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Abstract: Nowadays, the database characteristics, such as the huge volume of data, the 
complexity of the queries, and even the data availability, can demand minutes 
or hours to process a query. On the other hand, in many cases it may be 
enough to the user to get a fast approximate answer, since it has the desired 
precision. The challenge to give to the user an exact query answer within a 
reasonable time becomes even bigger in the spatial database field. This work 
proposes the use of the Four Color Raster Signature (4CRS)  for approximate 
query processing. The main goal is to reduce the time required to process a 
query executing it on approximate data (4CRS signature) instead of accessing 
the real datasets. The experimental tests demonstrated the good results of our 
proposal. Considering the test of the most important algorithm, the time 
required to process an approximate query answer has average of 7.22% of the 
time to get an exact answer, the disk accesses have average of 7.04% and the 
average error is 1% related to exact processing. Besides the 4CRS storage 
requirements are also quite small, which has an average of only 3.57% of the 
space required to store the real datasets. 
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1.  INTRODUCTION 

The increase of storage capacity and the decrease of hardware costs have 
made possible for applications to deal with large amount of data, involving 
Gigabytes, Terabytes and even Petabytes of information. Such data are often 
stored in hard disks or tapes. Thus, accessing a simple piece of information 
may take a very long time, because disk access time is something between 
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104 and 107 times slower than memory access time. On the other hand, it is 
important that applications answer to user requests in a short period of time. 
The challenge in answering such requests becomes even bigger within 
spatial data environments, where the data have a high complexity. 

Spatial data consists of spatial objects made up of points, lines, regions, 
rectangles, surfaces, volumes, and even data of higher dimension which 
includes time (Samet, 1990). Examples of spatial data include cities, rivers, 
roads, counties, states, crop coverage, mountain ranges, parts in a CAD 
system, etc. It is often desirable to attach spatial with non-spatial attribute 
information. Examples of non-spatial data are road names, addresses, 
telephone numbers, city names, etc. Since spatial and non-spatial data are so 
intimately connected, it is not surprising that many of the issues that need to 
be addressed are in fact database issues. 

Spatial DBMS (Database Management Systems) provides the underlying 
database technology for Geographic Information Systems (GIS) and other 
applications (Güting, 1994). There are numerous applications in spatial 
database systems area: traffic supervision, flight control, weather forecast, 
urban planning, route optimization, cartography, agriculture, natural 
resources administration, coastal monitoring, fire and epidemics control 
(Aronoff, 1989; Tao et al., 2003). Each type of application deals with 
different features, scales and spatiotemporal properties. 

Query processing optimization in spatial databases is not a trivial 
problem. It is, actually, in the databases field, a big challenge to give the user 
a response within a reasonable time. Faloutsos et al. (1997) point different 
situations, besides the large amount of data that make it harder to meet the 
users’ needs. There are, for instance, cases in which data is stored in third 
part devices or in remote bases and are temporarily not available, increasing 
reasonably the response time. Old data can be disposed in order to make 
room for new ones. Therefore, it becomes impossible to answer queries on 
deleted information. 

Traditional query processing has focused on providing exact answer to 
queries, in such a way that seeks to minimize response time and maximize 
throughput (Gibbons et al., 1997). However, the huge volume of data, the 
complexity of the query, and the availability of the data can demand minutes 
or hours to process the query. In many cases, it is enough for the user to get 
an approximate and fast answer for the query instead of the exact and slower 
answer. For instance, when the query requests numerical answers, and the 
full precision of the exact answer is not needed, e.g., a total, average, or 
percentage for which only the first few digits of precision are of interest 
(such as the leading few digits of a total in the millions, or the nearest 
percentile of a percentage) (Gibbons et al., 1997). 

 
 



405 

Environments where providing an exact answer results demands an 
undesirable response times motivate the study of techniques for providing 
approximate answers to queries. The goal is to provide estimated answers in 
orders of magnitude less time than the time to compute an exact answer, by 
avoiding or minimizing the number of accesses to base data (Gibbons et al., 
1997).  An important application of these techniques is query optimization: 
to estimate plan costs it is necessary very fast response times but not exact 
answers (Ioannidis and Poosala, 1995). Also, as an emerging application we 
can cite spatial OLAP (Papadias et al., 2001). 

This work presents a new approach for approximate query processing on 
spatial data. We propose the use of the Four Color Raster Signature (4CRS) 
(Zimbrao and Souza, 1998) for computing fast and approximate, but with 
acceptable precision, answers for queries on polygon datasets. Instead of 
accessing the real data, the query is executed on the 4CRS polygon 
signatures. The 4CRS stores the main data characteristics in an approximate 
and compact representation that can be accessed and processed faster than 
the real data. As a result, the approximate query answer will be available 
faster than the exact answer. A precision measure is also returned in order to 
provide a confidence interval. In general, this approximate answer will be 
enough to the user to make a decision, taking a much shorter execution time 
than it would be if the exact answer were processed. 

This paper is divided in sections, as follows. Section 1 is this 
introduction. Section 2 surveys the related literature. In Section 3, we present 
some 4CRS characteristics and the approach of its use for approximate query 
processing on spatial data. Section 4 is dedicated to the experimental test. 
Finally, in the Section 5, we present our conclusions. 

2. RELATED WORK 

There are many approaches on the approximate query processing area. 
The works presented by Barbará et al. (1997) and Han and Kamber (2001) 
are good surveys of these techniques. They show the efficiency of the 
techniques, w.r.t. the data types being reduced. In both works, classifications 
are proposed. However, the one suggested by Han and Kamber is wider and 
thereby is going to be used to list some works in this research field: 
• Data cube aggregation: involves the use of aggregation operation in the 

data cube construction process. Sarawagi and Stonebraker (1994), 
Agarwal et al. (1996), Ross and Srivastava (1997) present algorithms for 
data cube construction processes and their pre-computation. Cannataro et 
al. (2002) propose data cube aggregations for summarizing XML 
documents; 
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• Dimensionality Reduction: reduces the data set size by removing 
irrelevant or redundant attributes. Kohavi and John (1997) present a 
wrapper approach for selecting the best attributes to be used in a 
particular algorithm and in a specific domain. Dash et al. (1997) present a 
method based on entropy measurement for selecting attributes on 
unsupervised data. 

• Data compression: data encoding or transformations are applied so as to 
obtain a reduced or “compressed” representation of the original data. One 
of most known techniques is the wavelet. The use of this data 
approximation technique was studied at first by Matias et al. (1998). 
Algorithms for query processing on wavelet coefficients of relational 
data are presented in Chakrabarti et al. (2000). Another techniques in this 
data compression subject are Quanticubes (Furtado and Madeira, 2000a) 
and FCompress (Furtado and Madeira, 2000b). Quanticubes is a 
technique for data compression on data cubes of data warehouses and 
FCompress is for compression of fact tables of data warehouses. 

• Numerosity Reduction: the data is replaced or approximated by “smaller” 
forms of data representation. Han and Kamber (2001) divide these 
techniques in parametric and nonparametric. For parametric methods, a 
model is used to estimate the data, so that only the data parameters need 
be stored, instead of the actual data. Regression and log-linear models 
(Johnson and Wichern, 1992) are examples of parametric methods. 
Nonparametric methods store reduced representations of the data. 
Histograms (Poosala et al., 1996), cluster and index structures, (Aoki, 
1998) and sampling (Poosala et al., 1996; Furtado and Madeira, 1999) are 
examples of nonparametric methods; 

• Discretization and Concept Hierarchy Generation: the data is reduced by 
collecting and replacing low-level concepts by higher-level ones or 
dividing the range of the attribute into intervals. Many techniques are 
presented in Han and Kamber (2001). 
In spite the existences of many approaches on the approximate query 

processing area, most of them are for relational data. Roddick et al. (2004) 
stand out that in several spatio-temporal applications, the size of the data and 
the high frequency of updates impose the use of approximate processing. For 
instance, for processing data streams which are potentially unbounded in 
size. Furthermore, even if all data were stored, the size of the index would 
render exact query processing very expensive. Finally, in several 
applications the main focus of query processing is retrieval of approximate 
summarized information about objects that satisfy some spatio-temporal 
predicate (e.g, ‘the number of cars in the city center 10 minutes from now’), 
as opposed to exact information about the qualifying objects (i.e., the car 
ids), which may be unavailable, or irrelevant. Therefore, researching new 
techniques that support the uniqueness of spatial data became a major issue 
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in the database field. In this work, a new approach for approximate query 
processing in Spatial Database subject will be present. 

3. FOUR COLOR RASTER SIGNATURE AND 
APPROXIMATE QUERY PROCESSING 

This section aims to presenting the use of the Four Color Raster 
Signature (4CRS) (Zimbrao and Souza, 1998) in approximate query 
processing. The main idea is to execute the query on the 4CRS 
representation of the polygons, instead of the real dataset. The 4CRS stores 
the main characteristics of the data in an approximate and compact 
representation that can be accessed and processed faster than the real data. 
As a result, the required time to compute the approximate query answer will 
be much shorter than the time to get the exact answer. On the other hand, the 
answer is estimated and not exact. However, a confidence interval is also 
returned in order to show the distance between the approximate and the 
exact answer. In general, the approximate answer will be enough for the user 
to make his decision since it has a short execution time and the desired 
accuracy. 

The 4CRS signature is a raster approximation. A raster approximation is 
an object representation upon a grid of cells. Each cell stores relevant 
information using few bits. The grid resolution can be changed in order to 
obtain a higher resolution representation or a more compact one. Using 
many cells the approximation will be more precise, but it will require more 
storage space. On the other hand, using few cells, the approximation will be 
compact, but query answers will be less accurate. This section is divided in 
sub-sections as follow. The Sub-section 3.1 is dedicated to 4CRS signature. 
In the Sub-section 3.2 the algorithm for computing the grid of cells is 
presented. Finally, in the Sub-section 3.3 the use of 4CRS in approximate 
query processing is presented in more details. 

3.1 Four Color Raster Signature (4CRS) 

The 4CRS (Zimbrao and Souza, 1998) is used for representing polygons, 
and it is a small bit-map using four colors. Each color represents an 
intersection type between the object and the cell (Table 1). In Figure 1, an 
example of 4CRS is presented. 
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Table 1. Types of 4CRS cells 
Bit value Cell type Description 
00 Empty The cell is not intersected by the polygon 
01 Weak The cell contains an intersection of 50% or less with the polygon 
10 Strong The cell contains an intersection of more than 50% and less than 

100% with the polygon  
11 Full The cell is fully occupied by the polygon 

 
In order to represent the bit-map compactly, displacement vectors 

representing the boundary of the polygon are stored in disk. In addition, the 
cell type for each cell traversed by the displacement vectors is also stored. 
The only cell types stored are Weak and Strong, because no cell traversed by 
the border line can be Full or Empty. Therefore, this information can be 
represented using only one bit. The bit-map can be reconstructed applying a 
simple algorithm on the stored information discovering which cells are 
Empty (outside the polygon) and which are Full (inside the polygon). More 
details can be found in (Zimbrao and Souza, 1998; Monteiro et al., 2004). 

 

Polygon  4CRS approximation 

Empty Cell Cell with  
Few in tersection 

Cell with much 
intersection 

Full cell 

 

Figure 1. Example of 4CRS signature 

3.2 Space Division in Cells 

Raster approximations are constructed upon grids of cells. When testing 
the cells of two objects, the overlapping cells of their approximations must 
be compared. However, only cells of same size and that overlap perfectly 
can be compared. In order to conform to these requirements, the generation 
of grids must follow some pattern. If such requirements are not met, it 
becomes impossible to compare two approximations, as presented in Figure 
2-a. Therefore, the space must be divided into cells independently of the 
object position. There will be a universal grid, that is, the coordinate system 
determines the grid. An algorithm specifying a pattern for computing raster 
approximations is presented in (Zimbrao and Souza, 1998; Azevedo et al., 
2003) which we explain in this sub-section. 
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The requirements can be achieved if we constrain that the length of each 
cell side be a power of two (2n), and that the vertices of each cell be a 
multiple of the same power of two (a×2n) in the coordinate system. By doing 
so, we ensure that, if two cells of the same size overlaps each other, then 
they are perfectly superimposed to one another (Figure 2-b). 

 

(a) (b)

Impossible to 
compare the  
approximations

 

Figure 2. (a) Grids of same size not overlapping perfectly. (b) Perfect overlap permitting 
comparison. 

The space is decomposed in a qp×  cells grid with a 2n size, which 
corresponds to the MBR-2n of the object. The MBR-2n vertices are (2na0, 
2nb0) and (2nap, 2nbq), where a0, ap, b0, bq and n are integers. Besides, n is 
chosen so that (ap-a0)(bq-b0) ≤ N, where (ap-a0) is the number of cells in the 
axis x, (bq-b0) is the number of cells in the axis y and N is the maximum 
number of grid cells. N is chosen so that the average size of the 
approximations results in a tree with good performance results. A good 
choice is try to keep the approximation size close to 3 or 4 times the MBR 
size. For example, if each entry will use an average of 80 Bytes, a 16 KB 
page will accommodate 100 to 200 entries and a huge dataset (1000 K 
objects) leads to an R-Tree of just 3 or 4 levels. 

As shown in Figure 3, the MBR-2n is computed based on the object 
MBR, truncating its coordinates to powers of 2. The grid of cells is 
represented by the points 2na0, 2na1,…, 2nap, that determine a set of parallel 
lines to the vertical axis, and the points 2nb0, 2nb1,…, 2nbq, that determine a 
set of parallel lines to the horizontal axis. 
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x 

y 

The cell with side 2n hav e 
coordinates  (2na , 2nb) 

The cell with s ide 2n+ 1 have coordinates  (2n+ 1c,2n+ 1d), 
comprising the followin g 2n Cells:  

(2×2nc, 2×2 nd), (2×2nc + 2n,  2×2nd ), 
 (2 ×2nc, 2×2nd + 2n) and  (2×2nc + 2 n, 2×2nd  + 2n)   

2n+1 
2n

 

Figure 3. - Line up of Cell corners.  

3.3 Approximate query answering using 4CRS 

The 4CRS signature was first used to improve the processing of spatial 
joins of polygon datasets, reducing the need for examining the exact 
geometry of spatial objects to find the intersecting ones (Zimbrao and Souza, 
1998). It was employed as a filter in the second step of the Multi-Step Query 
Processor (MSQP) (Brinkhoff et al., 1993) and the results showed that 
4CRS, when compared to other approaches, reduced the inconclusive 
answers by a factor of more than two.  As a result, the need for retrieving the 
representation of polygons and carrying out exact geometry tests was 
reduced by a factor of more than two. The 4CRS was also used for 
intersection tests between polylines and polygons datasets (Monteiro et al., 
2004) and the results were also very good. The experiments performed with 
real data sets resulted in performance gains validating approach 
effectiveness. The number of exact intersection tests was reduced by 59%. 
The overall execution time and number of disk accesses were both reduced 
by 48%. 

The 4CRS characteristics and the good results obtained using 4CRS for 
approximating polygons motivated the employment of it on approximate 
query processing. Consequently, new algorithms must be designed and 
implemented to concern the requirements of this area. Gibbons et al. (1997) 
present five metrics to evaluated approximate query engines: 
• Coverage: the range of queries for which approximate answers can be 

provided. 
• Response time: the time to provide an approximate answer for a query. 
• Accuracy: the accuracy of the answers provided, and the confidence in 

that accuracy. 
• Update time: the overheads in keeping its synopses up-to-date. 
• Footprint: the storage requirements for its synopses. 



411 

Selection and join queries are fundamental operations in any SDBMS. A 
spatial selection retrieves from a dataset the entries that satisfy some spatial 
predicate with respect to a reference object q. The most common type of 
spatial selections is window queries, where the predicate is overlap and q 
defines a window in the workspace (e.g., ‘find all lakes that are intercepted 
by a city’). A spatial join operation selects from two object sets, the pairs 
that satisfy some spatial predicate, usually intersect (e.g., ‘find all cities that 
are crossed by a river’) (Papadias et al., 1999). However, usually the user is 
interested in some properties of the objects that intercept each other, and not 
only to know what objects have intersection. Besides, these properties must 
be processed so fast as the intersect predicate. In this work, we present 
algorithms for computing the approximate area property. Instead of 
accessing the object real representation, the 4CRS signature is used to return 
an approximate answer faster.  

In this work we developed and tested algorithms using 4CRS signature 
for approximate query processing for the following queries: 
• Polygon approximate area (Sub-section 3.4) 
• Approximate area of polygon x window intersection (Sub-section 3.5) 

However, the algorithms can be extended or new algorithms may be 
developed in order to answer other kinds of approximate query processing, 
such as: 
• Approximate area of polygon x polygon intersection 
• Distance 
• Buffer 
• Perimeter 
• Topological queries: there are eight topological relationships among pairs 

of regions, based on the intersections of their topological interiors, 
boundaries, and exteriors (Papadimitriou et al.,1996). These mutually 
exclusive relations are: overlaps, disjoint, equal, meets, contains, covers, 
not contains, not covers. 

3.4  Algorithm for polygon approximate area 

Given a raster signature, the algorithm for computing polygon 
approximate area is as follows. We must sum the estimated polygon area 
inside each cell of the grid. It is easy to see that empty cells and full cells 
have 0% and 100% of its area intersecting the polygon, respectively. Weak 
and strong cells need a different approach. The polygon area inside a weak 
cell seems to be uniformly distributed in the open interval (0%, 50%). In 
fact, it is not unrealistic to assume it since the cell corners is completely 
independent of polygons coordinates. So, the average polygon area inside a 
weak cell is assumed to be 25% - as confirmed by empirical tests. For the 
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same reason, the average polygon area inside a strong cell is 75%. One 
should note that, in this case, to calculate a confidence interval it is enough 
to know the average and standard deviation of the dataset. In our tests the 
both the average and the standard deviation were very close to the uniform 
distribution ones.  

To estimate the polygon area we just have to count the number of each 
cell type in the polygon 4CRS signature, and multiply them by the average 
area stated above. The algorithm in C-like language is presented in Figure 4. 

void computeApproximateArea(signature4CRS) 
  nWeakCells = nStrongCells = nFullCells = 0; 
  cellArea = signature4CRS.edgeSize * signature4CRS.edgeSize; 
  For each cell in signature4CRS.cells Do 
       If (cell.type == Weak) Then  
           nWeakCells++; 
       Else If (cell.type == Strong) Then 
          nStrongCells++; 
       Else If (cell.type == Full) Then 
          nFullCells++; 
  return (nWeakCells * weakWeight + nStrongCells * strongWeight + 
           nFullCells * fullWeight) * cellArea; 

Figure 4. - Algorithm for computing polygon approximate area. 

A precision measure is also defined in order to estimate the minimum and 
maximum areas. The formula is similar to the polygon approximate area 
formula. The difference is only on the weights used to estimate the polygon 
area intersecting each cell. While for computing the minimum area the 
weights are the intersection minimum percentage between the each cell types 
and the object, the maximum area formula uses the intersection maximum 
percentage. 

The weights for estimating the minimum area are: 0 for empty cells and 
weak cells; 0.50 for strong cells; and, 1 for full cells. 

The weights for estimating the maximum area are: 0 for empty cells; 0.50 
for weak cells; and, 1 for strong and full cells. 

3.5  Algorithm for approximate area of polygon x 
window intersection (window query) 

The algorithm for computing the approximate area of polygon x window 
intersection is similar to the algorithm for polygon approximate area (Figure 
4). The reason is that we can consider the window as a big full cell, and the 
intersection of a full cell with any cell type is equal to the area corresponding 
to cell type. The main difference is that the polygon may be whole contained 
in the window or may be partially contained in the window. In the former, 
we only have to execute the polygon approximate area algorithm. In the 
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latter, we must take care of the cells that are crossed by the window 
boundaries. In this case, when counting the number of these cells we must 
consider only the part of the cell that is contained inside the window and not 
their whole area, i.e., for this sort of cell we must consider the value 
corresponding to the cell intersection area with the window divided by the 
cell area, which is less than one. After counting the number of cells of each 
type, we only have to apply the approximate area formula. The weights used 
in the formula are the same as the polygon approximate area algorithm. The 
algorithm in C-like language is presented in Figure 5. For computing the 
precision of the approximate area (minimum and maximum areas), we use 
this same algorithm replacing the weights by the same weights used for the 
polygon approximate area precision calculus. 

void computeApproximateIntersectionArea(signature4CRS, window) 
  nWeakCells = nStrongCells = nFullCells = 0; 
  cellArea = signature4CRS.edgeSize * signature4CRS.edgeSize; 
  For each signature4CRS cell that is inside the window Do 
      If (cell.type == Weak) Then nWeakCells++; 
      Else If (cell.type == Strong) Then nStrongCells++; 
      Else If (cell.type == Full) Then nFullCells++; 
  For each cell of signature4CRS1.cells that  
       is crossed by the window Do 
       intersectionArea = computeIntersectionArea(cell, window) 
  If (cell.type == Weak) Then  
        nWeakCells += intersectionArea / cellArea; 
  Else If (cell.type == Strong) Then 
        nStrongCells += intersectionArea / cellArea; 
  Else If (cell.type == Full) Then 
        nFullCells += intersectionArea / cellArea; 
  return (nWeakCells * weakWeight + nStrongCells * strongWeight + 
          nFullCells * fullWeight) *  cellArea; 

Figure 5. - Algorithm for computing approximate area of polygon × window intersection. 

4. EXPERIMENTAL RESULTS 

In this section, the experimental results will be presented corresponding 
to the execution of the approximate area algorithms presented in Sub-section 
3.3. In order to evaluate the 4CRS efficiency the approximate area results are 
compared with the results obtained computing the object exact areas. The 
results demonstrate the 4CRS efficiency. 

4.1  Test environment 

The tests were executed on a PC Pentium IV 1.8 GHz with 512 MB of 
RAM. The page size used in the experiments was 2,048 bytes. The main 
goals were compare the response time, the storage requirements and 
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accuracy of the approximate processing against the processing of the exact 
representation of the polygons.  

The tests were divided into two parts: polygon approximate area, and 
polygon x window intersection approximate area. In the first test, the 
approximate area and the exact area were computed over all of the 4CRS 
signatures and the polygons, respectively. The purpose of this test is just to 
show a measure of approximations quality – of course a better answer can be 
obtained by keeping an area attribute for each polygon. In the second tests, 
in order to take account only the objects that at least have intersection and 
not all of them, the R*-tree (BECKMANN et al., 1990) was chosen as a 
spatial access method which is meant to reduce the search space. This choice 
is due to the wide use of this structure, as well as, to the successful results 
found in the literature.  The access methods traditionally used make use of 
the object’s Minimum Bounding Rectangle (MBR) and this step returns 
what is called a set of candidates, since it contains all the pairs of polygons 
that belong to the answer plus other pairs that have only MBR intersection. 
Therefore, the approximate and exact answers were computed over the 
resulting data after the access method execution. The approximate query 
processing was done using the algorithms presented in the Sub-section 3.4 
and Sub-section 3.5, while the exact query processing was performed using 
the General Polygon Clipping library that is available on the web at 
http://www.cs.man.ac.uk/aig/staff/alan/ software/#gpc. 

4.2 Experimental datasets, approximations and R*-trees 
characteristics 

The polygon real data sets used in the experiments consist of township 
boundaries, census block-group, topography, geologic map and 
hydrographic map from Iowa (USA), available on-line in 
“http://www.igsb.uiowa.edu/nrgis/gishome.htm”, and Brazilian 
municipalities (IBGE, 1996). Some data characteristics are presented in 
Table 2. Some original datasets were replicated in order to have more 
representative data. We randomly generated 500 windows for computing 
approximate area of polygon x window intersection for each original dataset. 
We omitted the characteristics of all windows data because of their 
simplicity. 
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Table 2. Test datasets. 
Dataset Size 

(Kb) 
# pol. # segments Aver.  

#  segm. 
4CRS size 

(KB) 
4CRS/ 
dataset 
size -% 

Census block-
group 29,105 17,844 1,764,588 98 1,006 3.46 

Topography 123,367 40,140 7,561,104 188 2,487 2.02 
Hydro. map 7,753 2,670 475,812 178 153 1.97 
Township 
boundaries 17,508 12,216 1,059,438 86 722 4.12 

Geologic map 10,703 9,984 640,428 64 583 5.45 
Municipalities 6,382 4,645 399,002 85 282 4.42 
Average      3.57 
 

 
In order to generate the 4CRS signatures, we have to choose the 

maximum number of cells (Sub-section 3.1). We performed tests using 500, 
1000, 1500 for a maximum number of cells in the grid. The best 
performance (regarding the trade off between precision and approximation 
size) was achieved with 500 cells. Due to space limitations we show only the 
500 cells grid results.  The 4CRS overall sizes are presented in the last 
column of Table 2. It is important to note that the 4CRS compacting rate 
varies according to the complexity (average number of segments). The 
approximation is more compact when the object is more complex, as 
expected for raster approximations. The 4CRS signature generation time was 
not showed because Zimbrao and Souza (1998) evaluate its efficiency and 
shows good results.  

In order to evaluate the 4CRS efficiency the approximate area results are 
compared with the results obtained computing the object exact areas. 
Therefore, two kinds of R*-tree must be generated: one R*-tree storing the 
4CRS signatures and another one without storing them. The former is used 
in the approximate query processing, and in spite of indexing the real objects 
they will not be accessed. Table 3 shows the R*-tree characteristics. The 
column ‘R*-Tree type’ indicates if the characteristics are for R*-Tree that 
stores 4CRS signature or R*-tree that not stores them. 

The algorithm for approximate area executes until the level of the leaf 
nodes where the 4CRS signatures are stored. On the other hand, in order to 
compute the exact area, it is not necessary to access the 4CRS signatures. 
Then, the R*-tree is generated without storing them, consequently the R*-
tree size is smaller, but the spatial objects must be accessed to compute the 
exact area.  
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Table 3. – R*-tree characteristics. 

Base R*-Tree 
type 

size 
(Kb) Time (sec) Node average 

use (%) 
Tree 

Height # leafs 

Iowa Census 
block-group 4CRS 1,604 23.664 67.73 3 896 

 - 822 23.394 72.40 3 403 
Iowa 
Topography 4CRS 8,712 168.032 31.55 3 4,270 

 - 2,388 115.586 56.20 3 1,170 
Iowa 
Hydrologic 
map 

4CRS 248 2.674 68.88 3 120 

 - 124 2.514 72.77 2 60 
Iowa Township 
boundaries 4CRS 1,168 19.829 68.11 3 573 

 - 582 16.674 70.01 3 285 
Iowa Geologic 
map 4CRS 946 12.268 67.96 3 464 

 - 480 12.168 69.48 3 235 
Brazil 
Municipalities 4CRS 434 6.720 72.05 3 211 

 - 214 5.468 73.74 3 103 

4.3 Results of approximate query processing 

The experimental results were divided into two parts. The results of the 
algorithm for polygon approximate area (Sub-section 3.4) are presented in 
Table 4. The experimental results of the algorithm for polygon x window 
intersection approximate area (Sub-section 3.5) are presented in Table 5. The 
results presented in both tables are: the accuracy (approximate area, 
minimum approximate area, and maximum approximate area percentages); 
the total execution time (the time needed to compute the approximate 
answer, the time needed to compute the exact answer; and the proportion 
between approximate and exact processing, that represents how fast is the 
approximate area processing related to the exact area processing); finally, the 
last three columns present the number of disk accesses required to compute 
the approximate area; the number of disk accesses required to compute the 
exact area; and the proportion between them. The total execution time is not 
a good measure of performance gain as it is totally dependent on the 
algorithm used. Instead, the total number of disk accesses is a reliable 
performance gain measure, as the objects to be processed have to be, at least, 
read from disk.  

In the tests of the algorithm for polygon x window intersection 
approximate area, we assume that an area attribute is present in each MBR 
polygon, so if the polygon is completely inside the window query its area 
attribute is used in both algorithms. 
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Table 4. – Experimental results of the algorithm for polygon approximate area  
 Approximate area 

accuracy (%) Execution time (secs) # Disk Access 

Dataset 
Avg. Min. Max. Appr Exact 

Appr/ 
Exact 
(%) 

Appr Exact 
Appr / 
Exact 
(%) 

Census 
block-group -3.92 -11.46 3.62 1.69 7.82 21.65 259 14,552 1.78 

Topograp. -0.13 -26.70 27.05 3.26 25.51 12.80 694 61,683 1.13 
Hydrologic  -3.75 -12.34 4.85 0.32 2.03 15.79 39 3876 1.01 
Township 
boundaries -4.00 -8.26 0.26 1.55 3.13 49.52 193 8753 2.20 

Geologic 
map -2.87 -17.33 11.60 0.95 2.52 37.72 154 5351 2.88 

Municip. -1.07 -16.79 14.65 0.39 1.18 32.99 77 3190 2.41 
Average -2.62     28.41   1.90 

Table 5. – Experimental results of the algorithm for polygon × window area 
 Approximate area 

accuracy (%) Execution time (secs) # Disk Access 

Dataset 
Avg Min. Max. App

r Exact  
Appr/ 
Exact 
(%) 

Appr Exact 
Appr / 
Exact 
(%) 

Census 
block-group 0.47 -3.75 3.46 8.95 103.48 8.65 4,873 63,182 7.71 

Topograp. 0.50 -7.96 11.46 7.58 348.02 2.18 7,576 141,583 5.35 
Hydrologic  0.39 -2.17 4.89 0.94 25.807 3.65 885 17,168 5.15 
Township 
boundaries 0.27 -1.29 4.82 5.29 53.768 9.83 3,250 32,251 10.08 

Geologic 
map 1.45 -6.86 14.62 4.23 54.769 7.72 2,811 30,727 9.15 

Municip. 0.96 -0.19 1.99 2.78 24.665 11.29 556 11,629 4.78 
Average 1.00     7.22   7.04 
 

The results were good. The approximate query processing has a quite 
small error, a short execution time and a small number of disk accesses 
comparing with the exact query processing. In the case of polygon 
approximate area the average error for each dataset varies from -4.00% to -
0.13% (average of -2.62%). The execution time is between 12.80% and 
49.52% (average of 28.41%) of the time need to process the exact answer, 
and the number of disk accesses is between 1.01% and 2.88% (average of 
1.90%). As stated before, this query is to illustrate the method accuracy on 
approximating one polygon area alone. 

The results were better for the polygon x window intersection 
approximate area algorithm: approximate area error average for each dataset 
between 0.27% and 1.45% (average of 1%); execution time between 2.18% 
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and 11.29% (average of 7.22%); and, number of disk accesses between 
4.78% and 10.08% (average of 7.04%).  

One can note that there were some bad results: on Geologic Map data set 
the max error for a query was 14.62%. In fact, queries where few polygons 
(and consequently few cells) are involved produces not so good results. This 
can be explained by the Central Limit Theorem: the distribution of the sum 
of cell area will tend to be Normal as the number of cells increase, since the 
polygon area inside each cell is supposed to be uniformly distributed. With 
few cells, the distribution does not tend to be Normal. Nonetheless, queries 
with few polygons can be executed accessing the polygons instead of the 
approximations – we will spend just a little more time. 

Finally, we now show that it is easy to compute a confidence interval for 
the result of a query, so the user can decide if the precision is enough. 
Assuming the uniform distribution, the variance of % area of weak cells is   
(0.5-0)2/12 = 1/48. The strong cell has the same variance. Using the Central 
Limit Theorem, the sum of a great number of cells will tend to be Normal, 
and its variance will be N/48, where N is the number of cells. So, consulting 
any statistical table, for a 95% confidence interval we have a range of 
N×(0.25 ±1.96×(N/48)1/2), and for a 99% confidence interval we have N× 
(0.25 ±2.576×(N/48)1/2). To get the numbers in area units we have to 
multiply these limits by the cell area. Also, we have to consider the strong 
and full cells. For example, if a window query produces 100 weak cells, 120 
strong cells and 400 full cells we compute the 95% confidence interval as 
follows (for simplicity we assume that each cell has the same area, equals to 
1): 
• Weak cells: 100×(0.25 ±1.96×(100/48)1/2)=25±2.83 
• Strong cells: 120×(0.75 ±1.96×(120/48)1/2)=90±3.10 
• Full cells: 400 (full cells have the exact area!) 
• Total: 515±5.93  

 So, the confidence interval has a range of ±1.15%, that is, 95% of the 
approximate answers with these number of cells will have an error of at most 
±1.15%, a result with enough precision for most applications. Conversely, 
lets look at a query involving few cells, say 10 weak, 12 strong and 10 full: 
• Weak cells: 10×(0.25 ±1.96×(10/48)1/2)=2.5±0.89 
• Strong cells: 12×(0.75 ±1.96×(12/48)1/2)=9±0.98 
• Full cells: 10 (full cells have the exact area!) 
• Total: 21.5±1.87, that is, ±8.9%. 
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5. CONCLUSION 

The experimental results demonstrated the efficiency of the 4CRS use for 
approximate query processing. In our tests, the approximate answers have a 
quite small error (average of -2.62% and 1% for approximate area and 
window × polygon approximate area) , the execution time is much shorter 
than the time required to process the exact answers (average of 28.41% and 
7.22% related to the exact processing, respectively), and the number of disk 
accesses were also quite small (1.90% and 7.04% of the exact query 
processing disk accesses, respectively) (Table 4 and Table 5). Moreover, the 
space required to store 4CRS approximations are much smaller than the 
space needed to store the real datasets (Table 2), which is in average 3.57%. 

We can credit to the Central Limit Theorem the good results obtained in 
our approach. In fact, this Theorem ensures that good results would be 
obtained even if the polygon area inside each cell was not uniformly 
distributed. Also, more precise answers will be obtained as the number of 
cells involved in a query increase, that is, larger window queries involving a 
great number of polygons. This is a great result since the exact answers of 
these queries are the more time consuming. On the other hand, our approach 
will obtain less precise answers when few polygons are in the query – in 
these cases, if the estimated precision was not enough, the exact query could 
be performed in acceptable time. 
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