.html 
5 allanon.gmd.de/and/descartes.html 
6 db.cs.sfu.ca 
7 www.cs.wisc.edu/~devise 



  

representations, and an end user may generate interactive 
coordinated visualizations. Supported visual 
representations include images, bar diagrams and scatter 
plots. Applets coupled to the environment allow Web-
based interaction with the visualizations produced, making 
them accessible from different computational platforms 
[14,27].  

The visual strategies proposed in this paper are 
targeted specifically at assisting the execution of initial 
exploration tasks on raw data containing attributes of 
spatial and temporal nature. They are being integrated into 
a multi-platform general-purpose visualization system that 
offers specific support to the visual exploration of this 
type of data [22,23,4], in addition to other techniques 
targeted at high-dimensional data. This system is being 
implemented in the Java Platform, ensuring features such 
as platform independence, easy customization to different 
domains and users, and extensibility by the gradual 
incorporation of components. 

3 Integrated Strategies for Visual Exploration of 
Spatio-Temporal Data 

The strategies proposed are targeted at the visualization of 
spatio-temporal databases, being suitable for situations in 
which a single spatial localization is associated with a 
range of temporal value(s) of interest. A typical example is 
a database produced by an earth monitoring system, 
containing measurements collected over time at the same 
set of locations (spatial positions). Our visual strategies 
combine well-known general-purpose interaction and 
visualization techniques in a manner to ensure effective 
user-driven exploration in this context. Their novelty is on 
the ability of assisting the integrated analysis of both the 
spatial and temporal data components simultaneously.  

To illustrate the fact that such an integrated analysis 
is required in many situations, let us consider two general 
tasks typically associated with the exploration of this kind 
of data. The first one (Task 1) involves checking spatial 
positioning of elements of interest, in order to verify 
spatial proximity amongst different elements and verify 
their spatial density. The second one (Task 2) involves 
obtaining an overview of how a target value measured at 
one particular spatial location, or at various neighboring 
locations, varies over time, maybe with the goal of 
comparing this variation across multiple spatial locations. 
Note that both tasks are likely to be executed 
simultaneously in an integrated manner. A user might, for 
example, want to analyze and compare data quality across 
multiple nearby locations sharing common characteristics. 
Execution of such tasks is greatly improved by visual 
representations capable of depicting (1) the relative spatial 
positioning of data elements, coupled with (2) an overview 

of the temporal distribution of target values of interest 
associated with each spatial location or with a set of 
neighboring locations. 

Visual strategies are thus introduced to support the 
integrated execution of the above tasks. To provide the 
spatial localization required in (1), graphical markers (e.g., 
dots, triangles, circles, or any other) representing the 
different spatial locations are positioned and displayed 
over a background visual spatial reference, usually a map 
of the relevant region. As important as displaying spatial 
positioning is to give users the ability to select the data 
elements at the spatial locations in which s/he is interested, 
focusing on regions of interest. As focusing may be based 
in the spatial location and other (maybe non-spatial) 
attributes, users should have freedom to select elements of 
interest based on the values of multiple attributes. 
Dynamic Queries (DQ) [24], also known as Range 
Queries, offer a powerful filtering mechanism in which 
visual controls are associated with attributes of the 
database, allowing the visual specification of queries over 
the database. Associated with map visualizations, they are 
naturally useful for querying geographical data to convey a 
direct observation of the spatial relationships amongst 
elements [1,24]. This allows a user to select attributes and 
attribute ranges dynamically for visualization, and then 
activate other visual strategies to inspect temporal 
information associated with one or multiple spatial 
locations.  

To provide the temporal information required in (2), 
we introduce various ‘pixel-based’ temporal visual 
representations. Pixel-based visualizations map an 
attribute value to a pixel in the screen that is colored 
according to a pre-defined color map. Pixels are arranged 
in the screen according to a certain criteria, and multiple 
attributes may be displayed in multiple sub-windows of 
rectangular or circular shape [11,12,3]. Pixel-based 
visualizations are particularly suitable to convey temporal 
information if the arrangement of the pixels in a 
rectangular window is properly chosen. We suggest three 
visualizations that use different pixel arrangement criteria 
to convey temporal distribution of a data attribute of 
interest: time interval status, multiscale temporal behavior 
and yearly temporal behavior. In these representations the 
data attribute of interest associated to the target data 
values may be measurement values, data quality, or other, 
and the one chosen attribute is mapped to the pixel color, 
whereas pixel positioning conveys the temporal variation. 
The visualization user (the domain specialist) must have 
the freedom to define a suitable color map. For example, a 
discrete attribute assuming n different values may be 
mapped to a discrete color map with n color hues, whereas 
a continuous attribute may be mapped to varying 



  

intensities of the same hue or to different intensity ranges 
of multiple hues.  

The temporal and spatial visual strategies outlined in 
this section are presented in Section 4, where their use is 
illustrated with a case study. They were implemented as 
components of a Java visualization environment that 
allows the integrated and simultaneous use of multiple 
visualizations. Thus, users can display temporal 
information of interest in relation with spatial location, 
with ´linked´ interaction: user actions in one visual 
representation, e.g., data selection, are reflected on the 
remaining ones, a strategy known as linking [6].  

4 A Case Study with the BcDAEE Database  
In this Section, the application of proposed visual 
strategies in a problem of processing a pluviometric 
database is described. 

 Problem Description 
The proposed strategies have been applied in a real 
problem, in which data from the BcDAEE relational 
database is used to derive a climate model for the western 
region of the state of São Paulo [9]. BcDAEE 1.0 – The 
Pluviometric Database of the State of São Paulo, version 
1.0 – contains daily precipitation measurements collected 
in 1.660 stations located in the state of São Paulo from 
1888 to 1997. The time interval for which data is available 
is not the same for all stations, as not all of them started 
operating at the same time, some became inactive at some 
point, and others had data collection temporarily 
interrupted over different periods. In addition to missing 
(non-collected) data, stations may have non-consistent 
data, which have not been checked for validity.  

Climate modeling is a complex process that 
comprises many steps and tasks, and makes extensive use 
of multivariate statistical data analysis techniques. Flores 
(2000) used GIS and geostatistical krigging techniques to 
explain spatial and temporal variations of rain 
precipitation patterns on the western region of the state of 
São Paulo. An initial step of the modeling process requires 
grouping years into representative raining patterns, namely 
dry, rainy, or normal. This has been done from the 
BcDAEE data, and involved three initial tasks: (a) 
selecting relevant collection stations, i.e., those that 
contain enough reliable data over a suitable time interval; 
(b) treating missing and extraneous data within stations; 
and (c) applying a clustering algorithm to identify groups 
of representative years. A brief description of these tasks 
follows: 

a) Selecting collection stations. A huge table has been 
manually constructed from the BcDAEE data with 

table lines describing a station and table columns 
describing years. Each table cell thus describes a pair 
(station,year), and was labeled with either an “X” for 
consistent data, an “*” for non-consistent data, or a  
blank for missing data. The climatologist then 
inspected the table searching for stations labeled “X” 
or “*” and containing measurements over a common 
interval of years. Initially 200 stations have been 
selected in this process, closer inspection reduced the 
number to 150; 

b) Handling Missing and Extraneous Data. Two different 
approaches were adopted to handle a station with 
missing precipitation values: (1) a missing data is 
filled in with the precipitation value collected in the 
corresponding month of another year with similar 
precipitation behavior, within the same station; or (2) 
a missing data is filled in with a value interpolated 
from the corresponding month in neighboring stations. 
In the last approach information on the spatial 
position and altitude of stations is relevant for a more 
informed decision on which stations to use in the 
interpolation. Extraneous data are handled similarly; 

c) Identifying representative years (dry, rainy, normal). 
A hierarchical clustering technique was employed, for 
each one of the selected stations, to group the years 
based on the total yearly precipitation value. From 
these groupings, one representative year for each class 
(rainy, dry or normal) is selected for use in the 
modeling process. Several levels of clustering are 
possible, depending on the loss of information 
admitted in the process.  

 Data preparation prior to input into the GIS software 
is an important procedure in the modeling process, and it 
is extremely time consuming and painful, as the 
climatologist has to handle a huge volume of data 
represented in conventional data tables. The amount of 
data renders conventional approaches extremely 
ineffective. To make the problem more manageable one 
approach is to consider data at monthly, rather than daily 
levels. However, the ability to handle data at the daily 
level greatly impacts the quality of the resulting model.  

Visual Strategies 
The visual representations outlined in Section 3 were 
employed to assist the climatologist in the procedures 
involved in the initial treatment of the database. Tasks (a) 
to (c) previously described were redone by the 
climatologist using the interactive visual representations. 
In this particular case, visualizations were tailored to 
depict (1) the relative spatial positioning and altitude of 
the stations; and (2) an overview of the temporal 



  

precipitation data with respect to data quality, missing data 
and interval of years for which data is available, both for a 
particular station and for a set of neighboring stations. In 
the following we describe the major steps executed by the 
climatologist – the domain specialist – when exploring the 
BcDAEE database with support of the visual strategies 
provided. The domain specialist received a short training 
on the visual strategies in order to understand them and to 
learn the basic interaction actions. His interaction with the 
visualization tools when accomplishing the tasks was 
monitored by the visualization specialist, in order to 
identify difficulties and to validate the visual strategies 
and their implementation. 

Due to access limitations of the original database, 
data were exported into a set of files, each one containing 
complementary information about each station and the 
daily measurements collected at the station. Stations have 
the following attributes: Prefix, Name, City, Hydrographic 
Basin, Altitude, Latitude, Longitude, Initial Year (of the 
collection), Final Year and Interval (range of years with 
consistent data). The need of this initial data preparation 
step illustrates the difficulties in offering a generic, 
domain independent solution for data pre-processing, as 
the syntax and semantics of the source databases vary 
considerably.  

Once the data is available, the first user task was to 
select collection stations in the region of interest to the 
study, based on an assessment of the quality of their data 
and on the range of years with available measurements. 
The initial action is to use the spatial visualization that 
plots stations over the map, using the DQ interface to 
dynamically manipulate the map visualization based on the 
values of the spatial attributes Latitude and Longitude and 
the attribute Interval (range of years with consistent data), 
as illustrated in Figure 18. By inspecting these attributes, 
the analyst verifies that only a few stations in the region of 
interest – delimited by Latitude and Longitude – have a 
collection interval greater than 30 years (this is the 
minimum interval length recommended by the World 
Meteorological Organization). The bigger map shows all 
the stations on the region of interest, and the small 
rectangle at the bottom depicts those stations with 
collection intervals within 30 and 51 years. 

He thus considers the possibility of selecting stations 
based on the total year collection interval disregarding 
whether data is consistent or not, and treating extraneous 
and missing values later – these may be replaced with 
plausible values collected at similar time and/or similar 

                                                           
8 Color figures with higher definition are available at 
www.nec.prudente.unesp.br. Although it is not necessary to interpret 
Figure 1, color is required to interpret Figures 2 to 4. 

spatial positions and which are known to be consistent. 
Figure 2 shows visual representations used to investigate 
this alternative approach. One visual representation is still 
the map, used to select stations according to their positions 
(the inner rectangle in the map delimits selected stations, 
shown highlighted; in the color view8 they are shown with 
a thin vertical mark in cyan). Each point or station on the 
map is colored according to the value of a chosen attribute 
– in this case the attribute is Altitude and thus pixel color 
represents station altitude.  

Figure 1 Examining interval length with 
consistent data for selecting stations 

The other visual representation shown exhibits 
information about the collection interval for each station 
along with station data quality. A horizontal line is 
associated with each station, and the set of lines (stations) 
is displayed in multiple columns, organized from top to 
bottom, left to right, ordered by station’s prefix. Each 
point (pixel) on a line represents a specific year – the 
leftmost pixel corresponds to the first collection year, the 
rightmost pixel corresponds to the last one. Note that the 
initial collection year varies across stations, which is the 
reason for lines having different starting (i.e., leftmost 
end) points. The length of each line, defined by the Initial 
and Final Year attributes, maps the length of the overall 
collection interval, and each line is initially painted with a 
user selected hue (cyan in the color views, light gray in the 
black and white view). Within each station, years with 
consistent data – as given by the Interval data attribute – 
are mapped to a different pixel color (dark blue in the 
color views, darkest gray in the black and white view). 
Lines spanning the whole column width, prolonged further 
to the left, indicate user selected stations – here they have 
been selected in the map visualization, and hence are 
automatically highlighted in both visualizations 



  

(highlighted lines shown in magenta in the color view, an 
in mid-intensity gray in the black and white view). A thin 
vertical line (yellow in the color figure) may be positioned 
in the columns to provide a visual reference for a given 
year (the box at bottom left in the figure indicates that the 
vertical lines mark year 1971). One may observe in the 
figure that, from that year on, most selected stations have a 
common interval of years with consistent rain 
measurements, indicating that precipitation data collected 
within this year interval is a good choice of input to the 
next climate modeling steps. Reliability of further steps in 
the process is highly dependent on the quality of the input 
rain measurement data. 

Figure 2 Analyzing which stations within the 
region of interest have good collection periods 

A pair of maps depicting stations spatial localization, 
one mapping station’s altitude to color and the other 
mapping the total length of the data collection interval to 
color, can help the analyst to refine the initial station 
selection process, reducing the number of stations for 
further processing. A simple rule adopted by the domain 
specialist is: “ if two or more neighboring stations are 
within a certain altitude range, the one with greater amount 
of collected data may be chosen as representative of the 
area” . This is not a final decision, as further steps can lead 
to different choices. 

The next step is to treat missing and extraneous 
values within stations, replacing such values with 
reasonable approximations. This requires inspecting data 
collected within a station and in its neighboring stations 
for plausible replacement values. Visual support to this 
task is offered by the visual representation shown in 

Figure 3. Precipitation values measured over all the 
collection period at one particular station are visually 
displayed simultaneously in three scales: daily, monthly 
and yearly. In the figure each column represents one 
specific year, and yearly precipitation measures are 
organized from top to bottom in a single column as 
follows: the first twelve rectangles render daily 
precipitation values (color maps precipitation intensity), 
with values positioned within the rectangle so as to mimic 
a calendar; the following twelve rectangles indicate the 
total monthly precipitation values (total precipitation 
intensity mapped to color); and the last rectangle displays 
the accumulated precipitation value for that year. Each 
scale uses a different, user defined, color table. Missing 
values in the raw data are mapped to an arbitrary color 
(black in this case). As the goal is to identify plausible 
values for missing or extraneous data inspecting values 
collected in the same station or in neighboring ones, 
multiple instances of this visual representation may be 
created for simultaneous inspection by the user. 
Visualizations corresponding to different stations are 
positioned on the screen so as to reflect their relative 
geographical positioning – these visualizations may also 
be inspected jointly with an underlying map visualization 
depicting station spatial positioning. 

 Figure 3 Multiscale visual representation for 
handling missing and extraneous values  

After selecting stations and correcting missing and  
extraneous values, the user proceeds to determining 
representative years. To support this latter task, the visual 
representation defined is a generalization of the one used 
for displaying data collection intervals (depicted in Figure 
2), with a different  arrangement. Now, each horizontal 
line is associated with a specific year, and each point 
(pixel) in the line depicts a station. Thus, rather than 
representing data quality status for one particular 
measurement, as in Figure 2, each pixel on the line 
represents the accumulated yearly precipitation value, for 



  

that particular year, at one station. Though not 
implemented in our visualization environment, this 
representation, illustrated in Figure 4, was tested by 
adapting a visualization available in the GGobi9 software. 
A suitable color mapping can visually uncover years that 
are representative of rainy, dry and normal conditions. The 
color mapping chosen by the analyst in this case is shown 
in Figure 4. One observes, in the color version, that the 
predominance of: (1) redish to orange-ish hues indicates a 
predominantly dry year (such as 1985), (2) orange-ish to 
yellowish indicate normal (1984), and (3) yellowish to 
greenish indicate a rainy year (1983) (the years within the 
rectangle). The representative years identified visually 
match those previously obtained with a clustering 
algorithm [9]. Furthermore, from the visual 
representations the analyst realized that other choices of 
representative years could have been made that would be 
equally suitable. 

Figure 4 Visual representation to identify 
representative rainy, dry and normal years 

The visual exploration approaches allowed the user to 
handle a greater amount of data and made it easier to 
incorporate in the analysis multiple features such as spatial 
distribution, range of years with consistent data, altimetry 
and rain behavior. The ability of inspecting multiple data 
features simultaneously allowed a broader view of data 
from the initial stages, leading to a better understanding. 
This contributes to improve the modeling data to be input 
into GIS software for the next analysis stages. Although 
familiar with handling graphics, the domain specialist took 
a few training sessions before being able to correctly 
interpret the visual representations. Training time was 
mostly spent in demonstrating interaction capabilities, 
with emphasis on integrated and coordinated use of the 
                                                           
9 www.ggobi.org 

visualizations. 

5 Conclusions 
Visualization is useful to assist domain specialists in 
exploring information in large databases, because it has 
the capability of successfully integrating the huge 
processing power of computers with the human ability of 
recognizing visual patterns. Even when conventional 
statistics and automated mining techniques will be applied 
in further stages, many specialists still approach a raw data 
exploration process using conventional table-driven 
approaches. The size and other characteristics of ŕeal  ́
databases do not encourage data analysts to apply 
alternative approaches, and one reason for this is that there 
are few robust (and affordable) general-purpose tools that 
effectively support data pre-processing tasks. We are 
currently working on the implementation of such an 
environment, adaptable to user and task requirements, and 
in this paper we introduce some strategies included to 
assist users in data pre-processing of large databases 
containing spatial and temporal attributes. The proposed 
strategies combine well-known interaction and 
visualization techniques to support exploration tasks 
driven by the spatial and temporal data attributes. 
Coupling multiple pixel-based visualizations with specific 
interaction operations to display large volumes of 
temporal data proved particularly effective to support 
comparison tasks. Interaction with domain specialists was 
valuable to tailor the visualizations to user tasks and 
preferences and to validate the strategies. Using them the 
specialist can handle more data (e.g., at a daily, rather than 
a monthly level) more effectively. These techniques are 
now being applied to other spatio-temporal databases, in 
order to identify their advantages and limitations for 
exploration tasks in this context.   
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