

URBAN PLANNING BY SIMULATION OF
POPULATION GROWTH

Cirano Iochpe, Flavio Rech Wagner, André Dias Bastos, Guillermo
Nudelman Hess, Marcia Aparecida da Silva Almeida
UFRGS – Universidade Federal do Rio Grande do Sul. Instituto de Informática.
{ciochpe, flavio, adbastos, hess, marcia}@inf.ufrgs.br

Abstract: Urban planning is a very important issue to guarantee the sustainable
development of modern towns. Many aspects must be considered and one of
the most important is the population growth. Having a correct control of this
phenomenon it is possible to focus the efforts, resources and investments in
the right direction. To anticipate the facts and as a consequence predict the
advantages and problems of the growth in a specific region this paper presents
a web-based system for the simulation of the populations boom. The system
uses a set of rules to predict the development in a given geographic scenario,
focused on the needs for public resources such as schools, kinder gardens and
public health centers. The outputs are SVG covering maps of the simulated
region showing the suitability of the existing resources.

Key words: Geographic Information Systems, urban growth, simulation, geographic
scenario

1. INTRODUCTION

Urban systems are becoming ever larger and increasingly complex as
urban economies, social and political structures and norms, and
transportation and other infrastructure systems and technologies evolve.
Scarce resources make efficiency critically important, and in a democratic
context that involves many stakeholders with conflicting values and
priorities, it is neither feasible nor appropriate to deal with major land use
and transportation policies and investments as isolated choices to be decided

222

by planners or bureaucrats within the bounds of a single organization
(Waddell and Ulfarsson, 2003)

Urban growth modeling and prediction history essentially started in the
1950’s, showed less activity in the 70-80’s but has been revived somewhat in
the 1990’s due to the availability of spatial data and advancements with
computer technologies and Geographic Information Systems (GIS) software.
Conflicting views of urban system have led to a variety of different growth
theories and models (Allen and Lu, 2000).

Simulations based on geographic environments are called Geosimulation
(Benenson and Torrens, 2003; Torrens, 2004). A Geosimulation consists on
the discrete simulation of dynamic spatial systems, action oriented
(Benenson and Torrens, 2003).

Following an ongoing research we intend to concentrate our efforts in
simulation applications based on geographic scenarios. This kind of
simulations is of interest of a considerable subset of our partners such as the
army (strategy war games) and ambient licensing departments (simulation of
future environment conditions in case of a polluting enterprise locates in a
specific place).

We chose to simulate the urban population growths as our case study.
The choice was due the availability of data and the interest of the city
planning department, which gave us the data. The main difference between
the simulator proposed in this project and the existing ones is the fact that
our simulation is influenced not only by external events, such as human
intervention, social and economics policies but also by the geographical
environment aspects, such as hydrology and relief.

The simulator is intended to be available as web pages on the Internet. It
has to allow a user to simulate his own data set and, furthermore, using the
growth rules specified by him.

The paper is organized as follows. Section 2 presents some related works.
The features and functionalities of the simulator are detailed in section 3.
Section 4 explores the system architecture, the simulator kernel and the
algorithm for the covering map. Section 5 discusses the output in SVG
format. Finally conclusions and future works are presented in section 6.

2. RELATED WORK

A number of simulators have been proposed to address the simulation of
the urban growth. Most of them are not available on the internet, that is, they
are desktop applications. Furthermore, they are dependent on a proprietary
GIS platform and data format.

223

The UrbanSim (Teerarojanarat, Fairbairn and Chunithipaisn, 2004) was
developed to the Oregon Department of Transportation TLUMP. It has been
released as an open source software and licensed under the GNU General
Public License (GPL). The software is implemented in Java and its user
interface is built on top of the Eclipse platform. The key objective of the
software is to simulate the development of urban areas, including land-use,
transportation, and environmental impacts, over time periods. By
determining various comprehensive socio-economic data inputs and user-
specified events and actions (e.g. policy planning, environmental
constraints), the software can create realistic urban simulation results with
different scenarios (Teerarojanarat, Fairbairn and Chunithipaisn, 2004).

The Uplan (Johnston and Shabazian, 2002) simulator is urban growth
model that runs in the Windows version of ArcView on a personal computer.
The model was designed to rely on a minimum amount of data, but allocates
urban growth in several land use types for small (parcel-sized) grid cells. It
is a scenario-testing model that can be applied to any county or metropolitan
region and that is transparent to the user, making it easy to change the
assumptions for land use allocation. The model is rule-based, that is it is not
strictly calibrated on historical data and uses no choice or other statistical
models. (Johnston and Shabazian, 2002).

2.1 The simulator features and functionalities

The simulator is intended to be available as web pages on the Internet. It
has to allow a user to simulate his own data set and, furthermore, using the
growth rules specified by him. To use the simulator the user has to be
registered in the system. This is required because one user may want to make
his scenario and rule set public or private.

Some restrictions are imposed at the moment, in order to build an
operational prototype faster. Only schools, kinder gardens and public health
centers are human made relevant aspects, as well as only relief and
hydrology are the only natural aspects used.
• Upload new geographic scenario: In a first implementation, the user

can upload his own geographic scenario using shapefile or GML (Open
GIS, 2003) files. If he chooses to use shapefiles, he just needs to indicate
where they are. If he prefers to upload a GML file, he first receives an
“.xsd” file containing the schema he has to follow to instantiate his data.
If he uses other schema than the one we provide, the GML file cannot be
validated and is considered as invalid. All the information, even in
shapefile or GML, may be contained in one or various layers (files). Thus
for each user is created a section to enable him to upload all the set of

224

files. Only the user who created a scenario is able to upload or modify the
scenario files.

• Upload a rule set: The rules must be described in an XML file, based on
a schema defined by us. The procedure to upload a rule set is the same
used to upload a scenario, that is, he needs to login into the system and
the rules file is validated against the schema. The owner of a rule set can
update it whenever he wants, adding new rules, modifying or deleting
existing ones. The users other than the owner may use and visualize the
rule sets, if they are public and use them as a basis to define new ones.

• Generation of covering maps: Having chosen a geographic scenario
and a rule set, the user can ask for the simulator to generate a covering
map. A covering map is an instant static view of the scenario once the
rules are applied. Currently, we are generating scenarios to analyze the
area covered by a school considering its capacity, the maximum distance
ratio between it and the houses and geographic barriers.

• Perform a simulation: This is the main functionality of the simulator.
Given a geographic scenario, a set of rules, the population growing
direction from a center origin, the growing ratio and the number of cycles
wanted, the system simulates the population growing and its impacts over
the region. In each cycle a number of events are dispatched and the
geographic scenario components are updated. At the end of each cycle a
new covering map is generated. Optionally, the user can configure the
simulator not to refresh the web page in every cycle, but only after a
number of cycles.

3. THE SIMULATOR ARCHITECTURE

The global architecture of the simulator is presented in Figure 1.
After comparing some of the open-source GIS libraries such as TerraLib

(Câmara et. al, 2002), PostGIS (Ramsey, 2004) and Geotools (Schulz, 2004)
we decided for the last one due to its simplicity and because it has lots of
examples that can be easily customized to address our needs.

It is true that we first tried to use the PostGIS library, but we could not
make work correctly when running together with the GeOS, which is
required to perform some of the operations we need. Furthermore, with the
PostGIS we were restricted to the PostgreSQL DBMS. Another important
point is that it uses the C/C++ programming language and thus it is not
totally true to say that it is platform independent. Some customizations have
to be done in order to migrate an application from one platform to another.

225

Figure 1. The simulator architecture

On the other hand, the Geotools API is an open source library which has
a number of methods to perform spatial operations and manipulation of
geographic data. It has a set of classes specifically to manipulate geographic
data. Those classes are written in Java and thus it is easy to implement, use
and extend them. Furthermore, Java is actually platform independent and
with some special classes it is easy to integrate the Geotools in the web
environment.

Once having chosen the Geotools API, we decided not to use a DBMS to
store and manipulate the geographic data (layers). The reason is because this
API does not provide, at the moment, an easy interface to connect and use
spatial databases. Thus we decided to keep both the rules and the scenarios
in files. These are GML or shapefiles, the ones supported by the Geotools.
The database is used only to store the scenarios and rules metadata, such as
date of creation, owner, if it is public or private, etc. A simulation scenario,

GML / SHP
Geographic data

XML
rules

user

Geographic scenario
manager

(wrapper)

Geotools
API

Simulation Covering
map

Simulator
Engine Covering

Interface
WEB

Rules manager
(Wrapper)

Cellular
automata

Area (map)
Neighbourhood (map)
State
Transition Rules

Files
(shp, gml)

Program
Files

(Java)

Rules
files
(xml)

Metadata
DBMS

GML / SHP
Geographic data

XML
rules

useruser

Geographic scenario
manager

(wrapper)

Geotools
API

Simulation Covering
map

Simulator
Engine Covering

Interface
WEB

Rules manager
(Wrapper)

Cellular
automata

Area (map)
Neighbourhood (map)
State
Transition Rules

Files
(shp, gml)

Program
Files

(Java)

Rules
files
(xml)

Metadata
DBMS

226

that is, all the configuration of a geographic scenario with a set of rules, the
number of cycles and the growth directions is also stored in the database.

3.1 Cellular automata

An alternative that has been widely applied in the urban simulation,
specially to model and control the population growing is the use of cellular
automata (White and Engelen, 1993). There are many systems based on
cellular automata, such as OBEUS (Benenson and Torrens, 2003), jTrend
(Huang and Cho, 2002) and URBSIM (Bäck, Dörnemann, Hammel and
Frankhauser, 1996). The jTrend is implemented in Java.

Cellular automata are discrete and dynamic systems. Their behavior is
totally specified in terms of the location relationships. The space is
organized as an uniform grid, and each cell contains a few bits of data. The
time advances in discrete steps (non continuous) and the rules that drive the
universe are expressed in tables.

The sctructure of each cellular automata can be described as a 4-uple:

C = (Sp,{St},{N},{TR})

where:
Sp represents the space occupied by the cell.
St represents the set of states possible for a cell.
N represents the number of neighbors of the cell.
TR represents the set of transition rules that drives the changing from one

state to another.
The transition rules and, as a consequence, the state of a cell depends on

the time instant and on the states of the neighbor cells.
Since each cell of the matrix is totally independent (and the order does

not matter), their state update may occur in parallel. There is not a need for a
centralized control (Bäck, Dörnemann, Hammel and Frankhauser, 1996).

3.2 The simulator kernel

We decided to implement a new simulator kernel even knowing that a
number of simulators already exists. The reason for our decision is because
the kernel we need is extremely simple. It only has to count time and call the
right methods for each event. Thus, it was easier and faster to develop our
own simulator kernel.

The kernel of the simulator is a single Java class called Simulator. As
showed in Figure 2, there are some auxiliary classes, separated from the
Simulador to keep it independent of the simulations domain. Hence, it is

227

generic and can be easily adapted to any simulation with the same
characteristics than ours.
• The Simulator class requires four parameters.
• Events file: An XML file containing the events sequence and when each

one is scheduled;
• Number of cycles to consider in the simulation;
• Simulation chronos (cycle time);
• Visualization time (screen refresh interval).

Comparator

Event
name : String
time : Integer
method : St ring

Simulator
events : Vector
nameLog : String

simulate()
loadEvents()
saveLog() CompareTime

compare()

<<implements>>

Figure 2. The simulation classes

After reading the events file, the program stores them into an ordered
vector of classes called Event. Each Event class has three attributes: the
name, time and associated method. The execution of the simulation is a
simple loop which stops when reaches the last cycle or the events vector is
empty. As illustrated in Figure 3, in each cycle the vector is ordered and the
events are tested to find out if they have to be executed or not. When a
method is called due to an event, the taken action is added to a log file,
which contains the entire simulation summary. The log file’s name is
“simulacao_AAAAMMDD_HHMM”, where AAAAMMDD is given by the
simulation’s date and HHMM is the simulation’s time. In addition, the
header of the simulation log contains the input parameters. As a method may
add new events, the vector is reordered at each cycle.

228

ReadParameters

loadEvents

simulate

orderVector

compareVectorElement

nextVectorElement

(Vector empty)
or (last cycle) ?

cycle = event
time?

saveEventLog

deleteEvents
Hadled

callEventMethod

orderVector

compareVectorElement

nextVectorElement

(Vector empty)
or (last cycle) ?

No cycle = event
time?

saveEventLog

deleteEvents
Hadled

Yes

callEventMethod

Yes

No

Figure 3. The simulation activity diagram

3.3 The covering map algorithm

The covering map algorithm is the core of the simulator. It presents a
view of the environment based on mathematics calculus, which consider the
geographic scenario and its components. Both natural aspects such as
hydrology and relief and human stuff (equipments) such as schools, kinder
gardens and public health center are considered. In this section we detail the
algorithm we developed.

Using a web-based interface the user selects the parameters to the
generation of the covering map, which are the geographic scenario, the rule
set and the equipments. In the first implementation only the schools are
being considered. Prior to start the generation, the system verifies if the
requisites are satisfied, that is, if in the selected scenario the equipments
exist and if there are rules for the equipments in the selected rule set.

229

At the present moment, the layers are fixed, and the system compels the
user to upload a complete scenario. None layers can be missing and
additional layers are discharged. The same occurs with the rules set. Actually
the rules are fixed. The user can only change the parameters. For the future
we intend to make the system more flexible.

The algorithm consists in the creation of a layer. Figure 4 presents an
initial activity diagram which contains the main flows and data evolved in
the process.

Figure 4. Covering map algorithm's activity diagram.

• school buffer: First layer school is generated, creating a buffer zone
around each school, given an influence ratio value, , which is one of the
rules contained in the set of rules submitted by user .

• Hydrology layer: A second is an hydrological layer. A sequence of
overlays operations are executed over the different type of hydrological
objects (rivers, lakes, streams, etc.).

• Appropriate locations: A third layer that is generated consists in
perform an overlay with the declivity (relief) layer and the hydrology

School River Darn

Declivity

StreamLake

230

layer. A Boolean operation is applied over the resulting layer, marking
with value 1 the locations appropriated for a human house and 0 the ones
not appropriated. An appropriated location is the one not on an
hydrological resource and with the declivity value lower than a certain
value (which is also defined by the user in the set of rules).

• Valid school buffer: The school buffer and the appropriate locations
layers are used to generate the valid school buffers layer, that is, with the
buffer modified to cover only the appropriate locations. The operation
used is the difference (school buffer – appropriate locations). The non
appropriated locations are erased from the school buffer .

• Real school buffer: Each school has a maximum capacity of students. In
this step the algorithm verifies if the population inside each school’s
buffer zone is greater than the school’s capacity. If the answer is no, the
next school is tested. If yes, the buffer zone is decreased until the
population inside it is lower than the school’s capacity.
The last step is not as simple as it seems to be, because the population is

distributed in sectors and each one may have a different amount of people
distributed following a growng/distribution model. There is a large number
of works whose goal is to propose this kind of modeling (Almeida, 2002). At
the present moment, we are focused on studying that related works as well as
the interactions between geographical environment aspects and how these
factors affect the population distribution in order to obtain a model of urban
growth.

4. THE MAP OUTPUT

The map generation of the user input geographic scenario in the GML
format can be performed through an XSLT transformation (W3C, 2003)
process. Once data are coded in GML it is needed to convert them to a
graphic format to enable the visualization as maps and interchange using the
web interface. This graphic format has to have a dynamic and interactive
support to georeferenced information. The Scalable Vector Graphics (SVG)
(W3C, 2004) is suitable for that kind of applications.

The SVG language is supported by most of the browsers simply by the
installation of a plug-in and has many advantages comparing to the other
image file types used in the internet, such as JPG and GIF. While JPG and
GIF stores the image in a raster way, the SVG language represents the
images using a vector language. Due to that with SVG is possible to make
zoom operations without distortion in the image. Furthermore, SVG is not a
proprietary language and the files are smaller than the ones representing the
same information with other formats. The SVG format is recommended by

231

the World Wide Web Consortium (W3C) and describes two-dimensional
(2D) graphics in XML. A SVG file can be visualized as an image, a text or a
set of vectors. (W3C, 2004).

The XSLT stylesheet define how the GML document is transformed in
SVG graphic elements. As different stylesheets can be applied over the same
document, the GML information coded in it may be visualized differently
(Kay, 2001). On the other hand, different XML instances documents can be
processed by the same stylesheet if they share a common schema.

To make the geometric representation of a GML file as a map the XSLT
model rules were used. Those rules convert each one of the geometric
properties to its equivalent in SVG. For instance, the class Point in GML
may be represented as a Cicle element in SVG. This transformation is
performed by a XSLT processor as illustrated in Figure 5. The XSLT
processor’s main role is to apply the XSLT stylesheet over the source
document and to produce a resulting file. In the case of this paper, the input
file is in the GML (Tennakoon, 2001).

Figure 5. The GML to SVG transformation

A stylesheet is a set of rules (templates) where each rule specifies ho to
format certain elements in the file. The templates are apart of the documents,
allowing each document to have more than one associated stylesheet. When
facing a document against an associated stylesheet each rule matches with an
element type of the input document. Xpath expressions are used to refer to
specific parts of the document. The original tags are thus substituted by the
output tags.

5. CONCLUSIONS

The simulation of the urban growth aids the urban planners to chose the
best options for the sustainable development of the city. Our proposal is
suitable for that work and furthemore, as it is web based, many people and
departments may exchange not only data, but also experiences. Moreover, a

232

planner may search the configuration of a good scenario in order to tune the
parameters of his.

At the moment the kernel of the simulator is already in operation and
integrated to the web site. The web pages with the parameters to the
simulation were implemented using the servlets technology. We already
have some test data, and the tools for conversion from shapefiles to GML are
implemented, as well as the schema for the data description.

The major next steps are basically in four directions. The first of them is
to get a model of distribution of population which allow us to simulate
considering geographical aspects. Since we obtain that, it is possible to
simulate urban growth satisfactorily. The second is to complete the
implementation of the covering map algorithm and integrate it with the
simulator kernel. The third remaining work is to convert the results
generated by the algorithm into SVG files to be displayed. At least, the rules
schema definition as well as the rules XML file validation have to be done.

As future work, we plan to make the simulator more flexible by allowing
the user to choose the layers he wants to be considered in the simulation. The
is planed to the rules set. We intend to enable the submission of new rules
driving the same objects already considered and also new ones.

6. REFERENCES

Allen, J. and Lu, K. S. Modeling and Predicting of Future Urban Growth in the Charleston,
South Carolina Area. The South Carolina Sea Grant Consortium. United States. 2000.

Almeida, C; Monteiro, A.M.; Camara, G.; Soares-Filho, B.S.; Cerqueira, G; Pennachin, C;
Batty M. Empiricism and Stochastics in Cellular Automaton Modeling of Urban Land Use
Dynamics. The Centre for Advanced Spatial Analysis Working Paper Series. 2002b.
Available at <http://www.casa.ucl.ac.uk/working_papers/Paper42.pdf>. November 2002.

Bäck, T.; Dörnemann, H.; Hammel, U. and Frankhauser, P. Modeling Urbam Growth by
Cellular Automata. In 4th International Conference on Parallel Problem Solving from
Nature. Berlin, Germany. 1996

Benenson, I.; Torrens, P. M. Geographic Automata Systems: A New Paradigm for Integrating
GIS and Geographic Simulation. In GeoComputation 2003. Southampton, United
Kingdom. September, 2003.

Câmara, G. et. al. SPRING and TerraLib: Integrating Spatial Analysis and GIS, Proceedings
of the SCISS Specialist Meeting New Tools for Spatial Data Analysis. Santa Barbara,
California, USA. May 10-11, 2002.

Geography Markup Language (GML) 3.0. Open GIS Implementation Specification, 2003.
Available in http://www.opengis.net. Last access in december 2003.

Hess, G. N, Bastos, A. D., Iochpe, C. A Comparison on open-source GIS Libraries. VI
Brazilian Symposium on GeoInformatics (GeoInfo). Campos do Jordão, Brazil. 2004.

Huang, W. and Cho, H. JTrend – a Java-based Cellular Automata Simulation Environment.
Techical Report. Iowa State University, United States. October, 2002.

Johnston, R. A. and Shabazian, D. R. Uplan: A Versatile Urban Growth Model for
Transportation Planning. TRB Paper, 03-2542. United States. October, 2002.

233

Kay, M. XSLT 2.0 Programmer's Reference 2nd edition. Wrox, 2001.
Ramsey, P. PostGIS Manual. Available at <http://postgis.refractions.net/docs/>. Last access

in July, 2004.
Scalable Vector Graphics (SVG) 1.1. World Wide Web Consortium (W3C) Specification,

2003. Available in http://www.w3.org/TR/SVG/. Last access in february 2004.
Schulz, R. Geotools2 Overview for Users. Available at < http://www.geotools.org>. Last

access in July, 2004.
Teerarojanarat, S., Fairbairn, D., and Chunithipaisn, S. Urban Growth Simulation with

UrbanSim. Proceedings of the FOSS/GRASS Users Conference. Bangkok, Thailand.
September 2004.

Tennakoon, W. T. M. S. B. Visualization of GML data using XSLT. Master dissertation,
International Institute for Geo-Information Science and Earth Observation, 2001.

Torrens, P. M. Geosimulation: object-based modeling of urban phenomena. In Editorial of
Computers, Environment and Urban Systems. Number 28, 2004.

Waddell, P. and Ulfarsson, G. F. Introduction to Urban Simulation: Design and Development
of Operational Models. In Introduction to Urban Simulation. United States, 2003.

XSL Transformations (XSLT) 1.0. World Wide Web Consortium (W3C) Recommendation,
1999. Available in http://www.w3.org/TR/xslt. Last access in december 2003.

White, R. and Engelen, G. Cellular automata and fractal urban form. Environment and
Planning A, 25, 1175-1199. 1993.

