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Abstract. One of the main challenges for the development of spatial information theory is the 
formalization of the concepts of space and spatial relations. Currently, most spatial data structures and 
spatial analytical methods used in GIS embody the notion of space as a set of absolute locations in a 
Cartesian coordinate system, thus failing to incorporate spatial relations, which are dependent on 
topological connections and fluxes between physical or virtual networks. To answer this challenge, we 
introduce the idea of a generalized proximity matrix (GPM), an extension of the spatial weights matrix 
where the weights are computed taking into account both absolute space relations such as Euclidean 
distance or adjacency and relative space relations such as  network connection. Using the GPM, two 
geographic objects (e.g. municipalities) are "near" each other if they are connected through a 
transportation or telecommunication network, even if thousands of kilometers apart or, using even 
more abstract concepts, if they are part of the same productive chain in a given economical activity. 
The generalized proximity matrix allows the extension of spatial analysis formalisms and techniques 
such as spatial autocorrelation indicators and spatial regression models to incorporate relations on 
relative space, providing a new way for exploring complex spatial patterns and non-local relationships 
in spatial statistics. The GPM can also be used as a support for map algebra operations and cellular 
automata models.  
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1 Introduction  

The establishment of spatial information science as a 
scientific discipline requires it to possess a unique set 
of concepts, which are distinct from those used by 
other branches of science. In this respect, no concept 
is as crucial as the notion of space itself. After 
decades of research, the mathematical expression of 
space remains one of the most challenging problems 
in spatial information theory. Most spatial data 
structures used in GIS such as polygons and cells 
embody the notion of space as a set of absolute 
locations in a Cartesian coordinate system. 
Representation of relative space (the relation of a 
spatial object to other objects) in a GIS uses arc-node 
data structures. However, the models associated to 
arc-node data structures are usually completely 
unrelated to the analysis methods that use 
representations of absolute space, a separation that 
leads to a limited conception of space in geographical 
information system. This situation has led to much 
criticism both from within the GIS community and 
from non-practitioners ([1] [2] ([3]).  Such critiques 
consider that flows of resources, information, 
organizational interaction and people are essential 
components of space. Therefore, efficient 
representation of such flows in connection with 
representation of absolute space is essential to 
achieve a realistic perspective of spatial relations [4].  

Castells [5] views geographical space as a combination 
of “spaces of fixed locations and spaces of fluxes”, 
where the concept of ‘spaces of fixed locations’ 
represents spatial arrangements based on absolute 
space, and the concept of ‘spaces of fluxes’ indicates 
spatial arrangements based on relative space. 

 To achieve realistic computational models of spatio-
temporal patterns, we need major advances in the 
representation of spatial relations. To take a 
motivational example, consider the process of modeling 
of land use change in the Brazilian Amazonia. Human 
occupation on the region drives this process, and has 
increased significantly in the last two decades. Models 
that project patterns of land use change in Amazonia 
have to consider that transportation networks (rivers 
and roads) play a decisive role in governing human 
settlement patterns. Figure 1 depicts urban settlements 
in Amazonia as white areas, and the road network in 
red lines. A realistic model for land use changes in the 
region has to take into account that the roads establish 
preferential directions for human occupation and land 
use changes. These relations would be impossible to 
capture in the isotropic neighborhoods prevalent in 
most spatial modeling techniques. Therefore, any 
spatial model that aims at understanding the processes 
in an area such as Amazonia requires flexible 
definitions of proximity that are able to capture action-
at-a-distance.  



                                                                                                                    

 

Figure 1 – Human settlements (white dots) and roads 
(red)  in Amazonia  

 This paper proposes a model for expression of 
spatial relations, using a generalized proximity matrix 
(GPM). The GPM is an extension of the spatial 
weights matrix used in many spatial analysis 
methods[6], where the spatial relations are computed 
taking into account both absolute space relations such 
as Euclidean distance or adjacency and relative space 
relations such as topological connection on a network. 
This combination of absolute space and relative 
space has not been explored extensively before in the 
GIScience literature.  

 In this paper, we propose ways to combine the 
two notions of space and we illustrate the ideas with 
an example using data from colonization in the 
Brazilian Amazonia. The paper is organized as 
follows. Section 2 presents the basic definitions used 
in the paper. Section 3 describes the process of 
computation of a GPM. Section 4 demonstrates the 
use of the GPM in a case study of spatial relations in 
Amazonia. In section 5, we discuss the relation of the 
GPM to previous work. 

2 Basic Definitions 

Consider a set O of spatial objects whose geometrical 
representations are defined over a connected subset S 
⊂ ℜ2. Examples of these objects include: (a) area 
regions whose boundaries are closed polygons; (b) 
cellular automata organized as sets of cells, whose 
boundaries are the edges of each cell; (c) point 
locations in two-dimensional space. A very large 
number of spatial analysis and spatial statistics 
functions over the set of objects O depend on the 
definition of a neighborhood. Therefore, given two 
objects oi and oj belonging to O, a basic question is 
“are these objects neighbors?”  

The usual answer to this question is to consider 
that geographic objects are “close” to each other 
depending on their position in the absolute space, 

usually measured in terms of topological adjacency or 
Euclidean distance[7]. We denote the neighborhood 
relation between oi and oj by wij. Usual options for 
defining wij include: 

• wij = 1, if oi is topologically adjacent to oj;   wij = 0 
otherwise.       (1) 

• wij = 1, if distance (oi, oj) <  δ;  
wij = 0 otherwise.        (2)                     
  

The set of all relations wij defines a spatial 
weights matrix W that represents the neighborhood 
relationships between objects in the set O. A large 
number of spatial analysis techniques use the spatial 
weights matrix, including moving averages, spatial 
autocorrelation indices and spatial regression methods 
[7]. To take one example, given one attribute of a set of 
spatial objects, we compute its local average by a 
weighted mean, where the weights are the relations wij: 
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 In the above equation, 
iµ̂ is the local mean, wij is 

the element of the weights matrix that relates objects oi 
and oj, and zj is the value of the attribute for the object 
oj.  

 We propose an extension of the usual definition of 
the spatial relation wij to include a combination of 
neighborhood measures in the absolute space and in the 
relative (network) space. We call the resulting matrix a 
generalized proximity matrix (GPM). In order to 
compute the GPM, we need additional information on 
the network relations between the objects in O. A graph 
G over the same connected subset S provides the 
connectivity information. The graph G is composed of a 
set of nodes N and a set of arcs A. Our definition of G 
includes different types of networks, including physical 
links (roads and rivers) and logical links (airline 
routes). This model of proximal space requires different 
representations of absolute and relative space using the 
sets S and G; we consider that configuration of the 
relative space cannot be derived satisfactorily from the 
boundaries of spatial objects alone.  

 There are many applications for the GPM. The most 
important ones involve using the GPM in spatial 
analysis and spatial modeling. The GPM inherits well-
established formalisms and techniques such as spatial 
autocorrelation indicators and spatial regression 
models, which have been defined using spatial weights 
matrices. 



                                                                                                                    

3 Building Generalized Proximity Matrices 

The computation of each element wij of the 
GPM requires two proximity measures: one 
associated to absolute space relations and a second 
one associated to relative space relations. We denote 
these functions by proxabs and proxrel, 
respectively. From the different possibilities for 
defining these functions, we will consider two 
alternatives: indicator functions and distance-based 
measures.  

Indicator functions are functions take only values 
one (1) or zero (0), depending whether the chosen 
criteria is satisfied or not. In the case of proxabs, 
equations (1) and (2) are examples of indicator 
functions. The spatial weight is the logical union of 
both measures: 

wij = proxabs (oi,oj) ∪ proxrel(oi,oj)
     (4)  

As an alternative to indicator functions, distance-
based functions use measure based on locations on 
Cartesian coordinates combined in a linear fashion:   

wij = α * proxabs (oi,oj) +  

     β * proxrel (oi,oj)     (5) 

 Prior to the definition of the proxrel functions, 
we must first distinguish between two types of 
networks: (a) Networks in which the entrances and 
exits are restricted to its nodes, i.e., objects connect 
only at network nodes. Examples are railroads, 
telecommunication networks, banking networks, and 
productive chains. We denote these by closed 
networks; (b) Networks in which any location is 
entrance or exit point, i.e., objects connect at any 
node or arc coordinate. Examples are transportation 
networks such as roads and rivers. We denote these 
by open networks. For open networks, it is necessary 
to make use of the actual line coordinates that 
correspond to each arc in order to be able to compute 
the closest entrance/exit points from any arbitrary 
position. 

The construction of the GPMs depends on the 
type of the network (open or closed) as explained in 
the next sections.  

3.1   Proximity Measures in Open Networks  

In the case of open networks, a spatial object connects 
to the network at any point of any of the arc, and not 
only at the nodes. The proposed criterion for GPM 
construction considers two basic parameters: (a) the 
maximum distance from an object to the network; (b) 
the maximum value of the shortest path between the 

two connection points of two spatial objects to the 
network.  

 

Figure 2. Schematic example of an open network. 

Figure 2 presents a schematic example of an open 
network, where the spatial objects are regular cells and 
the maximum distance for connection to the network is 
dmax. We consider that two objects are neighbors in 
relative space when their centroids are inside the shaded 
area. Given a set O of spatial objects and a graph G = 
(N, A), we use the following functions 

•  cent:: O � ℜ2: denotes the function that 
calculates the centroid of a spatial object oi; 

• dist:: ℜ2 × ℜ2 � ℜ: the function that calculates 
the distance of two points x and y; 

• shpath:: ℜ2 × ℜ2 × G � ℜ: be the function that 
calculates the shortest path between two locations 
on a graph.  

• clspt:: ℜ2 × G � ℜ2: be the function, that 
given a location in ℜ2 and a graph G, determines 
the closest point in the graph. 

 We can compute proxrel, as illustrated in Figure 
3. Given a pair of objects oi and oj in O and a graph G, 
the closest locations in G to oi and oj are computed (pi 
and pj), and the shortest path between them is 
calculated. The objects are neighbors if: (a) the distance 
from their centroids to the network is smaller than a 
specified threshold (dmax); (b) the shortest path between 
pi and pj in the graph is smaller than a specified value 
(pmax). Two types of measurements are possible:  

• Indicator function 

bool proxrel (oi,oj, G) {  

 pi = clspt (cent (oi), G); 

 pj = clspt (cent (oj), G); 

  if ((dist (cent(oi),pi)< dmax) AND 

      (dist (cent(oj),pj)< dmax) AND 

      shpath (pi, pj)  <  pmax) 

               return TRUE; 

   else return FALSE; } 

• Distance-based function:  

float proxrel (oi,oj, G) {  

dmax 



                                                                                                                    

 pi = clspt (cent (oi), G); 

 pj = clspt (cent (oj), G); 

  return ( 1/shpath (pi,pj,G) +  
            1/dist(cent(oi),pi) +          
                             1/dist(cent(oj),pj)); 

}          
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O1

O2

P2
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Figure 3. Schematic representation of algorithm for 
proximity measures in open  networks.  

 A number of similar algorithms could be used to 
capture spatial relations on an open network, 
depending on factors such as the spatial 
configuration, the average length and the attributes of 
each arc.   This added complexity might not be 
relevant in all applications, so it was not incorporated 
in the current discussion. 

3.2  Proximity Measures in Closed Networks  

In closed networks, the only entrance points are the 
nodes. In a similar way as in the case of open 
networks, two parameters are considered to identify 

connectivity between two spatial objects: the maximum 
distance from each object to the closest node and a 
maximum limit to the shortest path between the two 
nodes chosen as connection points, as illustrated in 
Figure 4. The cells whose centroid is inside the shaded 
area (green shade) are neighbors by the network 
criteria. Given these parameters, we can calculate the 
proxrel function in a similar way as in the previous 
section.  

Figure 4. Schematic example of a closed network.  

4 A Case Study on Spatial Analysis using the 
GPM 

In this section, we exemplify the construction and usage 
of GPM in a case study.  Our study area, shown in 
Figure 5, has approximately 260.000 km2 and is located 
in the Brazilian Amazon rainforest, in the state of Pará. 
The study area was divided into regular cells of 625 
km2 (25 km per 25 km), and the attribute under analysis 
is the deforested area in each of these cells. We 
compared the local spatial autocorrelation indices 
obtained using GPMs constructed based on two 
different criteria: (a) proximity in absolute space (local 
adjacency) and (b) proximity in relative space (open 
network connections).  
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Figure 5. Study Area in Brazilian Amazonia, Pará State. 
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 Two non-paved main roads, Transamazônica and 
Cuiabá-Santarém, cross the study area. The human 
occupation in the Transamazônica area dates mostly 
from the seventies; one can notice the “espinha de 
peixe” (fish spine) spatial pattern, caused by the 
lotting schema adopted by state planners in that area. 
The Cuiabá-Santarém region is a new frontier area, 
where the forest has been less disturbed, which has 
received a large recent influx of new settlers coming 
mainly from the south. In the southeast of the study 
area, there is a more consolidated agricultural region 
named São Felix do Xingu, which is also served by a 
non-paved road. The huge undisturbed forest area in 
the middle of the study area contains several 
conservation units and indigenous areas, but it is also 
being threatened by new settlers coming from the São 
Felix do Xingu region.   

 We are interested in studying the effects of road 
networks in the process of deforestation, taking into 
consideration that these effects are not homogeneous 
in space and time, given the differences in the 
territorial dynamics of agriculturally consolidated 
areas versus new frontier areas. We have used a local 
index of spatial autocorrelation (the Local Moran 
index) as an indication of the differences between the 
spatial patterns. The local analysis presented in this 
paper is an initial attempt in this direction.  We 
calculate the Local Moran index for each object oi, 
based on the product of one of its attributes (zi) and 
the same attribute zj of its neighbors [8]:  
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 In the above formula, the GPM provides the 
weights wij and n is the number of neighbors. The 
closer the values of an object’s attribute are those of 
its neighbors, the higher the index. Values around 
zero mean no correlation; higher positive values mean 
stronger positive correlation, and lower negative 
values mean stronger negative correlation. We also 
computed the statistical significance of the Local 
Moran Index, using 99 random permutations of the 
attribute values. Our goal was to analyze the behavior 
of such index given alternative neighborhood 
structures. We expected an increase in the indices 
when using the open network criterion (emphasis in 
relative space relations), especially for non-
consolidated frontier areas, given that the 
deforestation process is known to spread from the 
road network. The results obtained confirm this 
hypothesis. For the cells connected to the network, 
the indices were, in average, approximately than 30% 
higher when using GPMs that take into account the 

relative space relations (open network criterion).  We 
have selected five representative cells for discussion, 
shown in Figure 6 below. 

 

Forest

Deforested

No data

Non-forest 
vegetation

Water

Roads

100 km

Cells  examples

Deforestation map:

More consolidated

Less consolidated
C

D

E

A

B

 

Figure 6. Selected five cells for results presentation. 

Figure 7 (see Annex) presents the neighbors of 
these five selected cells using the two alternative 
criteria for the GPM construction: local adjacency and 
open network. We have used indicator functions to 
build the GPM.  The parameters used for the Open 
Network Criterion were: dmax = 20 km ; pmax = 50 km. 
Table 1 presents the Local Moran index values (and 
corresponding significance) computed for both criteria. 
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The results confirm, in general, our hypothesis. In 
consolidated areas, network effects are less important 
because the local adjacency neighborhood is able to 
capture the nature of the territorial dynamics. However, 
going to new frontier areas, the results obtained by the 
network connection are significantly higher than the 
ones obtained by the local adjacency neighborhood 
relations. We intend to continue to study the 
implications of alternative neighborhood structures in 
spatial analysis techniques, specially aiming at 
understanding and modeling the land use and land 
cover change process in the Amazon.  
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5 Related Work 

Couclelis [1] proposes the notion of proximal space, 
which aims to combine the concepts of absolute space 
(location) and relative space (situation).  To capture 
relations in proximal space, Couclelis proposes the 
notion of a relational map [1]. Given a set of spatial 
objects O where each object oi is associated to a 
location li, a relational map  Ri is the set of all 
locations that influence location li. The set of all 
relational maps for all spatial objects is called the 
metarelational map. The geo-algebra proposed by 
Takeyama and Couclelis [9] uses the metarelational 
map to extend traditional map algebra operations to 
operate over the proximal space, and thus captures 
spatial relations that act at a distance.  

 The formalism for geo-algebra defines a map M as 
a function M:L→V defined as m={(l,m(l)), ∀ 
l∈L}, where L represents the set of all locations and   
V the set of all values associated to these locations. 
The geo-algebra operations can be then defined as 
follows:  

• Let φ be an operation over a set of numerical 
values, such as mean or maximum value;  

• Let the relational map Rl be defined as the set of 
all locations that influence a location l;  

• Let the set of values Vl by defined by the product 
of the relational map Rl and the map M (Vl = M 
⊗ R), comprising the values of all locations that 
influence l;  

• Applying the operation φ over all the sets Vl 
generates a new map, as depicted in the equation: 

  Mnew = φ (M ⊗ Rl),∀ l ∈ L.   (10) 

The geo-algebra of Takeyama and Couclelis [9] 
can be expressed by operations that use the GPM to 
compute the results for each cell, as follows:  

•  Let O be a set of spatial objects, each 
characterized by a location l and a value v 
associated to each location. Then it follows that S 
is equivalent to M:L→V, as defined before; 

•  Let φ be an operation over a set of numerical 
values, as above;  

•  Let W be a generalized proximity matrix where 
each wij is either one (1) or zero (0), indicating 
the presence or absence of a relation between the 
locations li and lj. It follows that each line i 
of W contains the same information as the 
relational map Ri; 

•  For each location li, let the set of values Vi be 
computed as the product of the weights wij and 
the values M(lj), ∀ lj ∈ L. In this case, this 

set of values is the same as the one produced by 
applying the relational map Rl to the map M;  

•  The geo-algebra operations can be defined by the 
application of the operation φ to all sets Vi in the 
map: 

M(i)new = φ({Vi}), where Vi = {(wij * 

M(lj))},∀ lj ∈ L.  (11) 

 Therefore, the geo-algebra of Takeyama and 
Couclelis [9] can be obtained by a suitable choice of a 
GPM and by defining all map algebra functions to be 
calculated using the GPM. Therefore, it follows that the 
GPM is a generalization of Couclelis’ notion of 
proximal space. Additionally, Couclelis [1] does not 
discuss techniques for computing the metarelational 
map, and does not indicate how absolute and relative 
space should be combined to compute neighborhood 
relations. 

O’Sullivan [10] proposes a graph-cellular 
automaton model (or graph-CA for short) for the 
representation of proximal space. A graph-CA extends 
the basic CA model by using a directed graph G. Each 
cell ci of the CA is associated to a vertex vi of G and 
each edge of the graph represents a relationship 
between two cells ci and cj. Applications of graph-
CAs are presented in O'Sullivan. [11].  

 The graph-CA model can be expressed using the 
GPM model when a CA uses the GPM to express its 
neighborhood relations.  Recall that a CA can be 
defined by a tuple (X,S,N,f) in which: 

(i)     X ⊂ Z2 is the  celular space; 
(ii)      S is the finite set of possible states; 
(iii)  N(x) = {x1,...,xk}, is set of cells that 

are in the neighborhood of a cell x ∈ X. 
(iv) f:Sk → S is the transition function defined 

as S(x,t)=f(S(x1,t),..., S(xk,t)),  
∀ xk ∈ N(x), where  S(xi,t)is the state of 
the CA in position  xi  in time t. 

 A graph-CA is a relaxation of a conventional CA 
where cell neighborhoods need not be identical, nor 
local. The relations are defined by a directed graph G, 
composed of a set of vertices V and edges E, where 
each cell ci of the CA is associated to a vertex vi and 
each edge of the graph represents a relationship 
between two cells ci and cj. This relationship can be 
expressed conveniently in a GPM, which contains for 
each wij a measure of the relationship between cells i 
and j. Therefore, any CA whose neighborhood 
relations are expressed by a GPM will support the 
graph-CA paradigm.  

 Therefore, the GPM supports both geo-algebra and 
graph-CA models of proximal space, and it is more 



                                                                                                                    

general than these two definitions. Since it is also a 
useful tool for computing spatial statistics metrics, the 
GPM is a convenient and generic way of expressing 
spatial relations. 

6 Conclusions      

In today’s globalized world, where flows of resources 
and information are becoming increasingly important, 
spatial information systems need to incorporate 
flexible definitions of space. The generalized 
proximity matrix (GPM), a concept introduced in this 
paper, is able to combine neighbourhood criteria 
based both absolute and relative space definitions this 
allowing to combine local actions with action-at-a-
distance. In this paper, we indicate how the matrix 
can be calculated, considering different types of 
network configurations. We have also presented a 
case study where the GPM has been shown to capture 
spatial relationships that we not detected by 
considering only local adjacency, by including 
network connections.   

 We have implemented the concepts described in 
this paper using the Terralib environment, an open 
source GIS library available at 
http://www.terralib.org[12]. Terralib includes a set of 
classes to create generalized proximity matrices, 
allowing the selection and combination of different 
criteria for construction (e.g., local adjacency and/or 
network connection), weighing (e.g., inverse of 
distance and/or minimum path) and slicing (e.g., 
distance zones and/or adjacency order). Once 
constructed, tools for spatial analysis or dynamic 
modeling (e.g., generalized cellular automata) 
available in TerraLib can be applied using the GPM. 
Multiple proximity matrices can also be used for 
different attributes, providing a rich environment for 
analyzing similarities and dissimilarities, and for 
exploring complex spatial processes. 
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ANNEX  

Figure 7. Neighborhood relations identified by alternative criteria for the five selected cells. 
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