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Abstract: As the geographic information system (GIS) community grows, more and 
more people needs to share geographic information. As modern GIS data is 
stored in geographic databases their conceptual schemas have to be, at least, 
interoperable. Due to the fact that the databases are designed by many different 
people from different countries, using different languages and maybe with 
different definitions for the same phenomenon there is a high probability that 
the conceptual schemas have semantic heterogeneities between them. In order 
to handle these heterogeneities this paper suggests the use of ontologies as 
mediators to the semantic integration. A software architecture is proposed, 
which handles also syntactic heterogeneities using a standard language, the 
GML beyond the semantic ones. A ontology that represents a subset of the 
geographic reality was created and a similarity matching algorithm was 
developed to process schemas against it. The mathematical methods of 
similarity measurement modeling concepts have been tuned for a set of real 
GDB conceptual schemas. 
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1. INTRODUCTION 

As the geographic information system (GIS) community grows, more and 
more people needs to share geographic information. As modern GIS data is 
stored in geographic databases their conceptual schemas have be, at least, 
interoperable. In this context, the conceptual modeling of Geographic 
Databases (GDB) has become a very important task due to both the 
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increasing exchange and reuse of geographic information (Burrough and 
McDonnell, 1997). The well-defined conceptual modeling offers a canonical 
conceptual representation of the geographic reality enabling the reuse of 
design sub-schemas. Furthermore, conceptual modeling is an important task 
for the understandability and extensibility of the database being developed. 

Despite a well defined conceptual schema guarantees the reusability, 
extensibility and understandability, it does not guarantees that two 
conceptual schemas can be compared, integrated or merged, since they may 
have semantic differences, while modeling the same portion of the reality.  

In order to establish a correspondence among different representations of 
a same real world concept, that were defined in different schemas, it is 
necessary to recognize the common concept through the identification of 
similarities as well as conflicts among those schemas (Gotthard and 
Lockemann, 1998). A semantic conflict, or heterogeneity, occurs when the 
same real world entity, modeled by two or more people, probably will not 
have the same modeling, even though it is representing the same 
phenomenon of the application’s domain. In these cases occur what is called 
a conflict. A conflict is nothing else than a difference in the representation of 
the same concept. 

To achieve this purpose, an ontology can be built to store the concepts 
concerning the application’s domain. Due to the complexity of the 
geographic database modeling and repeatability of the modeled phenomena 
an ontology storing those phenomena and relationships may also be useful to 
the conceptual modeling of new applications (Sugumaran and Sorey, 2002). 
Furthermore, and ontology is semantically richer than a conceptual schema 
and thus closer to the human’s cognitive model. While an ontology is used to 
represent the real world concepts a conceptual schema is developed to 
organize what is going to be stored in a database (Fonseca, Davis and 
Câmara, 2003). 

More than just to construct an ontology, algorithms of similarity 
matching must be applied to achieve correct interpretation for the variations 
of known terms, and classification of new ones. This measurement of 
similarity must be balanced, since the input conceptual schemas may have 
different characteristics. We propose weights for the similarity measurement 
for some types of geographic database schemas, based on some case studies 
we have carried out. 

The remaining of this paper is organized as follows. Section 2 presents a 
software architecture for the conceptual schemas integration, and briefly 
outlines the issues on the syntactic and semantic parts where ontology is 
applied. The methodology of the semantic integration is shown in section 3. 
A case study is presented in section 4. At last, the conclusions and future 
work are shown in section 5. 
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2. RELATED WORKS 

Fonseca, Egenhofer, Agouris and Câmara (2002) proposed an ontology-
driven GIS architecture to enable geographic information integration. In that 
proposal the ontology acts as a system integrator independently of the model 
(Fonseca, Egenhofer, Agouris and Câmara, 2002). As uses the hierarchical 
representation of ontologies to compare concepts, in many times only a 
partial integration is possible, when finding the same super-concept of two 
specialized concepts. In that methodology the concept attributes and roles 
are used as the integrations fields. 

Hakimpour and Timpf (2001) propose the use of ontology in the 
resolution of semantic heterogeneities focused in Geographic Information 
Systems.  In that work the authors specify the ontological issues, present a 
little set of concepts in Description Logic (DL) and the concept’s features 
that must be considered when solving heterogeneities: names, relations 
(attributes) and taxonomic relationships. 

Uitermark, van Oosterom, Mars and Molenaar (1999) present a 
framework to aid the geographic data integration (not schemas, as in this 
paper). The proposal uses a domain ontology specific for topography data. 
The target was to enable queries in a distributed envornoment with 
heterogeneous data. 

Stoimenov and Djordjevic-Kajan (2003) proposed the GeoNis framework 
to reach the semantic interoperability between GIS data. The use of 
ontologies was proposed in the context of serving as a knowledge base to 
solve semantic conflicts as homonyms, synonyms and taxonomic 
heterogeneities. The need of some type of syntactic integration is also 
pointed as an important task in order to unify the possibly different data 
models.  

Even though most of the works are focused in data and this work is 
focused in conceptual schemas, the idea behind is practically the same. 
However, none of the cited works specifies an algorithm or methodology to 
search the ontology given a concept. Furthermore, no matching methods 
were described.  

3. THE INTEGRATION ARCHITECTURE 

Most of the Geographic Information Systems (GIS) support a proprietary 
data model, specific for a particular system architecture. This design 
scenario leads to non-reusable as well as implementation-dependent 
geographic database projects. Because of the missing of a standard model to 
design geographic conceptual schemas, such as the Extended Entity-
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Relationship for conventional, non-spatial databases, some preliminary work 
has to be done to enable the treatment of semantic heterogeneities. In other 
words, the GDB conceptual schemas often have syntactic heterogeneities 
between them. 

Since there is not a modeling standard for GDB, a variety of conceptual 
data models and meta-models (e.g., the OGC’s GML (OpenGIS, 2003)) as 
well as modeling frameworks (e.g., UML-GeoFrame (Lisboa and Iochpe, 
1999; Rocha, Edelweiss and Iochpe, 2001), MADS (Parent et. al., 1999) and 
OMT-G (Borges, 1997)) have been proposed. The core of most of them is 
equivalent, and a complete comparative study is presented in (Bassalo, 
Iochpe and Bigolin, 2002). Anyone of them could be used as the canonical 
model in the preliminary (also called preparation) phase of the semantic 
heterogeneities resolution. 

Putting the syntactic and semantic integrators in the same software 
architecture (illustrated in Figure 1) a conceptual schema is primarily 
converted into a Canonical Syntactic Format (SCF) that is, only in the 
syntactic level and then to a Canonical Semantic and Syntactic Format 
(CSSF).  

 

Figure 1. The architecture for the integration 

To make the integration of geographic application possible, three 
requisites must be satisfied (Batini, Lenzerini and Navathe, 1986): 
• The conceptual schemas of each source must be available; 
• There must be semantic information in the schema; 
• A canonical data model must exists. This standard model has to have 

enough expressiveness power to describe all the models to be integrated; 
Since the target of the integration proposed in this paper is of conceptual 

schemas, the first requisite is automatically satisfied. The other requisites are 
filled by the matching of the constructors of the different data models with 
the same meaning and by choosing one to be the standard one. 
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The Geographic Markup Language (GML) (OpenGIS, 2003) is used in 
our methodology as the canonical data model, since it is a standard for 
storing and exchanging geographical data. Even knowing the GML is not 
capable to represent all of the constructors from all the data models it was 
adopted as it covers a significant set of elements used in the GDB modeling. 
In addition, GML may be extended to handle the missing constructors. 

According to the data model in which the schema is based a specific set 
of rules is applied. Some translation rules can be applied for the constructors 
of more than one data model once they are common to most of them (e.g. 
classes, attributes, simple associations) and some ones are specific for the 
data model, depending on its purposes (e.g. net topology, temporality). In 
(Hess and Iochpe, 2003) the rules for the syntactic integration are specified, 
and all the syntactic translator is detailed. At the moment, the GeoFrame, 
MADS and OMT-G have been mapped to GML 3. 

Once having the schemas described in the same data model (or data 
format) the semantic heterogeneities are able to be handled. The proposed 
system’s semantic translator is responsible for that task, aided by an 
ontology. The semantic converter module is responsible for solving all sort 
of semantic conflicts and heterogeneities. Each one of the elements of this 
GML file is compared against the ontology’s concepts to find a match for it. 
After processing all the CSF’s elements, the result is a canonic syntactic and 
semantic format (CSSCF). This CSSF file is also in GML and free of 
heterogeneities and ambiguities. 

It is a consensus that to perform the semantic integration in a semi-
automate way, allowing the reuse of the modeled elements, the use of a 
Knowledge Organization System (KOS), such as an ontology (Guarino, 
1998), is mandatory (Hodge, 2000).  

The role of the ontology is similar to the role of the global conceptual 
schema proposed in the works of Batini, Lenzerini and Navathe (1986) and 
Hayne and Ram (1990). It also may be seen as a mediator as proposed by 
Fonseca et al. (2002). Each one of the conceptual schemas to be integrated is 
compared with the ontology, and for each conflict found the system 
calculates a similarity measurement between the ontology’s concept and the 
input conceptual schema’s element. 

4. THE ONTOLOGY’S ROLE 

Before explaining how does the ontology works in our propose, it is 
important to clarify the heterogeneities issues it must handle. There are two 
basic types of ontological heterogeneity: conceptualization and explanation 
(Visser, Jones, Bench-Capon and Shave, 1997). The first happens when two 
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or more conceptualizations differ in terms of concepts covered, that is, they 
are not from the same domain, or in concepts relationships, which means 
that the concepts are the same but in a different context. An explanation 
mismatch occurs when two schemas have distinct definitions but their terms, 
meanings or descriptions are the same. 

To formalize the different semantic conflicts we can separate them in 
four types: equality, dissimilarity, intersection and contain (Stoimenov and 
Djordjevic-Kajan, 2003). 

Semantic equality (similarity) SEqu(c1,c2) occurs when there is a 1:1 
mapping between concepts from different schemas (S) or ontologies (O) in 
terms of meaning and structure (attributes and relationships). The concepts 
of this type of semantic heterogeneity are called synonyms, and it can be 
defined as: 

SEqu(c1 c2)={(c1 c2)|c1∈S ∧ c2 ∈ O ∧ E(c1) = E (c2) ∧ S(c1) = S(c2)} 

Where E(ci) is the meaning of the concept and S(ci) is the concept’s 
structure. 

Semantic dissimilarity SNEqu(c1,c2) occurs when there is no mapping 
between the description of a concept c1 from a schema S and a concept c2 
from the ontology O. In addition, if the Name(c1) is equal to Name(c2), the 
semantic heterogeneity is also called homonym. The semantic dissimilarity 
can be defined as: 

SNEqu(c1,c2) = {(c1,c2)|c1∈S ∧ c2∈O ∧ E(s1)≠E(s2) 
∧Name(c1)=Name(c2)}. 

Semantic intersection SIntersec(c1,c2) occurs when there is a partial 1:1 
mapping between the concept c1 from the schema S and the concept c2 from 
the ontology O, in terms of structure and in terms of meaning. The later case 
may happen when a same concept is being modeled for different applications 
and therefore some attributes and relationships are the same and some are 
not the same. This semantic heterogeneity is defined as: 

SIntersec(c1,c2) = {(c1,c2)| |c1∈S ∧ c2∈O ∧ S(c1) ∩S(c2) ∧ S(c1) 
⊄S(c2) ∧ S(c2) ⊄S(c1)}. 

At last, the fourth type of semantic conflict is the contain 
SContain(c1,c2) which occurs when the structure of a concept c1 from a 
schema S is contained in the structure of the concept c2 from the schema, or 
the contrary. This case happens when on concept is a specialization or 
generalization of the other. This conflict is defined as: 
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SContain(c1,c2) = {(c1,c2)| |c1∈S ∧ c2∈O ∧ S(c1) ⊂ S(c2) ∧ S(c2) ⊄ 
S(c1). 

4.1 The similarity measurement 

In our proposal, we combine the use of an ontology as a sort denominator 
between conceptual schemas, in order to achieve integration, with some 
similarity matching calculus. We decided to use the similarity measurement 
because the similarity of two concepts can not be binary, that is, has only the 
values 1 to equivalent and 0 to not equivalent. To reach a more accurate 
level of similarity among the concepts, in this section we describe the 
mathematical formulas used during the comparison algorithm described in 
the next section. As result, the similarity probability may assume any value 
between 0 (totally different) and 1 (equivalent). 

To measure the similarity between two concepts, one from the input 
conceptual schema and the other from the ontology, we combine syntactic 
matching between strings and semantic matching (Hess and Iochpe, 2004).  

In the syntactic matching, a distance function is applied over a pair of 
strings, to determine the dissimilarity between them. The smaller this 
dissimilarity (measured by an integer value) is, the more similar are the 
strings (Cohen, 1998). In this work we adopted the Levenshtein distance. It 
is applied to the calculus of similarity between concept names 
(SimName(Cc,Co)) and attributes names. 

The techniques to calculate the distance between two strings may be 
applied to acronyms and typing error cases, but no semantic issues are 
considered by these functions. Therefore, a correct semantic unification of 
concepts must be accomplished by a complementary technique that is 
capable of both detecting synonyms and considering the context in which 
those concepts exist. 

Our approach considers two semantic techniques to compare a pair of 
concepts. The first one is the nearest neighbor (Holt, 2000), which is used to 
calculate the similarity in terms of the attributes each concept presents, and 
is given by the formula: 

where Cc and Co are, respectively, the conceptual schema’s and the 
ontology’s concept, n is the number of attributes considered, i is the index of 
the attribute being processed, f(Cci,Coi) is the distance function between the 

SimAt(Cc,Co) = ∑ni=1f(Cci,Coi)xWati (1) 
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attributes of the compared concepts (Levenshtein) and Wati is the weight of 
the ith attribute in the ontology. 

The weight of an attribute is given by an adapted TF-IDF (Cohen, 1998) 
formula: 

where Ca is the number of concepts that have the attribute, and C is the 
total number of concepts. The more concepts have the same attribute, the 
less significant this attribute is.  

Three types of relationships are considered for the similarity 
measurement of a pair of concepts. The first one is the taxonomic (IS-A) 
associations, and the others two are the aggregation and composition ones. 
The similarity in terms of the place in the hierarchy where each concepts is 
located is obtained by the formula: 

where Hier(Cc,Pc) is each one of the taxonomic relationships existing in 
both the conceptual schema and in the ontology. Wt(c,p) is the weight of the 
hierarchical relationship arc and Nhier(Cc,Pc) is the number of IS-A 
associations in both the ontology and the conceptual schema. 

The weight Wt(c,p) of a taxonomic arc is given by the following formula 
(Jiang and Conrath, 1997): 

where d(p) is the depth of the parent node (p) of the node corresponding 
to the concept being compared. E is the density of the whole ontology’s 
hierarchy, that is, the number of nodes it has. E(p) is the density of the 
taxonomy considering the node p as the root concept, that is, the number of 
direct and indirect children it has. Finally, IC (Information Content) 
represents the amount of information the node has (Resnik, 1998), and its 
value is given by: 

where sup(c) is the number of super classes (direct or indirect) the class c 
has, and N is the total number of concepts of the ontology. The more 
specialized a concept is, the more information it intrinsically possesses. 

Wat = 1 – (Ca/C) (2) 

SimHier(Cc,Co) = (∑(Hier(Cc,Pc).Wt(c,p)) 
                                      Nhier(Cc,Pc)) 

(3) 

Wt(c,p) = (E).(d(p)+1).(IC(c) – IC(p)) 
                E(p)  d(p) 

(4) 

IC(c) = -log((∑(1/sup(c))).1/N) (5) 
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Finally, the aggregation and composition links are considered to calculate 
the similarity of two concepts, by the simple formula: 

where Rel(Cc,Co) is each composition/aggregation link existing both in 
the ontology and in the conceptual schema and Rel(Cc) is the ones present 
only in the conceptual schema. 

The final value of similarity is given by a weighed sum of the 
similarities: 

where WN, WA, WH and WR are the weights for names, attributes, 
hierarchies and relationships similarities, respectively. 

The Sim(Cc, Co) value is calculated for every concept in the conceptual 
schema against each concept present in the ontology. The higher the 
Sim(Cc,Co) value is, the more similar the concepts are.  

During this process of similarity measurement, the original conceptual 
schema is kept unaltered and a new, equivalent one is generated relying on 
the canonical semantic model expressed by the ontology.  

The ontology can also be dinamically updated depending on the 
similarity measurements carried out with every new GDB schema. Attributes 
and relationships can be added to existing concepts, and even new concepts 
may be inserted. 

4.2 The ontology algorithm 

The algorithm described next and illustrated in Figure 2 details in a high 
abstraction level, the steps sequence to search and update the ontology. The 
similarity matching formulas presented in the preview section are applied in 
some of the algorithm steps. 

To minimize the need of the expert intervention two parameters have to 
be set at the beginning of the algorithm execution: the analysis threshold and 
the acceptance threshold. Only the concepts having similarity probability 
higher than the specified analysis threshold are considered. If no candidate 
reaches the threshold, the input concept is considered as not existing in the 
ontology and added as a new concept. If one ore more of the ontology 
candidates have similarity probability higher than the acceptance threshold 

SimRel(Cc,Co) = (∑(Rel(Cc,Co))/Rel(Cc)) (6) 

Sim(Cc,Co) = WN.SimName(Cc,Co) + WA.SimAt(Cc,Co) + 
WH.SimHier(Cc,Co) + WR.SimRel(Cc,Co) 

(7) 
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specified by the user, the one with the higher value is considered as 
equivalent (a synonym) of the input concept. 

As the similarities probabilities are rough, a third parameter has to be 
defined  to increase the algorithm’s confidence. It is a “confidence value” 
delta that indicates the accepted error in the similarity measurement. The 
actual minimum limit is given by analysis threshold minus delta. In the same 
way, if a candidate has its similarity probability higher than the acceptance 
threshold it is not automatically consider as the one equivalent to the input 
concept. All the candidates with the similarity value higher than the 
maximum similarity obtained minus delta are considered and presented to 
the expert. 

Figure 2. The ontology search algorithm 

To ensure the correct operation of the algorithm, it is necessary that every 
input conceptual schema has an associated metadata, specifying in which 
language the modelling is based. 

 Step 0 – Schema translation to the ontology’s language: If the ontology’s 
language is not the same of the one indicated by the conceptual schema’s 
metadata, this has to be translated, aided by a dictionary.  
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Step 1 – Search concept’s name in the ontology: If the concept’s name or 
one of its synonyms or acronyms is found in the ontology, go to step 2. Else 
go to steps 4, 5 and 6, in parallel. 

Step 2 – Search concept’s structure in the ontology: Once the term which 
nominates the concept is found in the ontology, its structure is compared 
against the ontology, attribute by attribute. The algorithm verifies if there is 
an one to one correspondence between each input concept’s attribute and the 
ontology concept’s attribute. If the equivalence is complete go to step 3. If 
there are differences in at least one of the attributes, go to step 5. 

Step 3 – Tests if it is the last concept: If the current concept is the last one 
of the schema, go to the end. Else go back to step 1 to processes of the next 
concept. 

Step 4 – Calculate the similarity of the term that nominates the concept: 
The similarity of the input concept’s name is compared against the name of 
each ontology’s concept. Go to step 7 

Step 5 – Calculate concept’s structural similarity: The input concept’s 
structural similarity is calculated, in terms of its attributes against each one 
of the ontology’s concept. Go to step 7. 

Step 6 – Calculate relationship similarity: The input concept’s 
relationship similarity is calculated, in terms of aggregation and composition 
associations, and also in terms of taxonomic (IS-A) relations against each 
one of the ontology’s concept. Go to step 7. 

Step 7 – Sum of the similarities: Based on some method of balance, the 
structural similarity, the name similarity and the relationship similarity of the 
input concept are summed, resulting in the similarity probability. This 
calculation is performed for each ontology’s concept. Go to step 8. 

Step 8 – Verify threshold: Check if the similarity value of the concept 
with the highest similarity probability. If it is lower than the analysis 
threshold minus delta go to step 12. If the similarity value is greater than the 
acceptance threshold and there are no other candidates with similarity 
probability higher than the highest similarity value minus the delta 
parameter go to step 11. Otherwise, go to step 9. 

Step 9 – Show candidates: Present each found candidates, with its 
balanced similarity probability. If there are candidates with similarity value 
higher than the maximum threshold only the candidates within the delta 
parameter are shown. They are displayed ordered, with the ones with higher 
similarity first. Go to step 10. 

Step 10 – Term selection: At this point the domain expert intervention is 
necessary. He selects the concept he judges as the most equivalent to the 
input schema’s concept. If an ontology’s existing concept is selected, go to 
step 11. If the expert decides that the input concept has not an equivalent in 
the ontology go to step 12. 
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Step 11 – Update an existing concept: Depending on which step called 
this step, a distinct action is performed to update the ontology. This action 
can be the addition of a new synonym or acronym to an existing term, the 
addition of a new attribute to an existing concept’s structure, or the creation 
of a new relationship between two existing concepts. Go back to step 3. 

Step 12 – Addition of a new concept to the ontology: A new concept is 
added in the on the ontology, with all its attributes. Go back to step 3.  

The use of ontology by itself does not provide a complete solution to the 
semantic integration problem. It is impossible to a single ontology to 
contemplate all the alternatives to express a real world phenomenon. This 
happens because of the inherent restrictions to the ontology and because of 
the differences derived by the individual process of interpretation of the 
reality (Resnik, 1998). 

The human intervention in the resolution of the conflict is practically 
mandatory in the identification of correspondences process between different 
schemas. At most, what can be reached is that the ontology suggests the best 
solutions based on similarity and probability calculus. 

5. CASE STUDY 

In order to test the algorithm as well as the similarity matching formulas 
proposed, a geographic ontology called ontoGeo was built. Since it is a 
domain ontology, any other geographic application may use the concepts 
stored in this ontology. The concepts represented in ontoGeo belong to the 
domain of the physical, natural phenomena (basic cartography) such as 
hydrology, relief, and vegetation. There are also some concepts related to 
infra-structure, especially those of the transportation theme, and some from 
the locality domain. 

ontoGeo was built using the semi-structured language RDF schema. The 
concepts described in ontoGeo were taken from a set conceptual GDB 
schemas relying on different data models and modeled by different designers 
working for distinct organizations. They are all GDB schemas for real 
applications that have been actually implemented. 

Since ontoGeo is based on geographic databases that were implemented 
to support geographic information systems of brazilian organizations, it 
supports only concepts written in Portuguese in its current state of 
development. 

At the beginning of the case study, ontoGeo had 156 classes (concepts) 
and 104 slots (attributes and relationships). It is worth noting that ontoGeo is 
not intended to be a complete geographic ontology. It serves as a starting 
point to integrate GDB conceptual schemas. In case a concept belonging to 
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an input schema is not found in the ontology, ontoGeo is updated with the 
insertion of the new concept, as predicted in the algorithm presented in 
section 3. 

5.1 The algorithm execution 

Since most of the schemas evaluated in the case study model hydrology, 
only the subset of ontoGeo´s concepts related to this theme has been used. 

We ran the experiments considering three different types of conceptual 
schemas. The first type represents those schemas that model only classes and 
taxonomic relationships. Schemas that model classes with attributes and 
taxonomic relationships were considered as belonging to a second type. The 
last type represents schemas that can have both classes with and without 
attributes, besides hierarchies. Furthermore, as a GDB schema of the third 
type was processed by the similarity measurement algorithm ontoGeo had 
already been updated on the basis of schemas of the other two types. 

As shown in Table 1, for each schema the similarity matching algorithm 
was executed twice, each time with a different set of values for the weights 
WN, WA, WH, and WR. In the following, each one of these sets is called a 
different case study scenario. 

For all three GDB schemas processed, in the first scenario all weights 
were given the value of 0.25. In the second scenario for each schema the 
WN, WA, WH, and WR assumed different values depending on the 
characteristics of the input conceptual schema. 

Table 1. The case study scenarios 
Input Conceptual Schema Test WN WA WH WR 
Classes and Hierarchies 1 0.25 0.25 0.25 0.25 
Classes and Hierarchies 2 0.70 0.00 0.30 0.00 
Classes, Attributes and Hierarchies 1 0.25 0.25 0.25 0.25 
Classes, Attributes and Hierarchies 2 0.45 0.35 0.20 0.00 
Classes, Attributes, Hierarchies, Ontology Updated. 1 0.25 0.25 0.25 0.25 
Classes, Attributes, Hierarchies, Ontology Updated. 2 0.50 0.25 0.25 0.00 

In this first case study we report here, the main goal was to determine a 
good scenario where the weights for the different types of similarity 
formulas express their relative importance within the global similarity 
formula (7). A next step should be to investigate the best set of values for the 
set of weights concerning both the similarity matching algorithm and the 
ontology ontoGeo. It is possible, though, that one comes up with a set of 
good scenarios, each one of which being the best fit for a certain type of 
GDB schema. 

The acceptance threshold was fixed in 0.75 (75%), while the analysis 
threshold was set to 0.4 (40%), and the delta value kept by 0.1 (10%).  
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With the above values assigned to the respective parameters, no 
equivalent concept in ontoGeo was found for any of the processed concepts 
of the input schema. In this case, SimAt and SimRel were always zero, and 
thus the similarity had at most the value of 0.5. As we increased the values 
of both WN and WH, and decreased the values of WR and WA down to 
zero, the algorithm showed very good results, with 100% of accuracy in 
automatically matching equivalent concepts with more than 75% of 
similarity, and 60% of precision in finding equivalent concepts in ontoGeo 
within 40% and 70% of similarity. 

The second conceptual schema that was evaluated against ontoGeo 
contains taxonomies, classes and attributes. In a first execution of the 
algorithm, the results were 100% correct in the cases where similarity fell 
within the threshold limits. Again, no match was indicated as having more 
than 75% of similarity because no aggregation or composition associations 
were modeled. In a second execution, by increasing the values of WN and 
WA as well as decreasing the value of WH a little and setting WR to zero, 
the results were the same and a correct automatic matching was obtained 
once again. 

The third conceptual schema contains taxonomies, classes and attributes. 
It was processed by the similarity matching algorithm after the ontology had 
been updated. In its new state, it presented 170 classes and 106 slots. As 
most of the constructs of this third schema were already stored as concepts in 
the ontology, the results of the two executions (i.e., one for each different 
scenario) were almost the same. 

As already mentioned above, for each schema, in the second execution of 
the algorithm, we used a customized combination of weights to the 
parameters WN, WA, WH and WR. This was due to the different 
characteristics of each input schema. In the first schema, as only classes and 
taxonomies were modeled, only the WR and WA parameters mattered. Since 
almost all classes were specialized from the same super class, the hierarchy 
was less significant than the name to differentiate the classes. For that reason 
WN was much higher than WH. 

In the second schema, as there were classes as well as attributes, and 
taxonomies, but the hierarchies were again not so deep, WH was given a low 
value. Since a considerable number of attributes were present in more than 
one class, the name similarity was more significant than the attribute 
similarity. Thus, WN was a little higher than WA. 

Finally, in the third conceptual schema, the main difference was that a 
number of classes did not have attributes. For that reason WA was given a 
lower value than in the experiment with the second schema. As aggregation 
and composition relationships were not present in any of the schemas, WR 
was always set to zero. 
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Even if the absolute values of the parameters WN, WA, WH and WR 
were not entirely correct, from the experiments above it is possible to 
conclude that we achieved a reasonable set of ratios among them for the 
input schemas that were tested and, therefore, have obtained a very good 
similarity measurement between concepts. 

6. CONCLUSIONS AND FUTURE WORKS 

This work aimed to address an important issue for the interoperability of 
geographic data and conceptual schemas, which is the integration of 
different schemas.  Input data must be syntactically as well as semantically 
unified as to produce good results. Especially for GDB conceptual schemas, 
the integration plays a very important role since it handles heterogeneities in 
terms of data models (syntax) and in terms of concepts (semantics). It was 
made clear that the use of an ontology associated to a canonical data model 
helps enhance the schema unification process. The technique can also 
improve the process of understanding as well as avoiding conflicts such as 
those originated from heterogeneities and redundancy of concepts. 

On the basis of the software architecture proposed as well as relying on 
the ontology created, and the similarity matching algorithm developed, we 
were able to test the proposed metrics and also start tuning the weights 
related to each of the different similarity measurement formulas proposed 
here. 

The results obtained by the case study were very satisfactory with a high 
rate of correct matching. By the execution of the algorithm a supposition was 
confirmed: the more detailed the conceptual schema is, the more precise is 
the algorithm output. If only classes are modeled, probably a considerable 
number of candidate matches may be found in the ontology for each one of 
the concepts of the input GDB schema, as only the concept name will differ. 
On the other hand, if the elements are modeled in a complete taxonomy and 
with a number of attributes are defined, the ontology’s concepts would have 
to match more requisites, producing less, but more accurate, candidate 
matches. 

On the other hand, the case study tends to show that there is not a perfect 
combination of values for the set of weights composed by WN, WA, WR 
and WH. The relations among them depend on the characteristics of the 
input conceptual schema being processed. In this work we did not test all 
different types of schema that may exist. Though, the case study showed that 
might be important to be able to tune those parameters for each different 
type of schema, in order to obtain the best combination each time. 
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A second important point to be considered is the fact the algorithm is not 
capable to solve heterogeneities in terms of different data model constructors 
used to model the same concept of the real world. For example, if a concept 
in one schema is represented as a class and in another as an attribute, the 
current algorithm does not match one to another. This problem should be 
dealt with in the future. We also plan, as future work, to extend the algorithm 
to take into account the spatial features of the schemas to be compared. 
Spatial attributes as well as spatial relations are meant to be addressed. 
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