Modelling Spatial Relations by Generalized Proximity Matrices

ANA PAULA DUTRA DE AGUIARl, GILBERTO CAMARAl, ANTONIO MIGUEL VIEIRA MONTEIROl, RICARDO CARTAXO
MODESTO DESouzA®

! Image Processing Division, National Institute $prace Research
Av. dos Astronautas, 1758 - 12227-001 - S&o José&dmpos , SP, Brazil

Abstract. One of the main challenges for the developmenspdtial information theory is the
formalization of the concepts epaceandspatial relations Currently, most spatial data structures and
spatial analytical methods used in GIS embody titeon of space as a set absolutelocationsin a
Cartesian coordinate system, thus failing to inocafe spatial relations, which are dependent on
topological connections and fluxes between physicafirtual networks. To answer this challenge, we
introduce the idea of generalized proximity matrix (GPMan extension of the spatial weights matrix
where the weights are computed taking into accbotit absolute spaceelations such as Euclidean
distance or adjacency amelative spaceaelations such as network connection. Using tRMGtwo
geographic objects (e.g. municipalities) are "neadth other if they are connected through a
transportation or telecommunication network, evethousands of kilometers apart or, using even
more abstract concepts, if they are part of theesproductive chain in a given economical activity.
The generalized proximity matrix allows the extemsof spatial analysis formalisms and techniques
such as spatial autocorrelation indicators andialpeggression models to incorporate relations on
relative space, providing a new way for explorimgnplex spatial patterns and non-local relationships
in spatial statistics. The GPM can also be used agpport for map algebra operations and cellular
automata models.

Keywords. Spatial relations, generalized proximity matricgstial analysis.

11 ducti Castells [5] views geographical space as a comnibmat
ntroduction of “spaces of fixed locations and spaces of fluxes”
The establishment of spatial information scienceaas Where the concept of ‘spaces of fixed locations’
scientific discipline requires it to possess a usiget represents spatial arrangements based absolute
of concepts, which are distinct from those used by space and the concept of ‘spaces of fluxes’ indicates
other branches of science. In this respect, noeminc  Spatial arrangements basedrefative space
s as crucial as the notion apaceitself. After To achieve realistic computational models of spati
decades of_ research, the mathemancal_expressmn Oftemporal patterns, we need major advances in the
spaceremains one of the most challenging problems
in spatial information theory. Most spatial data
structures used in GIS such as polygons and cells
embody the notion of space as a setabbolute
locations in a Cartesian coordinate system.
Representation ofelative space(the relation of a

representation of spatial relations. To take a
motivational example, consider the process of mndel
of land use change in the Brazilian Amazonia. Human
occupation on the region drives this process, aasl h
increased significantly in the last two decadesdils

. . . ) that project patterns of land use change in Amazoni
spatial object to other objects) in a GIS usesnanbe have to consider that transportation networks (sive
data structures. However, the models associated to and roads) play a decisive role in governing human

arc-node data structures are usually completely geiement patterns. Figure 1 depicts urban setiiésn
unrelated to the analysis methods that use 3 amazonia as white areas, and the road network in
representations of absolute space, a separatidn tha .o |ines. A realistic model for land use changethe
leads to a limited conception of space in geog@hi  (agion has to take into account that the roadsksta
information system. Thisituation has led to much  eferential directions for human occupation antla
criticism both from within the GIS community and  ,ge changes. These relations would be impossible to
from non-practitioners ([1] [2] ([3]). Such critigs capture in the isotropic neighborhoods prevalent in
cons@er_ that _ flows _of resources, |nformat|on_, most spatial modeling techniques. Therefore, any
organizational interaction and people are es_sgntlal spatial model that aims at understanding the peeses
components  of space. Therefore, efficient 3 5 area such as Amazonia requires flexible

representation of such flows in connection With efinitions of proximity that are able to capturian-
representation of absolute space is essential to at-a-distance

achieve a realistic perspective of spatial relatipt.



Figure 1 — Human settlements (white dots) and roads
(red) in Amazonia

This paper proposes a model for expression of
spatial relations, using@eneralized proximity matrix
(GPM). The GPM is an extension of the spatial
weights matrix used in many spatial analysis
methods[6], where the spatial relations are contpute
taking into account bothbsolute spaceelations such
as Euclidean distance or adjacency eidtive space
relations such as topological connection on a ngtwo
This combination ofabsolute spaceand relative
spacehas not been explored extensively before in the
GlScience literature.

In this paper, we propose ways to combine the
two notions of space and we illustrate the ideat wi
an example using data from colonization in the
Brazilian Amazonia. The paper is organized as
follows. Section 2 presents the basic definitioredu
in the paper. Section 3 describes the process of
computation of a GPM. Section 4 demonstrates the
use of the GPM in a case study of spatial relations
Amazonia. In section 5, we discuss the relatiothef
GPM to previous work.

2 Basic Definitions

Consider a seD of spatial objects whose geometrical
representations are defined over a connected s8bset
0 0% Examples of these objects include: (a) area
regions whose boundaries are closed polygons; (b)
cellular automata organized as sets of cells, whose
boundaries are the edges of each cell; (c) point
locations in two-dimensional space. A very large
number of spatial analysis and spatial statistics
functions over the set of objec@ depend on the
definition of a neighborhood. Therefore, given two
objectso; ando; belonging toO, a basic question is
“are these objects neighbors?”

The usual answer to this question is to consider
that geographic objects are “close” to each other
depending on their position in thebsolute space

usually measured in terms of topological adjaceoicy
Euclidean distance[7]. We denote theighborhood
relation betweeno; ando; by wij. Usual options for
definingw ; include:

* W; =1, ifog is topologically adjacent tg; w; =0

otherwise. 1)
e w; = 1, if distance (0, 0) < %;
w; = 0 otherwise. (2)

The set of all relationsy; defines aspatial
weights matrixW that represents the neighborhood
relationships between objects in the §&tA large
number of spatial analysis techniques use the apati
weights matrix, including moving averages, spatial
autocorrelation indices and spatial regression auth
[7]. To take one example, given one attribute eéaof
spatial objects, we compute its local average by a
weighted mean, where the weights are the relatipys

n
2wz

~ _j=1
==

W

=1

®3)

In the above equationj is the local meany; is

the element of the weights matrix that relates cbje;
ando; , andz; is the value of the attribute for the object
0j.

We propose an extension of the usual definition of
the spatial relationv; to include a combination of
neighborhood measures in talesolutespace and in the
relative (network)space. We call the resulting matrix a
generalized proximity matrix(GPM). In order to
compute the GPM, we neelditional information on
the network relations between the object®iA graph
G over the same connected sub&tprovides the
connectivity information. The graphis composed of a
set of nodedN and a set of arc&. Our definition of G
includes different types of networks, including ptoal
links (roads and rivers) and logical links (airline
routes). This model of proximal space requireseddht
representations of absolute and relative spacey ik
setsS and G we consider that configuration of the
relative space cannot be derived satisfactorilynfitbe
boundaries of spatial objects alone.

There are many applications for the GPM. The most
important ones involve using the GPM in spatial
analysis and spatial modeling. The GPM inheritsl-wel
established formalisms and techniques such asapati
autocorrelation indicators and spatial regression
models, which have been defined using spatial vigigh
matrices.



3 Building Generalized Proximity Matrices two connection points of two spatial objects to the
network.

The computation of each elemew; of the
GPM requires two proximity measures: one —H H
associated to absolute space relations and a second
one associated to relative space relations. Wetdeno [ ]
these functions byproxabs and proxrel, 3 ,
respectively. From the different possibilities for N |
defining these functions, we will consider two N
alternatives: indicator functions and distance-base

measures.

Figure 2. Schematic example of an open network.
Indicator functionsare functions take only values
one (1) or zero (0), depending whether the chosen
criteria is satisfied or not. In the casemfoxabs,
equations (1) and (2) are examples of indicator
functions. The spatial weight is the logical unioh
both measures:

Figure 2 presents a schematic example of an open
network, where the spatial objects are regulas catid
the maximum distance for connection to the netwsrk
dmax. We consider that two objects are neighbors in
relative space when their centroids are insideskizeled
area. Given a sdD of spatial objects and a gragh =

w; =proxabs (0;,0;) O proxrel (o, o) (N, A), we use the following functions
4
@ cent:: O = [O2% denotes the function that
As an alternative to indicator functiordistance- calculates the centroid of a spatial objggt

based functionsise measure based on locations on

e dict:- M2 2 . ;
Cartesian coordinates combined in a linear fashion: dist:: U"x0%=[: the function that calculates

the distance of two pointsandy;

. = * . .
W = o " proxabs (oi, 05) + « shpath:: O%x0?xG= 0O: be the function that

B * proxrel (o;,0) (5) calculates the shortest path between two locations
on a graph.
Prior to the definition of ther oxr el functions,
we must first distinguish between two types of
networks: (a) Networks in which the entrances and
exits are restricted to its nodes, i.e., objectsnect

« clspt:: 0% x G= 0% be the function, that
given a location inJ? and a graphG, determines
the closest point in the graph.

only at network nodes. Examples are railroads, We can computer oxr el , as illustrated in Figure
telecommunication networks, banking networks, and 3. Given a pair of objects; ando; in Oand a grapit,
productive chains. We denote these Ioslosed the closest locations i@to 0; ando; are computedp(

networks (b) Networks in which any location is and p;), and the shortest path between them is
entrance or exit point, i.e., objects connect ag an calculated. The objects are neighbors if: (a) tkktadce
node or arc coordinate. Examples are transportation from their centroids to the network is smaller than
networks such as roads and rivers. We denote these specified thresholddg.x); (b) the shortest path between
by open networksFor open networks, it is necessary P; andp; in the graph is smaller than a specified value
to make use of the actual line coordinates that (Pmax). TWO types of measurements are possible:
correspond to each arc in order to be able to ctenpu
the closest entrance/exit points from any arbitrary
position. bool proxrel (0,0, G {

* [ndicator function

The construction of the GPMs depends on the pi =clspt (cent (0;), G;
type of the n_etwork (open or closed) as explaimed i p, =clspt (cent (o;), O;
the next sections.

if ((dist (cent(0;),pi)< dmx) AND

3.1 Proximity Measuresin Open Networks (dist (cent(0;),p;)< dum) AND

In the case of open netwc_)rks, a spatial object ectsn shpath (0, Pj) < Prax)
to the network at any point of any of the arc, aod

only at the nodes. The proposed criterion for GPM return TRUE
cons_trucuon_ considers two ba_slc parameters: @) th el se return FALSE; }
maximum distance from an object to the network; (b) _ _

the maximum value of the shortest path between the * Distance-based function:

float proxrel (0;,0; G {



pi =clspt (cent (0;), O;
pj =clspt (cent (05), G;

return ( 1/shpath (pi,p;. G +
1/ di st (cent(o0;), pi) +
1/ di st (cent (0;), p;));

Figure 3 Schematic representation of algorithm for
proximity measures in open networks.

A number of similar algorithms could be used to
capture spatial relations on an open network,
depending on factors such as the spatial
configuration, the average length and the attribotie
each arc. This added complexity might not be
relevant in all applications, so it was not incagted
in the current discussion.

3.2 Proximity Measuresin Closed Networks

In closed networks, the only entrance points aee th
nodes. In a similar way as in the case of open
networks, two parameters are considered to identify

connectivity between two spatial objects: the maxim
distance from each object to the closest node and a
maximum limit to the shortest path between the two
nodes chosen as connection points, as illustrated i
Figure 4. The cells whose centroid is inside thedshl
area (green shade) are neighbors by the network
criteria. Given these parameters, we can calculze
proxrel function in a similar way as in the previous
section.

Figure 4. Schematic example of a closed network.

4 A Case Study on Spatial Analysis using the
GPM

In this section, we exemplify the construction aiIsdge

of GPM in a case study. Our study area, shown in
Figure 5, has approximately 260.000%amd is located

in the Brazilian Amazon rainforest, in the statePaira.
The study area was divided into regular cells ob 62
km? (25 km per 25 km), and the attribute under analysi
is the deforested area in each of these cells. We
compared the local spatial autocorrelation indices
obtained using GPMs constructed based on two
different criteria: (a) proximity in absolute spajgecal
adjacency) and (b) proximity in relative space (ope
network connections).

. Forest

Deforested

No data

Non-forest
vegetation

Il Water

Roads

Figure 5. Study Area in Brazilian Amazonia, Pardt&t



Two non-paved main roads, Transamazénica and

relative space relations (open network criterion)e

Cuiaba-Santarém, cross the study area. The humanhave selected five representative cells for disonss

occupation in thélransamaz6nicarea dates mostly
from the seventies; one can notice the “espinha de
peixe” (fish spine) spatial pattern, caused by the
lotting schema adopted by state planners in thed.ar
The Cuiaba-Santarém region is a new frontier area,
where the forest has been less disturbed, which has
received a large recent influx of new settlers canmi
mainly from the south. In the southeast of the wtud
area, there is a more consolidated agriculturabreg
named Séo Felix do Xingu, which is also served by a
non-paved road. The huge undisturbed forest area in
the middle of the study area contains several
conservation units and indigenous areas, butdtsis
being threatened by new settlers coming from the Sa
Felix do Xingu region.

We are interested in studying the effects of road
networks in the process of deforestation, takirtg in
consideration that these effects are not homogeneou
in space and time, given the differences in the
territorial dynamics of agriculturally consolidated
areas versus new frontier areas. We have usedh loc
index of spatial autocorrelation (the Local Moran
index) as an indication of the differences betwien
spatial patterns. The local analysis presentedim t
paper is an initial attempt in this direction. We
calculate the Local Moran index for each object

shown in Figure 6 below.

Cells examples

[ Less consolidated
[ More consolidated

Bl Deforestation map:
Forest

Deforested
No data
Non-forest

vegetation

W Water

@ M Roads

—
100 km

Figure 6. Selected five cells for results presémtat

Figure 7 (see Annex) presents the neighbors of
these five selected cells using the two alternative
criteria for the GPM construction: local adjacerand
open network. We have used indicator functions to
build the GPM. The parameters used for the Open
Network Criterion were: gy = 20 km ; phax = 50 km.
Table 1 presents the Local Moran index values (and
corresponding significance) computed for both dete

Table 1 - Local Moran index comparison for

selected cells.

based on the product of one of its attributeg énd
the same attribute; of its neighbors [8]:

(10)

In the above formula, the GPM provides the

weightsw; andn is the number of neighbors. The
closer the values of an object’s attribute are ehofs
its neighbors, the higher the index. Values around

Case | Classifi Criteria: Local criteria: Open
Adjacency Network
connection
L. Moran | Sign L. Moran Sign
(%) (%)
A Consol | 13,21303 | 100 11,0170 100
B Consol | 22,26286 | 100 | 27,23771 100
C Inter | 4,217319 | 100 | 6,002659 100
D Inter 0,34357 92 0,60697 97
E New 0,07419 76 0,52020 93
frontier

zero mean no correlation; higher positive valueame
stronger positive correlation, and lower negative
values mean stronger negative correlation. We also
computed the statistical significance of the Local
Moran Index, using 99 random permutations of the
attribute values. Our goal was to analyze the biehav
of such index given alternative neighborhood
structures. We expected an increase in the indices
when using the open network criterion (emphasis in
relative space relations), especially for non-
consolidated frontier areas, given that the
deforestation process is known to spread from the
road network. The results obtained confirm this
hypothesis. For the cells connected to the network,
the indices were, in average, approximately tha¥ 30
higher when using GPMs that take into account the

The results confirm, in general, our hypothesis. In
consolidated areas, network effects are less irmapbrt
because the local adjacency neighborhood is able to
capture the nature of the territorial dynamics. iduoer,
going to new frontier areas, the results obtaingdhle
network connection are significantly higher tharm th
ones obtained by the local adjacency neighborhood
relations. We intend to continue to study the
implications of alternative neighborhood structumes
spatial analysis techniques, specially aiming at
understanding and modeling the land use and land
cover change process in the Amazon.



5 Related Work

Couclelis [1] proposes the notion pfoximal space
which aims to combine the concepts of absoluteespac
(location) and relative space (situation). To oegpt
relations in proximal space, Couclelis proposes the
notion of arelational map[1]. Given a set of spatial
objectsO where each objeab; is associated to a
location| ;, a relational map R is the set of all
locations that influence locatioh;. The set of all
relational maps for all spatial objects is callda t
metarelational map The geo-algebraproposed by
Takeyama and Couclelis [9] uses the metarelational
map to extend traditional map algebra operations to
operate over the proximal space, and thus captures
spatial relations that act at a distance.

The formalism foigeo-algebradefines a maplas
a functionM L -V defined asv={ (I, (1)), O
I OL}, whereL represents the set of all locations and
V the set of all values associated to these locsition

The geo-algebraoperations can be then defined as
follows:

 Let @ be an operation over a set of numerical
values, such as mean or maximum value;

» Let therelational map R be defined as the set of
all locations that influence a locatibn

» Let the set of value¥, by defined by the product
of the relational ma® and the ma (V, =M
0 R), comprising the values of all locations that
influencel ;

* Applying the operationp over all the setsv
generates a new map, as depicted in the equation:

MY = o (MO R) Ol OL. (10)

The geo-algebraof Takeyama and Couclelis [9]

can be expressed by operations that use the GPM to (iv)

compute the results for each cell, as follows:

« Let O be a set of spatial objects, each
characterized by a locatioh and a valuev
associated to each location. Then it follows tat
is equivalenttovt L -V, as defined before;

* Let @ be an operation over a set of numerical
values, as above;

* Let Whe a generalized proximity matrix where
eachw; is either one (1) or zero (0), indicating
the presence or absence of a relation between the
locationsl ; and | ;. It follows that each line
of W contains the same information as the
relational magR ;

» For each locatioh;, let the set of value¥g, be
computed as the product of the weigiMs and
the valuesMI ), O1; OL. In this case, this

set of values is the same as the one produced by
applying the relational mag to the magvi

* The geo-algebra operations can be defined by the
application of the operatioq to all setsV; in the

map:
Mi) ™ = {Vi}), where Vi = {(w; *
Ml;))} Ol OL. (11)

Therefore, the geo-algebra of Takeyama and

Couclelis [9] can be obtained by a suitable chata
GPM and by defining all map algebra functions to be
calculated using the GPM. Therefore, it followst tthee
GPM is a generalization of Couclelis’ notion of
proximal space. Additionally, Couclelis [1] doestno
discuss techniques for computing the metarelational
map, and does not indicate how absolute and relativ
space should be combined to compute neighborhood
relations.

O’Sullivan [10] proposes a graph-cellular
automaton model (omgraph-CA for short) for the
representation of proximal space. A graph-CA exdend
the basic CA model by using a directed graph GhEac
cell ¢; of the CA is associated to a vertex of G and
each edge of the graph represents a relationship
between two cells; andc;. Applications of graph-
CAs are presented in O'Sullivan. [11].

The graph-CA model can be expressed using the
GPM model when a CA uses the GPM to express its
neighborhood relations. Recall that a CA can be
defined by a tuple( X, S, N, f) in which:

0]
(i)
(iii)

X 0O Z? isthe celular space;

S is the finite set of possible states;

N(X) = {Xg,...,X}, is set of cells that
are in the neighborhood of a celld X.

f: S - S is the transition function defined
as S(x t)=f(S(xy,t),..., S(xgt)),
Oxx ON(x), where S(x; t)is the state of
the CA in positionx; intimet .

A graph-CA is a relaxation of a conventional CA
where cell neighborhoods need not be identical, nor
local. The relations are defined by a directed yr&p
composed of a set of vertices V and edges E, where
each cellg of the CA is associated to a vertexand
each edge of the graph represents a relationship
between two cells; andc. This relationship can be
expressed conveniently in a GPM, which contains for
eachw;; a measure of the relationship between dells
and j. Therefore, any CA whose neighborhood
relations are expressed by a GPM will support the
graph-CA paradigm.

Therefore, the GPM supports both geo-algebra and
graph-CA models of proximal space, and it is more



general than these two definitions. Since it i®as
useful tool for computing spatial statistics metrithe
GPM is a convenient and generic way of expressing
spatial relations.

6 Conclusions

In today’s globalized world, where flows of resoesc
and information are becoming increasingly important
spatial information systems need to incorporate
flexible definitions of space. The generalized
proximity matrix (GPM), a concept introduced inghi
paper, is able to combine neighbourhood criteria
based both absolute and relative space definititiss
allowing to combine local actions with action-at-a-
distance. In this paper, we indicate how the matrix
can be calculated, considering different types of
network configurations. We have also presented a
case study where the GPM has been shown to capture
spatial relationships that we not detected by
considering only local adjacency, by including
network connections.

We have implemented the concepts described in
this paper using the Terralib environment, an open
source GIS library available at
http://lwww.terralib.org[12]. Terralib includes ats#
classes to create generalized proximity matrices,
allowing the selection and combination of different
criteria for construction (e.g., local adjacencyl/an
network connection), weighing (e.g., inverse of
distance and/or minimum path) and slicing (e.g.,
distance zones and/or adjacency order). Once
constructed, tools for spatial analysis or dynamic
modeling (e.g., generalized cellular automata)
available in TerraLib can be applied using the GPM.
Multiple proximity matrices can also be used for
different attributes, providing a rich environmdat
analyzing similarities and dissimilarities, and for
exploring complex spatial processes.
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ANNEX

Figure 7. Neighborhood relations identified by aitdive criteria for the five selected cells.
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