

APPROXIMATE SPATIAL QUERY
PROCESSING USING RASTER SIGNATURES

Leonardo Guerreiro Azevedo1, Rodrigo Salvador Monteiro1, Geraldo
Zimbrão1,2 and Jano Moreira de Souza1,2
1Computer Science Department, Graduate School of Engineering, Federal University of Rio
de Janeiro; 2Computer Science Department, Institute of Mathematics, Federal University of
Rio de Janeiro, Rio de Janeiro, Brazil

Abstract: Nowadays, the database characteristics, such as the huge volume of data, the
complexity of the queries, and even the data availability, can demand minutes
or hours to process a query. On the other hand, in many cases it may be
enough to the user to get a fast approximate answer, since it has the desired
precision. The challenge to give to the user an exact query answer within a
reasonable time becomes even bigger in the spatial database field. This work
proposes the use of the Four Color Raster Signature (4CRS) for approximate
query processing. The main goal is to reduce the time required to process a
query executing it on approximate data (4CRS signature) instead of accessing
the real datasets. The experimental tests demonstrated the good results of our
proposal. Considering the test of the most important algorithm, the time
required to process an approximate query answer has average of 7.22% of the
time to get an exact answer, the disk accesses have average of 7.04% and the
average error is 1% related to exact processing. Besides the 4CRS storage
requirements are also quite small, which has an average of only 3.57% of the
space required to store the real datasets.

Key words: Spatial Queries; Approximate Query Answer; Raster Signature.

1. INTRODUCTION

The increase of storage capacity and the decrease of hardware costs have
made possible for applications to deal with large amount of data, involving
Gigabytes, Terabytes and even Petabytes of information. Such data are often
stored in hard disks or tapes. Thus, accessing a simple piece of information
may take a very long time, because disk access time is something between

404

104 and 107 times slower than memory access time. On the other hand, it is
important that applications answer to user requests in a short period of time.
The challenge in answering such requests becomes even bigger within
spatial data environments, where the data have a high complexity.

Spatial data consists of spatial objects made up of points, lines, regions,
rectangles, surfaces, volumes, and even data of higher dimension which
includes time (Samet, 1990). Examples of spatial data include cities, rivers,
roads, counties, states, crop coverage, mountain ranges, parts in a CAD
system, etc. It is often desirable to attach spatial with non-spatial attribute
information. Examples of non-spatial data are road names, addresses,
telephone numbers, city names, etc. Since spatial and non-spatial data are so
intimately connected, it is not surprising that many of the issues that need to
be addressed are in fact database issues.

Spatial DBMS (Database Management Systems) provides the underlying
database technology for Geographic Information Systems (GIS) and other
applications (Güting, 1994). There are numerous applications in spatial
database systems area: traffic supervision, flight control, weather forecast,
urban planning, route optimization, cartography, agriculture, natural
resources administration, coastal monitoring, fire and epidemics control
(Aronoff, 1989; Tao et al., 2003). Each type of application deals with
different features, scales and spatiotemporal properties.

Query processing optimization in spatial databases is not a trivial
problem. It is, actually, in the databases field, a big challenge to give the user
a response within a reasonable time. Faloutsos et al. (1997) point different
situations, besides the large amount of data that make it harder to meet the
users’ needs. There are, for instance, cases in which data is stored in third
part devices or in remote bases and are temporarily not available, increasing
reasonably the response time. Old data can be disposed in order to make
room for new ones. Therefore, it becomes impossible to answer queries on
deleted information.

Traditional query processing has focused on providing exact answer to
queries, in such a way that seeks to minimize response time and maximize
throughput (Gibbons et al., 1997). However, the huge volume of data, the
complexity of the query, and the availability of the data can demand minutes
or hours to process the query. In many cases, it is enough for the user to get
an approximate and fast answer for the query instead of the exact and slower
answer. For instance, when the query requests numerical answers, and the
full precision of the exact answer is not needed, e.g., a total, average, or
percentage for which only the first few digits of precision are of interest
(such as the leading few digits of a total in the millions, or the nearest
percentile of a percentage) (Gibbons et al., 1997).

405

Environments where providing an exact answer results demands an
undesirable response times motivate the study of techniques for providing
approximate answers to queries. The goal is to provide estimated answers in
orders of magnitude less time than the time to compute an exact answer, by
avoiding or minimizing the number of accesses to base data (Gibbons et al.,
1997). An important application of these techniques is query optimization:
to estimate plan costs it is necessary very fast response times but not exact
answers (Ioannidis and Poosala, 1995). Also, as an emerging application we
can cite spatial OLAP (Papadias et al., 2001).

This work presents a new approach for approximate query processing on
spatial data. We propose the use of the Four Color Raster Signature (4CRS)
(Zimbrao and Souza, 1998) for computing fast and approximate, but with
acceptable precision, answers for queries on polygon datasets. Instead of
accessing the real data, the query is executed on the 4CRS polygon
signatures. The 4CRS stores the main data characteristics in an approximate
and compact representation that can be accessed and processed faster than
the real data. As a result, the approximate query answer will be available
faster than the exact answer. A precision measure is also returned in order to
provide a confidence interval. In general, this approximate answer will be
enough to the user to make a decision, taking a much shorter execution time
than it would be if the exact answer were processed.

This paper is divided in sections, as follows. Section 1 is this
introduction. Section 2 surveys the related literature. In Section 3, we present
some 4CRS characteristics and the approach of its use for approximate query
processing on spatial data. Section 4 is dedicated to the experimental test.
Finally, in the Section 5, we present our conclusions.

2. RELATED WORK

There are many approaches on the approximate query processing area.
The works presented by Barbará et al. (1997) and Han and Kamber (2001)
are good surveys of these techniques. They show the efficiency of the
techniques, w.r.t. the data types being reduced. In both works, classifications
are proposed. However, the one suggested by Han and Kamber is wider and
thereby is going to be used to list some works in this research field:
• Data cube aggregation: involves the use of aggregation operation in the

data cube construction process. Sarawagi and Stonebraker (1994),
Agarwal et al. (1996), Ross and Srivastava (1997) present algorithms for
data cube construction processes and their pre-computation. Cannataro et
al. (2002) propose data cube aggregations for summarizing XML
documents;

406

• Dimensionality Reduction: reduces the data set size by removing
irrelevant or redundant attributes. Kohavi and John (1997) present a
wrapper approach for selecting the best attributes to be used in a
particular algorithm and in a specific domain. Dash et al. (1997) present a
method based on entropy measurement for selecting attributes on
unsupervised data.

• Data compression: data encoding or transformations are applied so as to
obtain a reduced or “compressed” representation of the original data. One
of most known techniques is the wavelet. The use of this data
approximation technique was studied at first by Matias et al. (1998).
Algorithms for query processing on wavelet coefficients of relational
data are presented in Chakrabarti et al. (2000). Another techniques in this
data compression subject are Quanticubes (Furtado and Madeira, 2000a)
and FCompress (Furtado and Madeira, 2000b). Quanticubes is a
technique for data compression on data cubes of data warehouses and
FCompress is for compression of fact tables of data warehouses.

• Numerosity Reduction: the data is replaced or approximated by “smaller”
forms of data representation. Han and Kamber (2001) divide these
techniques in parametric and nonparametric. For parametric methods, a
model is used to estimate the data, so that only the data parameters need
be stored, instead of the actual data. Regression and log-linear models
(Johnson and Wichern, 1992) are examples of parametric methods.
Nonparametric methods store reduced representations of the data.
Histograms (Poosala et al., 1996), cluster and index structures, (Aoki,
1998) and sampling (Poosala et al., 1996; Furtado and Madeira, 1999) are
examples of nonparametric methods;

• Discretization and Concept Hierarchy Generation: the data is reduced by
collecting and replacing low-level concepts by higher-level ones or
dividing the range of the attribute into intervals. Many techniques are
presented in Han and Kamber (2001).
In spite the existences of many approaches on the approximate query

processing area, most of them are for relational data. Roddick et al. (2004)
stand out that in several spatio-temporal applications, the size of the data and
the high frequency of updates impose the use of approximate processing. For
instance, for processing data streams which are potentially unbounded in
size. Furthermore, even if all data were stored, the size of the index would
render exact query processing very expensive. Finally, in several
applications the main focus of query processing is retrieval of approximate
summarized information about objects that satisfy some spatio-temporal
predicate (e.g, ‘the number of cars in the city center 10 minutes from now’),
as opposed to exact information about the qualifying objects (i.e., the car
ids), which may be unavailable, or irrelevant. Therefore, researching new
techniques that support the uniqueness of spatial data became a major issue

407

in the database field. In this work, a new approach for approximate query
processing in Spatial Database subject will be present.

3. FOUR COLOR RASTER SIGNATURE AND
APPROXIMATE QUERY PROCESSING

This section aims to presenting the use of the Four Color Raster
Signature (4CRS) (Zimbrao and Souza, 1998) in approximate query
processing. The main idea is to execute the query on the 4CRS
representation of the polygons, instead of the real dataset. The 4CRS stores
the main characteristics of the data in an approximate and compact
representation that can be accessed and processed faster than the real data.
As a result, the required time to compute the approximate query answer will
be much shorter than the time to get the exact answer. On the other hand, the
answer is estimated and not exact. However, a confidence interval is also
returned in order to show the distance between the approximate and the
exact answer. In general, the approximate answer will be enough for the user
to make his decision since it has a short execution time and the desired
accuracy.

The 4CRS signature is a raster approximation. A raster approximation is
an object representation upon a grid of cells. Each cell stores relevant
information using few bits. The grid resolution can be changed in order to
obtain a higher resolution representation or a more compact one. Using
many cells the approximation will be more precise, but it will require more
storage space. On the other hand, using few cells, the approximation will be
compact, but query answers will be less accurate. This section is divided in
sub-sections as follow. The Sub-section 3.1 is dedicated to 4CRS signature.
In the Sub-section 3.2 the algorithm for computing the grid of cells is
presented. Finally, in the Sub-section 3.3 the use of 4CRS in approximate
query processing is presented in more details.

3.1 Four Color Raster Signature (4CRS)

The 4CRS (Zimbrao and Souza, 1998) is used for representing polygons,
and it is a small bit-map using four colors. Each color represents an
intersection type between the object and the cell (Table 1). In Figure 1, an
example of 4CRS is presented.

408

Table 1. Types of 4CRS cells
Bit value Cell type Description
00 Empty The cell is not intersected by the polygon
01 Weak The cell contains an intersection of 50% or less with the polygon
10 Strong The cell contains an intersection of more than 50% and less than

100% with the polygon
11 Full The cell is fully occupied by the polygon

In order to represent the bit-map compactly, displacement vectors

representing the boundary of the polygon are stored in disk. In addition, the
cell type for each cell traversed by the displacement vectors is also stored.
The only cell types stored are Weak and Strong, because no cell traversed by
the border line can be Full or Empty. Therefore, this information can be
represented using only one bit. The bit-map can be reconstructed applying a
simple algorithm on the stored information discovering which cells are
Empty (outside the polygon) and which are Full (inside the polygon). More
details can be found in (Zimbrao and Souza, 1998; Monteiro et al., 2004).

Polygon 4CRS approximation

Empty Cell Cell with
Few in tersection

Cell with much
intersection

Full cell

Figure 1. Example of 4CRS signature

3.2 Space Division in Cells

Raster approximations are constructed upon grids of cells. When testing
the cells of two objects, the overlapping cells of their approximations must
be compared. However, only cells of same size and that overlap perfectly
can be compared. In order to conform to these requirements, the generation
of grids must follow some pattern. If such requirements are not met, it
becomes impossible to compare two approximations, as presented in Figure
2-a. Therefore, the space must be divided into cells independently of the
object position. There will be a universal grid, that is, the coordinate system
determines the grid. An algorithm specifying a pattern for computing raster
approximations is presented in (Zimbrao and Souza, 1998; Azevedo et al.,
2003) which we explain in this sub-section.

409

The requirements can be achieved if we constrain that the length of each
cell side be a power of two (2n), and that the vertices of each cell be a
multiple of the same power of two (a×2n) in the coordinate system. By doing
so, we ensure that, if two cells of the same size overlaps each other, then
they are perfectly superimposed to one another (Figure 2-b).

(a) (b)

Impossible to
compare the
approximations

Figure 2. (a) Grids of same size not overlapping perfectly. (b) Perfect overlap permitting
comparison.

The space is decomposed in a qp× cells grid with a 2n size, which
corresponds to the MBR-2n of the object. The MBR-2n vertices are (2na0,
2nb0) and (2nap, 2nbq), where a0, ap, b0, bq and n are integers. Besides, n is
chosen so that (ap-a0)(bq-b0) ≤ N, where (ap-a0) is the number of cells in the
axis x, (bq-b0) is the number of cells in the axis y and N is the maximum
number of grid cells. N is chosen so that the average size of the
approximations results in a tree with good performance results. A good
choice is try to keep the approximation size close to 3 or 4 times the MBR
size. For example, if each entry will use an average of 80 Bytes, a 16 KB
page will accommodate 100 to 200 entries and a huge dataset (1000 K
objects) leads to an R-Tree of just 3 or 4 levels.

As shown in Figure 3, the MBR-2n is computed based on the object
MBR, truncating its coordinates to powers of 2. The grid of cells is
represented by the points 2na0, 2na1,…, 2nap, that determine a set of parallel
lines to the vertical axis, and the points 2nb0, 2nb1,…, 2nbq, that determine a
set of parallel lines to the horizontal axis.

410

x

y

The cell with side 2n hav e
coordinates (2na , 2nb)

The cell with s ide 2n+ 1 have coordinates (2n+ 1c,2n+ 1d),
comprising the followin g 2n Cells:

(2×2nc, 2×2 nd), (2×2nc + 2n, 2×2nd),
 (2 ×2nc, 2×2nd + 2n) and (2×2nc + 2 n, 2×2nd + 2n)

2n+1
2n

Figure 3. - Line up of Cell corners.

3.3 Approximate query answering using 4CRS

The 4CRS signature was first used to improve the processing of spatial
joins of polygon datasets, reducing the need for examining the exact
geometry of spatial objects to find the intersecting ones (Zimbrao and Souza,
1998). It was employed as a filter in the second step of the Multi-Step Query
Processor (MSQP) (Brinkhoff et al., 1993) and the results showed that
4CRS, when compared to other approaches, reduced the inconclusive
answers by a factor of more than two. As a result, the need for retrieving the
representation of polygons and carrying out exact geometry tests was
reduced by a factor of more than two. The 4CRS was also used for
intersection tests between polylines and polygons datasets (Monteiro et al.,
2004) and the results were also very good. The experiments performed with
real data sets resulted in performance gains validating approach
effectiveness. The number of exact intersection tests was reduced by 59%.
The overall execution time and number of disk accesses were both reduced
by 48%.

The 4CRS characteristics and the good results obtained using 4CRS for
approximating polygons motivated the employment of it on approximate
query processing. Consequently, new algorithms must be designed and
implemented to concern the requirements of this area. Gibbons et al. (1997)
present five metrics to evaluated approximate query engines:
• Coverage: the range of queries for which approximate answers can be

provided.
• Response time: the time to provide an approximate answer for a query.
• Accuracy: the accuracy of the answers provided, and the confidence in

that accuracy.
• Update time: the overheads in keeping its synopses up-to-date.
• Footprint: the storage requirements for its synopses.

411

Selection and join queries are fundamental operations in any SDBMS. A
spatial selection retrieves from a dataset the entries that satisfy some spatial
predicate with respect to a reference object q. The most common type of
spatial selections is window queries, where the predicate is overlap and q
defines a window in the workspace (e.g., ‘find all lakes that are intercepted
by a city’). A spatial join operation selects from two object sets, the pairs
that satisfy some spatial predicate, usually intersect (e.g., ‘find all cities that
are crossed by a river’) (Papadias et al., 1999). However, usually the user is
interested in some properties of the objects that intercept each other, and not
only to know what objects have intersection. Besides, these properties must
be processed so fast as the intersect predicate. In this work, we present
algorithms for computing the approximate area property. Instead of
accessing the object real representation, the 4CRS signature is used to return
an approximate answer faster.

In this work we developed and tested algorithms using 4CRS signature
for approximate query processing for the following queries:
• Polygon approximate area (Sub-section 3.4)
• Approximate area of polygon x window intersection (Sub-section 3.5)

However, the algorithms can be extended or new algorithms may be
developed in order to answer other kinds of approximate query processing,
such as:
• Approximate area of polygon x polygon intersection
• Distance
• Buffer
• Perimeter
• Topological queries: there are eight topological relationships among pairs

of regions, based on the intersections of their topological interiors,
boundaries, and exteriors (Papadimitriou et al.,1996). These mutually
exclusive relations are: overlaps, disjoint, equal, meets, contains, covers,
not contains, not covers.

3.4 Algorithm for polygon approximate area

Given a raster signature, the algorithm for computing polygon
approximate area is as follows. We must sum the estimated polygon area
inside each cell of the grid. It is easy to see that empty cells and full cells
have 0% and 100% of its area intersecting the polygon, respectively. Weak
and strong cells need a different approach. The polygon area inside a weak
cell seems to be uniformly distributed in the open interval (0%, 50%). In
fact, it is not unrealistic to assume it since the cell corners is completely
independent of polygons coordinates. So, the average polygon area inside a
weak cell is assumed to be 25% - as confirmed by empirical tests. For the

412

same reason, the average polygon area inside a strong cell is 75%. One
should note that, in this case, to calculate a confidence interval it is enough
to know the average and standard deviation of the dataset. In our tests the
both the average and the standard deviation were very close to the uniform
distribution ones.

To estimate the polygon area we just have to count the number of each
cell type in the polygon 4CRS signature, and multiply them by the average
area stated above. The algorithm in C-like language is presented in Figure 4.

void computeApproximateArea(signature4CRS)
 nWeakCells = nStrongCells = nFullCells = 0;
 cellArea = signature4CRS.edgeSize * signature4CRS.edgeSize;
 For each cell in signature4CRS.cells Do
 If (cell.type == Weak) Then
 nWeakCells++;
 Else If (cell.type == Strong) Then
 nStrongCells++;
 Else If (cell.type == Full) Then
 nFullCells++;
 return (nWeakCells * weakWeight + nStrongCells * strongWeight +
 nFullCells * fullWeight) * cellArea;

Figure 4. - Algorithm for computing polygon approximate area.

A precision measure is also defined in order to estimate the minimum and
maximum areas. The formula is similar to the polygon approximate area
formula. The difference is only on the weights used to estimate the polygon
area intersecting each cell. While for computing the minimum area the
weights are the intersection minimum percentage between the each cell types
and the object, the maximum area formula uses the intersection maximum
percentage.

The weights for estimating the minimum area are: 0 for empty cells and
weak cells; 0.50 for strong cells; and, 1 for full cells.

The weights for estimating the maximum area are: 0 for empty cells; 0.50
for weak cells; and, 1 for strong and full cells.

3.5 Algorithm for approximate area of polygon x
window intersection (window query)

The algorithm for computing the approximate area of polygon x window
intersection is similar to the algorithm for polygon approximate area (Figure
4). The reason is that we can consider the window as a big full cell, and the
intersection of a full cell with any cell type is equal to the area corresponding
to cell type. The main difference is that the polygon may be whole contained
in the window or may be partially contained in the window. In the former,
we only have to execute the polygon approximate area algorithm. In the

413

latter, we must take care of the cells that are crossed by the window
boundaries. In this case, when counting the number of these cells we must
consider only the part of the cell that is contained inside the window and not
their whole area, i.e., for this sort of cell we must consider the value
corresponding to the cell intersection area with the window divided by the
cell area, which is less than one. After counting the number of cells of each
type, we only have to apply the approximate area formula. The weights used
in the formula are the same as the polygon approximate area algorithm. The
algorithm in C-like language is presented in Figure 5. For computing the
precision of the approximate area (minimum and maximum areas), we use
this same algorithm replacing the weights by the same weights used for the
polygon approximate area precision calculus.

void computeApproximateIntersectionArea(signature4CRS, window)
 nWeakCells = nStrongCells = nFullCells = 0;
 cellArea = signature4CRS.edgeSize * signature4CRS.edgeSize;
 For each signature4CRS cell that is inside the window Do
 If (cell.type == Weak) Then nWeakCells++;
 Else If (cell.type == Strong) Then nStrongCells++;
 Else If (cell.type == Full) Then nFullCells++;
 For each cell of signature4CRS1.cells that
 is crossed by the window Do
 intersectionArea = computeIntersectionArea(cell, window)
 If (cell.type == Weak) Then
 nWeakCells += intersectionArea / cellArea;
 Else If (cell.type == Strong) Then
 nStrongCells += intersectionArea / cellArea;
 Else If (cell.type == Full) Then
 nFullCells += intersectionArea / cellArea;
 return (nWeakCells * weakWeight + nStrongCells * strongWeight +
 nFullCells * fullWeight) * cellArea;

Figure 5. - Algorithm for computing approximate area of polygon × window intersection.

4. EXPERIMENTAL RESULTS

In this section, the experimental results will be presented corresponding
to the execution of the approximate area algorithms presented in Sub-section
3.3. In order to evaluate the 4CRS efficiency the approximate area results are
compared with the results obtained computing the object exact areas. The
results demonstrate the 4CRS efficiency.

4.1 Test environment

The tests were executed on a PC Pentium IV 1.8 GHz with 512 MB of
RAM. The page size used in the experiments was 2,048 bytes. The main
goals were compare the response time, the storage requirements and

414

accuracy of the approximate processing against the processing of the exact
representation of the polygons.

The tests were divided into two parts: polygon approximate area, and
polygon x window intersection approximate area. In the first test, the
approximate area and the exact area were computed over all of the 4CRS
signatures and the polygons, respectively. The purpose of this test is just to
show a measure of approximations quality – of course a better answer can be
obtained by keeping an area attribute for each polygon. In the second tests,
in order to take account only the objects that at least have intersection and
not all of them, the R*-tree (BECKMANN et al., 1990) was chosen as a
spatial access method which is meant to reduce the search space. This choice
is due to the wide use of this structure, as well as, to the successful results
found in the literature. The access methods traditionally used make use of
the object’s Minimum Bounding Rectangle (MBR) and this step returns
what is called a set of candidates, since it contains all the pairs of polygons
that belong to the answer plus other pairs that have only MBR intersection.
Therefore, the approximate and exact answers were computed over the
resulting data after the access method execution. The approximate query
processing was done using the algorithms presented in the Sub-section 3.4
and Sub-section 3.5, while the exact query processing was performed using
the General Polygon Clipping library that is available on the web at
http://www.cs.man.ac.uk/aig/staff/alan/ software/#gpc.

4.2 Experimental datasets, approximations and R*-trees
characteristics

The polygon real data sets used in the experiments consist of township
boundaries, census block-group, topography, geologic map and
hydrographic map from Iowa (USA), available on-line in
“http://www.igsb.uiowa.edu/nrgis/gishome.htm”, and Brazilian
municipalities (IBGE, 1996). Some data characteristics are presented in
Table 2. Some original datasets were replicated in order to have more
representative data. We randomly generated 500 windows for computing
approximate area of polygon x window intersection for each original dataset.
We omitted the characteristics of all windows data because of their
simplicity.

415

Table 2. Test datasets.
Dataset Size

(Kb)
pol. # segments Aver.

segm.
4CRS size

(KB)
4CRS/
dataset
size -%

Census block-
group 29,105 17,844 1,764,588 98 1,006 3.46

Topography 123,367 40,140 7,561,104 188 2,487 2.02
Hydro. map 7,753 2,670 475,812 178 153 1.97
Township
boundaries 17,508 12,216 1,059,438 86 722 4.12

Geologic map 10,703 9,984 640,428 64 583 5.45
Municipalities 6,382 4,645 399,002 85 282 4.42
Average 3.57

In order to generate the 4CRS signatures, we have to choose the

maximum number of cells (Sub-section 3.1). We performed tests using 500,
1000, 1500 for a maximum number of cells in the grid. The best
performance (regarding the trade off between precision and approximation
size) was achieved with 500 cells. Due to space limitations we show only the
500 cells grid results. The 4CRS overall sizes are presented in the last
column of Table 2. It is important to note that the 4CRS compacting rate
varies according to the complexity (average number of segments). The
approximation is more compact when the object is more complex, as
expected for raster approximations. The 4CRS signature generation time was
not showed because Zimbrao and Souza (1998) evaluate its efficiency and
shows good results.

In order to evaluate the 4CRS efficiency the approximate area results are
compared with the results obtained computing the object exact areas.
Therefore, two kinds of R*-tree must be generated: one R*-tree storing the
4CRS signatures and another one without storing them. The former is used
in the approximate query processing, and in spite of indexing the real objects
they will not be accessed. Table 3 shows the R*-tree characteristics. The
column ‘R*-Tree type’ indicates if the characteristics are for R*-Tree that
stores 4CRS signature or R*-tree that not stores them.

The algorithm for approximate area executes until the level of the leaf
nodes where the 4CRS signatures are stored. On the other hand, in order to
compute the exact area, it is not necessary to access the 4CRS signatures.
Then, the R*-tree is generated without storing them, consequently the R*-
tree size is smaller, but the spatial objects must be accessed to compute the
exact area.

416

Table 3. – R*-tree characteristics.

Base R*-Tree
type

size
(Kb) Time (sec) Node average

use (%)
Tree

Height # leafs

Iowa Census
block-group 4CRS 1,604 23.664 67.73 3 896

 - 822 23.394 72.40 3 403
Iowa
Topography 4CRS 8,712 168.032 31.55 3 4,270

 - 2,388 115.586 56.20 3 1,170
Iowa
Hydrologic
map

4CRS 248 2.674 68.88 3 120

 - 124 2.514 72.77 2 60
Iowa Township
boundaries 4CRS 1,168 19.829 68.11 3 573

 - 582 16.674 70.01 3 285
Iowa Geologic
map 4CRS 946 12.268 67.96 3 464

 - 480 12.168 69.48 3 235
Brazil
Municipalities 4CRS 434 6.720 72.05 3 211

 - 214 5.468 73.74 3 103

4.3 Results of approximate query processing

The experimental results were divided into two parts. The results of the
algorithm for polygon approximate area (Sub-section 3.4) are presented in
Table 4. The experimental results of the algorithm for polygon x window
intersection approximate area (Sub-section 3.5) are presented in Table 5. The
results presented in both tables are: the accuracy (approximate area,
minimum approximate area, and maximum approximate area percentages);
the total execution time (the time needed to compute the approximate
answer, the time needed to compute the exact answer; and the proportion
between approximate and exact processing, that represents how fast is the
approximate area processing related to the exact area processing); finally, the
last three columns present the number of disk accesses required to compute
the approximate area; the number of disk accesses required to compute the
exact area; and the proportion between them. The total execution time is not
a good measure of performance gain as it is totally dependent on the
algorithm used. Instead, the total number of disk accesses is a reliable
performance gain measure, as the objects to be processed have to be, at least,
read from disk.

In the tests of the algorithm for polygon x window intersection
approximate area, we assume that an area attribute is present in each MBR
polygon, so if the polygon is completely inside the window query its area
attribute is used in both algorithms.

417

Table 4. – Experimental results of the algorithm for polygon approximate area
 Approximate area

accuracy (%) Execution time (secs) # Disk Access

Dataset
Avg. Min. Max. Appr Exact

Appr/
Exact
(%)

Appr Exact
Appr /
Exact
(%)

Census
block-group -3.92 -11.46 3.62 1.69 7.82 21.65 259 14,552 1.78

Topograp. -0.13 -26.70 27.05 3.26 25.51 12.80 694 61,683 1.13
Hydrologic -3.75 -12.34 4.85 0.32 2.03 15.79 39 3876 1.01
Township
boundaries -4.00 -8.26 0.26 1.55 3.13 49.52 193 8753 2.20

Geologic
map -2.87 -17.33 11.60 0.95 2.52 37.72 154 5351 2.88

Municip. -1.07 -16.79 14.65 0.39 1.18 32.99 77 3190 2.41
Average -2.62 28.41 1.90

Table 5. – Experimental results of the algorithm for polygon × window area
 Approximate area

accuracy (%) Execution time (secs) # Disk Access

Dataset
Avg Min. Max. App

r Exact
Appr/
Exact
(%)

Appr Exact
Appr /
Exact
(%)

Census
block-group 0.47 -3.75 3.46 8.95 103.48 8.65 4,873 63,182 7.71

Topograp. 0.50 -7.96 11.46 7.58 348.02 2.18 7,576 141,583 5.35
Hydrologic 0.39 -2.17 4.89 0.94 25.807 3.65 885 17,168 5.15
Township
boundaries 0.27 -1.29 4.82 5.29 53.768 9.83 3,250 32,251 10.08

Geologic
map 1.45 -6.86 14.62 4.23 54.769 7.72 2,811 30,727 9.15

Municip. 0.96 -0.19 1.99 2.78 24.665 11.29 556 11,629 4.78
Average 1.00 7.22 7.04

The results were good. The approximate query processing has a quite
small error, a short execution time and a small number of disk accesses
comparing with the exact query processing. In the case of polygon
approximate area the average error for each dataset varies from -4.00% to -
0.13% (average of -2.62%). The execution time is between 12.80% and
49.52% (average of 28.41%) of the time need to process the exact answer,
and the number of disk accesses is between 1.01% and 2.88% (average of
1.90%). As stated before, this query is to illustrate the method accuracy on
approximating one polygon area alone.

The results were better for the polygon x window intersection
approximate area algorithm: approximate area error average for each dataset
between 0.27% and 1.45% (average of 1%); execution time between 2.18%

418

and 11.29% (average of 7.22%); and, number of disk accesses between
4.78% and 10.08% (average of 7.04%).

One can note that there were some bad results: on Geologic Map data set
the max error for a query was 14.62%. In fact, queries where few polygons
(and consequently few cells) are involved produces not so good results. This
can be explained by the Central Limit Theorem: the distribution of the sum
of cell area will tend to be Normal as the number of cells increase, since the
polygon area inside each cell is supposed to be uniformly distributed. With
few cells, the distribution does not tend to be Normal. Nonetheless, queries
with few polygons can be executed accessing the polygons instead of the
approximations – we will spend just a little more time.

Finally, we now show that it is easy to compute a confidence interval for
the result of a query, so the user can decide if the precision is enough.
Assuming the uniform distribution, the variance of % area of weak cells is
(0.5-0)2/12 = 1/48. The strong cell has the same variance. Using the Central
Limit Theorem, the sum of a great number of cells will tend to be Normal,
and its variance will be N/48, where N is the number of cells. So, consulting
any statistical table, for a 95% confidence interval we have a range of
N×(0.25 ±1.96×(N/48)1/2), and for a 99% confidence interval we have N×
(0.25 ±2.576×(N/48)1/2). To get the numbers in area units we have to
multiply these limits by the cell area. Also, we have to consider the strong
and full cells. For example, if a window query produces 100 weak cells, 120
strong cells and 400 full cells we compute the 95% confidence interval as
follows (for simplicity we assume that each cell has the same area, equals to
1):
• Weak cells: 100×(0.25 ±1.96×(100/48)1/2)=25±2.83
• Strong cells: 120×(0.75 ±1.96×(120/48)1/2)=90±3.10
• Full cells: 400 (full cells have the exact area!)
• Total: 515±5.93

 So, the confidence interval has a range of ±1.15%, that is, 95% of the
approximate answers with these number of cells will have an error of at most
±1.15%, a result with enough precision for most applications. Conversely,
lets look at a query involving few cells, say 10 weak, 12 strong and 10 full:
• Weak cells: 10×(0.25 ±1.96×(10/48)1/2)=2.5±0.89
• Strong cells: 12×(0.75 ±1.96×(12/48)1/2)=9±0.98
• Full cells: 10 (full cells have the exact area!)
• Total: 21.5±1.87, that is, ±8.9%.

419

5. CONCLUSION

The experimental results demonstrated the efficiency of the 4CRS use for
approximate query processing. In our tests, the approximate answers have a
quite small error (average of -2.62% and 1% for approximate area and
window × polygon approximate area) , the execution time is much shorter
than the time required to process the exact answers (average of 28.41% and
7.22% related to the exact processing, respectively), and the number of disk
accesses were also quite small (1.90% and 7.04% of the exact query
processing disk accesses, respectively) (Table 4 and Table 5). Moreover, the
space required to store 4CRS approximations are much smaller than the
space needed to store the real datasets (Table 2), which is in average 3.57%.

We can credit to the Central Limit Theorem the good results obtained in
our approach. In fact, this Theorem ensures that good results would be
obtained even if the polygon area inside each cell was not uniformly
distributed. Also, more precise answers will be obtained as the number of
cells involved in a query increase, that is, larger window queries involving a
great number of polygons. This is a great result since the exact answers of
these queries are the more time consuming. On the other hand, our approach
will obtain less precise answers when few polygons are in the query – in
these cases, if the estimated precision was not enough, the exact query could
be performed in acceptable time.

ACKNOWLEDGEMENTS

Azevedo and Monteiro are supported by CNPq. This work was partially
developed at FernUniversität in Hagen and University of Stuttgart
(Germany) where Azevedo and Monteiro are currently visitor students,
respectively.

REFERENCES

Agarwal, S., R., Deshpande, P. M., Gupta, A., Naughton, J. F., Ramakrishnan, R., Sarawagi
S., 1999, On the computation of multidimensional aggregates, SIGMOD (1999), 193-204.

Aoki, P. M., 1998, Generalizing “search” in generalized search trees, IEEE Conf. Data
Engineering (1998), 380-389.

Aronoff, S., 1989, Geographic Information Systems, WDL Publications, 1989.
Azevedo, L. G., Monteiro, R. S., Zimbrao, G., Souza, J. M., 2003, Polyline Spatial Join

Evaluation Using Raster Approximation. GeoInformatica, Kluwer Academic Publishers
(2003), 7 (4): 315-336.

Beckmann, N., Kriegel, H. P., Schneider, R., et al., 1999, The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles, ACM SIGMOD (1999), pp. 322-331.

420

Brinkhoff, T., Kriegel, H.-P., Seeger, B., Comparison of approximations of complex objects
used for approximation-based query processing in spatial database systems, Conf. on
Data Engineering (1993), 40-49.

Cannataro, M., Guzzo, A., Pugliese, A., 2002, Knowledge Management and XML: Derivation
of Synthetic Views over Semistructured Data. ACM SIGAPP 10 (2002), 33-36.

Chackrabarti, K., Garofalakis, M., Rastogi, R., Shim, K., 2000, Approximate Query
Processing Using Wavelets, VLDB ’2000.

Dash, M., Liu, H., Yao, 1997, J., Dimensionality reduction of unsupervised data, IEEE
International Conference on Tools with AI 9 (1997), 532-539.

Faloutsos, C., Barbara, D., DuMouchel, W., Haas, Hellerstein, P. J., J. M., Ioannidis, Y. E.,
Jagadish, H. V., Johnson, T., Ng, R. T., Poosala, V., Ross, K. A. and Sevcik, K. C., 1997,
The New Jersey Data Reduction Report, IEEE Data Engineering Bulletin (1997), 20(4):3-
45.

Furtado, P., Madeira H., 1999, Summary Grids: Building Accurate Multidimensional
Histograms, DASFAA 6 (1999).

Furtado, P., Madeira, H., 2000a, Data Cube Compression with Quanticubes, Data
Warehousing and Knowledge Discovery (2000), 162-167.

Furtado, P., Madeira, H., 2000b, FCompress: A New Technique for Queriable Compression of
Fact and Datacubes, IDEAS (2000).

Gibbons, P. B., Matias, Y., Poosala, V., 1997, Aqua project white paper, Technical report,
Bell Laboratories (1997).

Güting, H., 1994, An Introduction to Spatial Database Systems. VLDB Journal 3 (1994), 357-
399.

Han, J., Kamber, M., 2001, Data Mining: concepts and techniques, Academic Press.
IBGE (Brazilian Institute of Geography and Statistics), 1996, Malha Municipal Digital do

Brasil - 1994”, IBGE .
Ioannidis, Y. E., Poosala, V., 1995, Balancing histogram optimality and practicality for query

result size estimation. ACM SIGMOD (1995), 233-244.
Johnson, G. H. and Wichern D. A., 1992, Applied Multivariate Statistical Analysis, Prentice

Hall.
Kohavi, R., John, G. H., 1997, Wrappers for feature subset selection, Artificial Intelligence

(1997), 273-324.
Matias, Y., Vitter, J. S., Wang, M., 1998, Wavelet-based histograms for selectivity estimation,

ACM SIGMOD (1998).
Monteiro, R. S., Azevedo, L.G., Zimbrao, G., Souza, J. M., 2004, Polygon and Polyline Join

Using Raster Filters, DASFAA (2004), 255-261.
Papadias, D., Kalnis, P., Zhang, J., Tao, Y, 2001, "Efficient OLAP Operations in Spatial Data

Warehouses", SSTD.
Papadias, D., Mamoulis, N., Theodoridis, Y., 1999, Processing and optimization of multiway

spatial joins using R-Trees, ACM PODS , 189-200.
Papadimitriou, C. H., Suciu, D. and Vianu, V., 1996: Topological queries in spatial

databases, PODS , 81-92.
Poosala, V., Ioannidis, Y. E., Haas, P. J., Shekita, E. J., 1996, Improved Histograms for

Selectivity Estimation of Range Predicates, ACM SIGMOD (1996), 294-305.
Roddick, J., Egenhofer, M., Hoelpapadias, E. D., Salzberg, B., 2004, Spatial, Temporal and

Spatiotemporal Databases - Hot Issues and Directions for PhD Research, SIGMOD
Record (2004), 33(2).

Ross, K., Srivastava, D., 1997, Fast computation of sparse datacubes, VLDB ’1997, 116-125.
Samet H., 1990, The Design and Analysis of Spatial Data Structure, Addison-Wesley

Publishing Company.

421

Sarawagi, S., Stonebraker, M., 1994, Efficient organization of large multidimensional arrays,
ICDE (1994), 328-336.

Tao, Y., Sun, J., Papadias, D.,2003, Selectivity estimation for predictive spatio-temporal
queries, ICDE (2003).

Zimbrao, G. and Souza, J. M., 1998, A Raster Approximation For Processing of Spatial Joins,
VLDB’1998 .

