

IMAGE DATA HANDLING IN SPATIAL DATABASES
LÚBIA VINHAS, RICARDO CARTAXO MODESTO DE SOUZA, GILBERTO CÂMARA1

1 Instituto Nacional de Pesquisas Espaciais - INPE

Av. dos Astronautas, 1758, São José dos Campos (SP), Brazil 12227-001

{lubia, cartaxo, gilberto}@dpi.inpe.br

ABSTRACT
The recent advances in database technology have enabled the development of a new
generation of spatial databases, where the DBMS is able to manage spatial and non-spatial
data types together. Most spatial databases can deal with vector geometries (e.g., polygons,
lines and points), but have limited facilities for handling image data. However, the widespread
availability of high-resolution remote sensing images has improved considerably the
application of images to environmental monitoring and urban management. Therefore, it is
increasingly important to build databases capable of dealing with images together with other
spatial and non-spatial data types. With this motivation, this paper describes a solution for
efficient handling of large image data sets in a standard object-relational database management
system. By means of adequate indexing, compression and retrieval techniques, satisfactory
performances can be achieved using a standard DBMS, even for very large satellite images.
This work is part of the development of the TerraLib library, which aims to provide a
comprehensive environment for the development of GIS applications.

1 Introduction
The recent technological advances in database
technology are providing the support for major
advances in non-conventional database
applications. In the area of geographical
information systems (GIS), database technology
has enabled the complete integration of spatial
data types in object-relational data base
management systems, creating a new generation
of spatial databases (Shekhar, Chawla et al.
1999). This integration is bound to change
completely the development of GIS technology,
enabling a transition from the monolithic
systems of today (that contain hundreds of
functions) to a generation of spatial information
appliances, small systems tailored to specific
user needs (Egenhofer 1999). Three major
challenges in spatial database construction are:
(a) the efficient handling of spatial data types,
which include both vector (i.e., polygons, lines
and points) and raster data structures; (b) the
availability of tools for query and manipulation
of spatial data; (c) the support for advanced
applications, such as mobile GIS, spatio-
temporal data models (Hornsby and Egenhofer
2000), geographical ontologies (Fonseca,
Egenhofer et al. 2002) and dynamic modelling
and cellular automata (Couclelis 1997).

 One area of special interest is the efficient
handling of raster data, especially satellite images.
Remotely sensed imagery is one of the most
pervasive sources of spatial data currently
available to researchers who are interested in
large-scale geographic phenomena. The variety of
spatial and spectral resolutions for remote sensing
images is large, ranging from IKONOS 1-meter
panchromatic images to the polarimetric radar
images soon to be part of the next generation of
RADARSAT and JERS satellites. Recent
advances in remote sensing technology, with the
deployment of a new generation of sensors, have
improved considerably such application areas as
environmental monitoring and urban
management.

 The construction of spatial databases that
handle raster data types has been studied in the
database literature and the main approach taken
has been to develop specialized data servers, as in
the case of PARADISE (Patel, Yu et al. 1997) and
RASDAMAN (Reiner, Hahn et al. 2002). The
chief advantage of this approach is the capacity of
performance improvements, especially in the case
of large image databases. The main drawback of
this approach is the need for a specialized, non-
standard server, which would greatly increase the
management needs for most GIS applications.
Therefore, the approach taken by the authors was
to include raster data management into object-

relational database management systems. We
consider that, by means of adequate indexing,
compression and retrieval techniques,
satisfactory performances can be achieved using
a standard DBMS, even for very large satellite
images. This work is part of the development of
the TerraLib library, which aims to provide a
comprehensive environment for the
development of GIS applications (Câmara,
Souza et al. 2000).

With this motivation, this work describes
the conception and implementation of the image
data handling facilities in TerraLib. These
facilities include: (a) efficient storage and
indexing; (b) decoders for the different image
data formats; (c) basic data manipulation
functions; (d) iterators to provide a convenient
way of accessing the image data and developing
image processing algorithms. These facilities
are supported in different DBMS, including
ORACLE, PostgreSQL, mySQL and Access
database management systems therefore
allowing easy interface with existing user
environments.

2 The Raster Data Type in TerraLib
Images in TerraLib are handled by a generic
raster data type and are usually associated with
a cartographical projection and may be multi-
dimensional, e.g., the different spectral bands of
a remote sensing image. Images are usually
associated with different file formats, such as
TIFF and JPEG, and may refer to different
representations: (a) a synthetic image that has
an associated look-up table, where the pixel
value is associated with a RGB triple; (b) a
multi-band image; (c) an image which is
associated with a categorical coverage; (d) an
image where each pixel has an ID of a unique
spatial object. We have defined three basic
classes in TerraLib:

• A generic raster data structure
(TeRaster).

• A class that stores the metadata about a
raster data set (TeRasterParams),
including: image type, number of lines,
columns, and dimensions, resolution,
bounding box, cartographical
projection, rotation and skew
parameters, and compression technique
used.

• A class that handles different data
formats, including storage in a DBMS
(TeDecoder).

The two basic functions available to the
TeRaster class are setElement and
getElement, which store and retrieve an
individual raster value. In order to decouple this
class from the different storage alternatives,
requests to the TeRaster class are handled by
the TeDecoder class, as shown in. This is an
example of the “Strategy” design pattern
(Gamma, Helm et al. 1995). The TeDecoder
class is specialized into derived classes that
handle specific data formats, such as JPEG files,
TIFF files or images stored in a DBMS. The
Figure 2.1 shows the relationship between the
TeRaster, TeRasterParams and
TeDecoder classes.

Figure 2.1 Relationship between classes that

handle imagery in TerraLib

3 Spatial Database Interface to Raster
Data

A TerraLib database is a set of “geographical
layers”, where each layer consists of a specific
type of geographical data (such a soil map, an
image or a cadastral map). For object-relational
DBMS data storage, each layer is associated with
a set of tables, which store its spatial and non-
spatial components. There will be a different table
associated with each layer for storing each of the
different geometries (point, line, polygon and
raster). In TerraLib, access to spatial data stored
in a DBMS is achieved by a generic Application
Programming Interface (API), which encapsulates
the internal differences of each database system.
This API maps TerraLib’s spatial data types into
the characteristics of each specific DBMS, using
spatial indexing or in-built optimization facilities,
if available. Currently, TerraLib supports the
Oracle, mySQL, PostgreSQL and Access systems.
Two abstract classes have been defined for this
API: TeDatabase and TeDatabasePortal,

which allow: (a) establishment of the
connection with the database server; (b)
executing SQL commands; (c) defining indexes;
(d) defining referential integrity; (e) executing
spatial or non-spatial queries that return a set of
records (Ferreira, Queiroz et al. 2002).

 In order to store the raster data in a DBMS,
previous works in the literature (Patel, Yu et al.
1997; Reiner, Hahn et al. 2002) have shown
than a combination of multi-resolution pyramid
and a tiling scheme is the most appropriate
strategy for handling large image files. The
tiling scheme is used as a spatial index, such
that when retrieving a section of an image, only
the relevant tiles will be retrieved and
decompressed. The multi-resolution pyramid is
very useful for visualization of large data sets,
to avoid unnecessary data access. This approach
was adopted in TerraLib. Each image is
associated with a database table, called the
“raster table”, where each record stores a tile (or
block) of the image. The fields of the raster
table are shown in Table 1.

For image storage in a TerraLib database,
each band of the image is decomposed in a set
of disjoint tiles with width W and height H
given in number of pixels. Each tile is stored in
the field spatial data (as a long binary) of a
record in a raster table. Tiles can be compressed
before storage. Global information about a
raster layer, such as tile dimension, compression
technique, number of rows and columns,
number of bands, bounding box, and pixel
resolution is stored in a complementary table.

Figure 3.1 Decomposition and identification of

tiles.

TABLE 1 – THE RASTER TABLE IN
TERRALIB

block_id string Tile unique identifier

lower_x real Tile bounding box
minimum X coordinate

lower_y real Tile bounding box
minimum Y coordinate

upper_x real Tile bounding box
maximum X coordinate

upper_y real Tile bounding box
maximum X coordinate

band_id int Band

resolution_factor int Tile resolution factor

subband int Subband information

spatial_data binary Raster tile

block_size int Size in bytes of a tile
(after compression)

 The bands of the image are divided in blocks
of dimension 2n x 2m (the default is 512 x 512) to
simplify the construction of a multi-resolution
structure. The starting point for the tiling division
must correspond to a known geographical
reference. This allows a definition of a function
that returns the same block identification for all
the pixels that belong to a given tile, and is used
as primary key of the raster table.

For example, consider a 100 x100 image with
a pixel resolution of 1 x 1 meter. The lower-left
pixel is associated with the geographical
coordinate (20, 20) and the upper right pixel
associated with the geographical coordinate
(120,120). Geographical coordinates are given in
the cartographical projection associated with the
image. The decomposition of this image
(represented by the gray rectangle) in tiles of 64 x
64 pixels will generate the four tiles T1, T2, T3
and T4 shown in Figure 3.1.

(0,0) (64,0) (128,0)

T3 T4

T1 T2

(0,128)

(0,64) The identification of each tile is built using its
position in the subdivision of the space by axes
positioned at the coordinates multiples of the
block size in the vertical and horizontal
dimension. So the tile T1 will have the
identification X0Y0 projection coordinates, T2
will have the identification X1Y0, T3 will have
the identification X1Y0 and T4 will have X1Y1.
Given a pixel with coordinates (x,y) the
identification of block to where it belongs is given
by XniYnj where: ni = x % 64, nj = y % 64 and
% represents the integer division operator.

4 The multi-resolution raster structure
Operations associated with visualization of
large image data sets are constrained by the
properties of the output devices. For example,
consider a 20,000 x 20,000 image being
displayed in a 1,000 x 1,000 pixel canvas. The
user may start from a general view of the image
and may want to zoom to a selected area, and
then to scroll the image looking for areas of
interest. In each situation, there should be no
need for simultaneous retrieval of all image
data. Ideally, the amount of data retrieved
should be on the order of magnitude of the
display capacity of the visualization device.
This requirement can be fulfilled if the spatial
database is organized as a multi-resolution
structure. This multi-resolution pyramid stores,
at its lowest level, the tiles associated with the
full resolution image. At higher level, the tiles
are grouped into lower-resolution images, which
are used for efficient image visualization. Given
this motivation, TerraLib implements a multi-
resolution pyramid. Starting with the full
resolution of the image the basic tiles are
created. Then we build the subsequent levels
decreasing the resolution by a factor of two.
Each set of four tiles is merged into one tile,
which will contain a reduced-resolution image.
This process is repeated for all basic tiles and
applied to the next superior level, until at the
uppermost level a single tile contains a much-
reduced version of the image. The combination
of multi-resolution and tiling is equivalent to a
spatial indexing scheme that considers both the
input and output data requirements. When a user
defines an area of interest for image
visualization, the indexing scheme will use the
geographical bounding box of the tiles and the
display resolution to retrieve and subsequently
process only the tiles that cover a certain area,
with the required spatial resolution. A similar
process is used in the specialized applications
PARADISE (Patel, Yu et al. 1997) and
RASDAMAN (Reiner, Hahn et al. 2002).

5 Query Processing and Data Access
There are two ways of retrieving image data in
TerraLib: (a) the use of SQL queries directly in
the raster table, followed by the decompressing
of each tile; (b) a set of two functions
(setElement and getElement), which
allow the access to every element of an image
and can be used to build algorithms that operate
on the individual pixels of image; (c) a set of
image iterators, that allow access to the image
data in a sequential basis, as described in the
next section. In the first case, the application

programmer uses the spatial indexing scheme
described in the previous section directly.

In the second case (setElement and
getElement functions), the application
programmer does not have to know the specific
aspects of spatial database storage and retrieval.
He will request access to a specific pixel, which
will be provided by TerraLib’s database decoder.
When dealing with individual pixels, it is
important to consider efficiency issues. For that
purpose, TerraLib implements a block cache
mechanism to reduce the amount for fetch
operations from the database. As explained in the
previous section, the tiling and multi-resolution
scheme provides spatial indexing. The unique
identifier associated with each tile is used as a
primary key for queries and for the cache system.
Whenever a pixel with coordinates (i,j) of a band
b, in a resolution level r is required for retrieval, if
the tile is not in the cache, it is retrieved,
decompressed and stored in memory. The
maximum number of tiles to be kept in the cache
is defined by the application. When a tile that is
not in the cache is requested and there is no more
space available, the least recently used tile is
discarded. In case of any modification of the pixel
values, the tile is updated in the database before
being discarded.

6 Raster Iterators for Generic
Programming with Images

A geographical information system (GIS) should
not only provide methods for storage and retrieval
in a spatial database, but must include facilities
for the development of algorithms that deal with
geographic information. A large number of
algorithms do not depend on some particular
implementation of a data structure but only on a
few fundamental semantic properties, such as the
ability to get from one element of the data
structure to the next, and to compare two elements
of the data structure. For example, an algorithm
for computing a histogram of a spatial data set
does not need to know if the data is organized as a
set of points, a set of polygons, or an image. All
that is needed is the ability to look into a list of
spatial elements, and to obtain the value of each
element of the list. Therefore, GIS software
development can be much improved by using
emerging paradigm of generic programming
(Austern 1998). Generic programming is based on
the idea that there are fundamental laws that
govern the behavior of software components,
which are independent of the data structures.
Therefore, generic programming aims at

designing interoperable modules based on the
separation of algorithms from the data
structures.

 In order to enable generic programming
techniques to be used in connection with images
in TerraLib, the class TeRaster provides
iterators that allow the sequential traversal of an
image. The simplest iterator is defined by
considering its starting as the first column of the
first line of the image; each forward operation
moves to the next column up to the end of the
line and than to the next line until the last
column of the last line. Iterators are useful
because they allow algorithms to be written in

terms of requirements over data structure instead
of in terms of the data structure itself. We have
also implemented iterators that traverse the
elements of a certain portion of the image
delimited by a polygon.

7 An Application Example
In TerraLib, we have implemented the infra-
structure described in this paper for the ORACLE,
mySQL, PostgreSQL and Access database
management systems. An example of application
program that used this infra-structure is shown in
Figure 7.1.

Figure 7.1 An example of application

 The raster representation of a layer was built
from a mosaic of two images files in GeoTiff
format. The first image (left side of the canvas)
has 7020 x 7984 pixels and 3 bands, the second
image (right side of the canvas) has 7414 x
8239 pixels and also 3 bands, and both images
occupy 335Mb as files in GeoTiff format.

 The images where divided in blocks of 512
x 512 pixels in a 5 level multi-resolution
pyramid. They were stored in an ACCESS
system, using the JPEG format at 75% quality
level as the compression algorithm. The
resulting representation of the raster data in the
database is composed of 1500 tiles that after

compression occupied 47.2Mb of storage in the
database. It should be noticed that the tiling
scheme worked properly so that the mosaic was
correctly built. In Figure 7.1 the application
decompressed only 5 tiles of the uppermost level
of resolution.

 To execute a zooming operation over
approximately a quarter of the canvas (as showing
in Figure 7.2) the application decompressed 16
tiles of the third resolution level. Finally to
execute a zooming to a detail level (shown in
Figure 7.3) the application decompressed 6 tiles
of full resolution.

Figure 7.2 A zooming operation.

Figure 7.3 A zooming to detail operation.

8 Conclusions
The implementation of an image data-handling
scheme in a generic object-relational database
system, together with functions to handle other
spatial and non-spatial data types, has important
advantages over specialized solutions that have
been proposed in the literature. We have shown
that the object-relational infra-structure can be
combined to enable spatial indexing, which
allows efficient data retrieval and query
processing. By means of adequate indexing,
compression and retrieval techniques,
satisfactory performances can be achieved using
a standard DBMS, even for very large satellite
images

 We are currently investigating additional
aspects of image data handling such as: (a)
compromises between tile size and performance;
(b) different compression techniques, such as
wavelets; (c) different alternatives for building
multi-resolution pyramids; (d) new types of raster
iterators, which operate over a pixel neighborhood
instead of a single element.

Acknowledgements
The TerraLib spatial library is available as open
source in www.terralib.org. The authors would
like to acknowledge the support of TerraLib
teams from INPE (Antonio Miguel Monteiro,
João Argemiro Paiva, Karine Reis Ferreira and
Gilberto Ribeiro) and TECGRAF (Marcelo Tilio
Monteiro de Carvalho and Marco Casanova).

http://www.terralib.org/

References
Austern, M. (1998). Generic Programming and

the STL : Using and Extending the C++
Standard Template Library. Reading, MA,
Addison-Wesley.

Câmara, G., R. Souza, et al. (2000). TerraLib:
Technology in Support of GIS Innovation. II
Workshop Brasileiro de Geoinformática,
GeoInfo2000, São Paulo.

Couclelis, H. (1997). “From Cellular Automata
to Urban Models: New Principles for Model
Development and Implementation.”
Environment and Planning B: Planning and
Design 24: 165-174.

Egenhofer, M. (1999). Spatial Information
Appliances: A Next Generation of
Geographic Information Systems. First
Brazilian Workshop on GeoInformatics,
Campinas, Brazil.

Ferreira, K. R., G. Queiroz, et al. (2002).
Arquitetura de Software para Construção de
Bancos de Dados Geográficos com SGBD
Objeto-Relacionais. XVII Simpósio
Brasileiro de Banco de Dados, Gramado,
RS.

Fonseca, F., M. Egenhofer, et al. (2002). “Using
Ontologies for Integrated Geographic
Information Systems.” Transactions in GIS
6(3): 231-257.

Gamma, E., R. Helm, et al. (1995). Design
Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA, Addison-
Wesley.

Hornsby, K. and M. Egenhofer (2000).
“Identity-Based Change: A Foundation for
Spatio-Temporal Knowledge
Representation.” International Journal of
Geographical Information Science 14(3):
207-224.

Patel, J., J. Yu, et al. (1997). Building a Scalable
Geo-Spatial DBMS: Technology,
Implementation, and Evaluation. SIGMOD
Conference, Tucson, Arizona.

Reiner, B., K. Hahn, et al. (2002). Hierarchical
Storage Support and Management for Large-
Scale Multidimensional Array Database
Management Systems. 3th International
Conference on Database and Expert Systems
Applications (DEXA), Aix en Provence,
France.

Shekhar, S., S. Chawla, et al. (1999). “Spatial
Databases: Accomplishments and Research

Needs.” IEEE Transactions on Knowledge and
Data Engineering 11(1): 45-55.

