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Abstract
Volume rendering techniques can be very useful in geographical information

systems to provide meaningful and visual information about the surface and the
interior of 3D datasets. For ocean visualization, in particular, volume render-
ing techniques improve the analysis of the ocean inner structure, by generating
visual information about, e.g., its temperature, salinity, velocity and mass. The
rendering of huge datasets, however, is a computationally intensive task and, in
order to achieve interactive visualization times, a high-performance computa-
tional system is fundamental. Although parallel machines have been successful
in providing interactive times, most recent efforts have been directed towards
a more cost-effective solution: implementing volume rendering algorithms on
clusters of PCs. This platform has low-cost and can be easily upgraded. Parallel
rendering applications, however, usually suffer from high load imbalance dur-
ing the execution. In this paper, we propose a low-cost and high-performance
system for ocean visualization in a cluster of PCs, DPZSweep. Our solution
spreads the computation over the cluster and provides dynamic load balancing
with a low overhead. Our experimental results show that when we included the
load balancing algorithms, DPZSweep obtained up to 95% of parallel efficiency
in 16 processors.
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1. Introduction
One of the most important fields of scientific visualization is volume visu-

alization. Volume visualization is the process of generating meaningful and
visual information onto a two-dimensional image plane from tri-dimensional
datasets. It has been increasingly important in geographical information sys-
tems to improve the ocean modeling [Djurcilov et al., 2002, Gonzato and Saec,
2000], the monitoration of atmospheric pollution [de Oliveira and Ferreira,
1997], the visualization of meteorological data [Santos et al., 1996], the ter-
rain modeling [Prakash and Kaufman, 1997], and the understanding of some
natural phenomena like tropical cyclones [Watson et al., 2002].

However, most of traditional tools and techniques for volume visualization
in geographical information systems allow researchers to explore only the sur-
face of 3D datasets [Koller et al., 1995]. Direct volume rendering techniques,
on the other hand, convey more information than surface rendering methods,
enabling the viewer to fully reveal the internal structure of 3D data.

For the ocean modeling application, direct volume rendering techniques im-
prove the analysis of the ocean inner structure. They allow the generation of
visual information about, e.g., the ocean temperature, salinity, velocity and
mass, providing more information than a set of cross-sections and planar maps.
Nevertheless, direct volume rendering is notoriously a memory and computa-
tionally intensive task and, in order to achieve interactive visualization times,
a high-performance computational system is fundamental.

Several parallel volume rendering algorithms were proposed in the liter-
ature, e.g. [Challinger, 1993, Hofsetz and Ma, 2000, Hong and Kaufman,
1998, Ma, 1995, Ma and Crockett, 1997], and they achieve quite good per-
formance, running on expensive parallel machines like SGI Power Challenge,
IBM SP2, or SGI Origin 2000. Recently, the decreasing cost and high avail-
ability of commodity PCs and network technologies turn clusters of PCs a low-
cost alternative for running parallel rendering [Muraki et al., 2003, Samanta
et al., 1999, Meiıner et al., 1998, Samanta et al., 2000].

In this paper, we propose a low-cost and high performance system for ocean
visualization and realistic rendering. Our system was designed to run on a
cluster of PCs, and to overcome the main problem this architecture imposes:
the high communication overhead.

Our solution spreads the computation over the cluster of PCs and it provides
dynamic load balancing with a low overhead. Our idea is to take advantage of
some well-known distributed information diffusion algorithms to inform the
PCs about the system load without using broadcast messages. In this way, we
avoid the overload of load balancing messages.

Our parallel system, DPZSweep, is an all-software distributed version of the
PZSweep system [Farias and Silva, 2001] that provides: efficiency, scalability,



portability and out-of-core execution. Our experimental results show that when
we included the load balancing algorithms, we obtained up to 95% of parallel
efficiency in 16 processors for the most overloaded dataset.

The remainder of this paper is organized as follows. The next section ex-
plains in more details the two different approaches to volume visualization:
surface rendering and volume rendering. Section 3 shows the importance of
visualizing oceanographic datasets. Section 4 describes our parallel volume
rendering system. Section 5 presents the results of our most important experi-
ments. Section 6 relates our work to recent developments in the field of ocean
visualization tools. Finally, in section 7 we present our conclusions and the
proposals for future work.

2. Volume Visualization
There are two main approaches for the visualization of volumetric dataset:

surface rendering and volume rendering. Surface rendering is a technique in
which volumetric data is converted into polygons representing the outer sur-
face of the object. Rays of light are tested against all objects in the scene to
determine if they intersect any visible surface. Each pixel in the final image is
assigned the characteristics of the the closest intersection between the ray and
the polygons. It is useful for extracting surfaces from volume data.

Volume rendering, on the other hand, is a technique in which the object
of interest is represented by cubic or tetrahedral blocks called voxels. Each
voxel has associated with it one or more values quantifying some measured
or calculated property of the original object, such as transparency, luminosity,
density, or flow velocity. The final color of a pixel in the image comes from the
sum of the contributions from each voxel. In volume rendering, the faces are
considered to be semi-transparent, allowing the ray of light to pass from voxel
to voxel, instead of stopping at its surface.

Compared with surface rendering, volume rendering manipulates much more
data, requiring greater computing power. However, it has the ability to preserve
the integrity of the original data throughout the visualization process. Interest-
ing features of volumetric data could be lost in surface rendering, embedded
in the middle, hidden by outer opaque surfaces. Since the entire dataset is pre-
served in volume rendering, any part may be viewed, including the internal
structures and details.

3. Ocean Visualization
The field of ocean sciences benefits extraordinary from scientific visualiza-

tion improvements. These improvements allow oceanographers to study the
natural system with an unprecedented degree of realism: enhancing observa-
tional capability, and linking observations with models. The impact of these



developments on understanding the oceanic processes have many economic
and social benefits.

The visualization of the inner structure of oceans enables a more compre-
hensive and dynamic exploration of their characteristics such as temperature,
salinity, velocity and mass. While visualization of individual depth layers is
useful, there are phenomena that may be better understood by viewing all depth
layers at once, as for example, the Mediterranean outflow. In the Mediter-
ranean sea, evaporation produces a very dense and salty water, heavier than
the less salty water of the Atlantic ocean. Therefore, the water flows through
the Strait of Gibraltar forming a distinct water mass, which can only be fully
analyzed with volume rendering techniques [McPherson and Maltrud, 1998].

The visualization of the interior of ocean datasets can have valuable contri-
butions for many areas, as for example:

Climate Research:

The understanding of the ocean general circulation is critical to diagnose
and predict climate changes and their effects. The oceans control the
Earth’s weather, because they heat and cool, humidify and dry the air
and control wind speed and direction. Visualizing and modeling changes
in the distribution of heat in the ocean allow researchers to have ability
of projecting future climate and the effect of it in human activities.

Offshore Industries: Visualization of ocean circulation helps cable-
laying vessels and offshore oil operations, avoiding and minimizing the
impacts of strong currents. In addition, volume rendering of deep ocean
assists offshore engineering projects worldwide.

Fishing and Mammals Management: Volume rendering techniques
can be used to determine ocean properties that may explain fish and
mammal behavior. They help the investigation of ocean habitats and
resources. For example, a strong cold pool or high area of salinity may
aggregate prey (invertebrates and planktonic fish), providing feeding ar-
eas for marine mammals.

4. The Parallel Rendering System
The parallel rendering system we used to visualize ocean dataset is called

DPZSweep, and is based on the PZSweep system [Farias and Silva, 2001].
PZSweep is an out-of-core parallel rendering system for irregular datasets,
originally developed to run on a shared-memory programming model. Al-
though PZSweep has proven to be very efficient for distributed-shared mem-
ory machines (about 85% of parallel efficiency), its task queue programming
model is not well-suited for a distributed-memory machine as a cluster of PCs.
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Figure 1. The pre-processing and rendering phases of DPZSweep.

DPZSweep system is a distributed version of the PZSweep, that runs on a
cluster of PCs. DPZSweep allows ocean researchers to interactively visualize
large volumes of 3D data, providing the following benefits:

Efficiency and scalability: the system remains executing effectively as
the problem size increases.

Low-cost: its target architecture, cluster of PCs, can be built with off-
the-shelf components.

All software implementation: does not require any hardware graphics
on each PC.

Portability: it was implemented on top of C++, MPI and Linux.

Free software: its last version is not ready for distribution, but soon it
will be available for ocean researchers to visualize their large volume of
datasets.

Out-of-core execution: can render ocean datasets that are too big to fit
in main memory.

Pre-Processing
Before starting the parallel rendering process, it is necessary to convert the

ocean dataset into the dataset format suitable for the rendering algorithm. This
conversion is done by DPZSweep pre-processing phase that has two steps:
grid generation and octree creation. Figure 1 shows a schematic view of
DPZSweep, with the pre-processing and parallel rendering phases.



Figure 2. Three layers of the tetrahedral grid generated for the ocean dataset used in our
experiments.

Grid Generation. Ocean datasets are usually composed by a regularly
spaced longitude, latitude grid with different depth layers. Each point in the
grid has a scalar parameter associated, such as temperature, salinity, velocity,
and mass. In order to comply with the DPZSweep internal data representation,
it was necessary to develop a grid generation module.

The grid generation module first connects each (x,y) point with its neighbors
forming rectangles in the depth levels. Each rectangle in the depth level d is
connected with the corresponding rectangle in the depth level d + 1, forming
a parallelepiped. After that, each parallelepiped is divided into two prisms,
that are then divided into 3 tetrahedra. In this way, we can create an irregular
grid of tetrahedra needed for the DPZSweep parallel rendering algorithm. This
irregular grid is stored on a disk file, called grid data file. Figure 2 shows three
displaced layers of the ocean tetrahedral grid used in our experiments. The
grid where these layers came from was created by our grid generation module.

Octree Creation. After the grid data file is created, it is necessary to create
a hierarchical representation of the data, in order to allow the out-of-core ren-
dering of the irregular grid. An octree is built by partitioning and restructuring
the grid data. Each octree leaf contains a pointer to a small region of the grid
data.



The octree structure is stored on a disk and used in the rendering algorithm
to load the grid data regions corresponding to the octree leaves. Only a very
small amount of data are brought into the main memory on demand.

It is important to note that the pre-processing phase is done only once per
dataset, which means that the same grid and octree can be used for visualizing
the dataset from different angles.

Parallel Rendering Algorithm
Our parallel rendering algorithm uses an image-space task subdivision. The

screen is broken into small-sized rectangular pieces, called tiles. Each tile
represents a computational unit of work. A processor processor knows which
part of the dataset has to be rendered by the tile id.

Initially, all processors grab a group of non-empty tiles1 to compute. The
sequential rendering of one tile is based on the ZSweep algorithm [Farias et al.,
2000]. ZSweep sweeps the dataset vertices, in depth order, with a plane per-
pendicular to the viewing direction, and projects the faces of cells incident on
each vertex.

The group of tiles that is assigned to each processor is determined by the
static assignment strategy used. DPZSweep has three different static assign-
ment strategies: contiguous, interleaved and random. Nevertheless, in this
work we consider only the random strategy, that distributes the tiles on a ran-
dom fashion, since it provides the best initial distribution results [Coelho et al.,
2005].

Load Balancing
After each group of tiles is assigned to a processor, if the initial assignment

generates load imbalance, DPZSweep uses a dynamic load balancing scheme
to rebalance the work. Our idea is to take advantage of some well-known dis-
tributed information diffusion algorithms to inform the PCs about the system
load without using broadcast messages. DPZSweep has three different load
balancing algorithms: Nearest Neighbor, Longest Queue, and Circular Distri-
bution. The first algorithm is based on a simple nearest neighbor exchange,
while the other two are based on the well-known distributed token-ring algo-
rithm.

Nearest Neighbor. In the Nearest Neighbor (NN) algorithm, processor p

searches for unprocessed tiles only on processor p+12. This algorithm avoids
excessive message exchanging as each processor just asks for its nearest neigh-
bor. It is based on the idea that if the initial assignment is quite a good distribu-
tion, then the dynamic load redistribution can be restricted to some neighbors
adjustment.



Longest Queue. The idea of the Longest Queue (LQ) algorithm is to ask
the most overloaded processor for work. However, as there is no such global
information on a cluster, the algorithm circulates a token, containing the load of
each processor. Every time the token reaches a processor, it updates the token
with its current load. When a processor is idle, using the token information,
it asks for work to the most loaded processor. The one with the longest task
queue.

Circular Distribution. The load balancing concept in the Circular Distribu-
tion (CD) algorithm is different. CD assembles the assignment and balancing
tasks in the same algorithm. The algorithm distributes the work dynamically
among processors. CD circulates a token containing the list of work to be done.
In fact, this list contains the ids of the tiles that have not been rendered. An idle
processor which receives the token, takes out from the token some of the tiles
3 to compute. A busy processor simply passes the token along to its neighbor.
The algorithm finishes when the token is empty.

5. Experimental Results
Our experimental environment consists of a cluster composed by 16 proces-

sors Intel Pentium III with 800MHz. The nodes are connected by Fast Ethernet
(100Mbits/sec). All the nodes run Linux kernel 2.4.20, and the communication
is handled using MPI 1.2.5 [Snir et al., 1996].

We decided to use Linux operating system and MPI message passing library
for two main reasons: portability and free software usage. In this way, our
system allows free sharing of ideas and information, and can be used on a
variety of parallel cluster architectures.

Ocean Dataset
We have used in our experiments a sample of the Gulf of Mexico ocean

data from Navy Research Laboratory (NRL). The sample has a resolution of 1
degree in latitude and longitude and carries information of 6 depth levels. Since
the main focus of this work is in the evaluation of DPZSweep as an efficient
and low-cost visualization system for volumetric ocean data, we decided to
evaluate only a single time-step and a single scalar value: velocity. We did not
include the images generated from our ocean datasets, because, in grey scale,
it is not possible to distinguish their details. These images can be found at
http://www.lcg.ufrj.br/ rfarias/oceanimages.

The tetrahedralized version of this dataset was locally generated by our grid
generation module. In fact, we used three different tetrahedralized versions of
this dataset, that we called ocean, ocean1 and ocean2. These versions differ
in terms of the number of tetrahedra generated, and represent the same dataset



Table 1. Different levels of tetrahedralized versions of ocean datasets used in our experiments

Datasets Information
Dataset # of tetrahedra
ocean 44K
ocean1 356K
ocean2 2854K

with different sizes and different amount of work to be done. The numbers of
tetrahedra of each version are listed in Table 1. We used in our experiments an
image size of 1024 × 1024 pixels and a 32-by-32 tile decomposition.

Performance Analysis
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Figure 3. Execution times of DPZS, NN, LQ and CD for ocean.

Figures 3, 4 and 5 show the execution times in seconds for ocean, ocean1
and ocean2, respectively. They were run under 4, 8 and 16 processors for
DPZSweep without load balancing (DPZS), and DPZSweep with the proposed
load balancing strategies: Nearest Neighbor (NN), Longest Queue (LQ) and
Circular Distribution (CD). Table 2 presents the precise values we used to
generate these graphics. As we can observe in these results, the version of
DPZSweep without load balancing (DPZS) presents the greatest execution
times for each of the datasets, because the load imbalance inlaid in the static
distribution reduces the system performance. All the systems with load balanc-
ing mechanisms perform satisfactorily in the cluster, obtaining up to 95% of
parallel efficiency for ocean2 dataset. The reductions in execution time, how-
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Figure 4. Execution times of DPZS, NN, LQ and CD for ocean1.
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Figure 5. Execution times of DPZS, NN, LQ and CD for ocean2.

ever, are smaller from 8 to 16 processors, as these datasets are not big enough
to turn the messaging overhead negligible.

Comparing the performance of the three different load balancing strategies,
we can observe that, although the strategies are completely different, they pro-
vide almost the same execution time results, and, consequently, present almost
the same percentage of load imbalance. We can observe, however, that CD
achieves the smallest execution time, and NN not always can rebalance the
load only with neighbor exchange.

As can be observed, our distributed load balancing algorithms are efficient
in redistributing the load. The performance of our techniques used to spread
information to the processors are satisfactory. In addition, although these tech-
niques were evaluated on top of DPZSweep system, they are general enough



Table 2. Execution times results in seconds for DPZS, NN, LQ and CD for ocean, ocean1 and
ocean2 datasets, running under 4, 8 and 16 processors

Ocean
# of proc DPZS NN LQ CD

4 19.6 14.2 14.1 14.2
8 9.1 7.0 7.3 7.3

16 5.3 4.4 4.7 4.2
Ocean1

# of proc DPZS NN LQ CD
4 35.1 25.5 24.1 24.3
8 20.0 13.4 14.1 13.4

16 18.1 13.2 9.7 9.4
Ocean2

# of proc DPZS NN LQ CD
4 187.1 93.9 84.6 82.1
8 88.8 56.7 48.4 48.9

16 79.8 54.4 44.1 36.7

to be applied to other tile-based parallel rendering system to obtain interactive
visualization times for ocean datasets.

6. Related Work
POPTEX [McPherson and Maltrud, 1998] is a visualization system for the

POP ocean model developed at Los Alamos. They achieved interactive render-
ing times using a full combination of hardware features available on the SGI
Origin 2000. Furthermore, they do not provide volume rendering, but only
surface rendering.

The ParVox system at JPL[Peggy et al., 1997] is a general purpose parallel
volume rendering system that is capable of visualizing large volumes of 4-
D simulation/modeling database. ParVox was used to visualize ocean dataset
and achieved rendering rates of one frame per second using 256 processing
elements of a Cray T3D. Although ParVox was originally developed to run on
a Cray T3D, its most recent version runs on Beowulf clusters. However, they
do not include any kind of load balancing strategy. Moreover, the system is
based on a different rendering algorithm, called splatting.

Vis5D [Hibbard and Santek, 1990] is a freely available system for interac-
tive visualization of large 5-D gridded datasets such as those produced by nu-
merical weather models. Volume rendering was added to Vis5D using polygon
approximation but without out-of-core execution. Instead, it uses a compres-
sion mechanism to store the entire data file in the main memory.



Jimenez et al.[Jimnez et al., 2003] describe a set of 3D and 4D visualiza-
tion tools and techniques for CORIE, a complex environmental observation
and forecasting system (EOFS) for the Columbia River. The volume render-
ing functionality is based on the VTK (Visualization Toolkit) system. VTK
employs parallel rendering, but uses a master-slave approach, restricting its
scalability. It can run on a cluster of PCs, however, it does not include any load
balancing scheme.

7. Conclusions
In this paper we presented a portable, scalable and low-cost parallel volume

rendering system for cluster of PCs. It supports distributed visualization needs
demanded by ocean applications. Our system, called DPZSweep, allows ocean
researchers to interactively visualize large volumes of 3D data, revealing its
internal structure. Our approach was designed to:

Overcome the high load imbalance imposed by the parallel rendering
application, by providing dynamic load balancing with low overhead;

Provide out-of-core execution, for coping with datasets that are too large
to fit in main memory; and

Use portable and free software infrastructure, as Linux operating system
and MPI message passing library.

We made some experiments running ocean data on top of DPZSweep sys-
tem, and obtained up to 95% of parallel efficiency. The great reductions in
execution times were due to the use of our load balancing algorithms. These
results prove the efficiency of our techniques to inform the processors about
the system load. Moreover, the techniques are general, and can be applied to
other tile-based parallel rendering systems to obtain interactive visualization
times for ocean datasets.
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Notes
1. A non-empty tile is a tile whose shaft actually intersects with cells and vertices of the dataset. Empty

tiles have no work to be done, and can be discarded.
2. Note that, p+1 neighbors are considered in a circular fashion, so that the p+1 neighbor of processor

(n-1) is processor 0
3. In our experiments we are taking just one tile.
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