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Abstract: This paper shows an application of two visualization algorithms of 
multivariate data, U-matrix and Component Planes, in a matter of exploratory 
analysis of geospatial data. These algorithms were applied in the investigation 
of urban social exclusion/inclusion in the city of São José dos Campos - SP, 
Brasil. 
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1. INTRODUCTION 

Modern data acquisition techniques are offering tremendous 
opportunities that result in more geospatial data to be handled. Analyzing 
these data becomes a difficult task due to their complexity and hidden 
patterns. The complexity of the attribute space in such complex datasets does 
not always allows traditional deductive and statistically based approaches to 
analyse that data. Like many other techniques, Artificial Neural Network 
(ANN) is an emerging solution for pattern recognition. Among the ANN 
models, Self-Organizing Maps (SOM) is seen as a good technique for 
exploratory analysis of data (Kohonen, 2001). In this paper we explored a 
SOM, an unsupervised ANN, and their visualization algorithms, U-matrix 
(Ultsch, 1993) and Component Planes (Kohonen, 2001), for an exploratory 
analysis of geospatial data. These algorithms are visualization tools 
developed to work closer to SOM algorithm. 
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SOM has being applied successfully in a variety of problems of 
exploratory analysis of multivariated data (Kohonen, 2001), however, few are 
the works related to the analysis of geospatial data (Winter and Hewitson, 
1994; Open-shaw and Turton, 1996; Babu, 1997; Kaski and Kohonen, 1996; 
Foody, 1999; Cereghino et al., 2001; Park et al., 2003). Urban geospatial 
problem is also a unexplored theme (Franzini et al., 2001). The main goal here 
is to find out how the dataset is distributed, how each variable correlates with 
each other and if there is some spatial correlation between the feature and 
physical spaces in a exploratory manner of urban geospatial data (Bailey and 
Gatrell, 1995). 

Section 2 explains about the SOM and visualization related algorithms, 
U-matrix and Component Planes. Section 3 presents our case study, that is 
mapping urban social exclusion/inclusion in the city of São José dos Campos, 
São Paulo, Brazil. Finally, Section 4 shows our results and discussion and 
Section 5 our conclusions. 

2. SELF-ORGANIZING MAPS 

Kohonen Self-Organizing Map is a competitive artificial neural network 
structured in two layers (Kohonen, 2001), see Fig. 1. The first one represents 
the input data, xk, the second one is a neuron’s grid, usually 
bidimensional, full connected. Each neuron has one codevector associated, 
wj. 

The main goal of the SOM algorithm is to approximate the input dataset 
preserving structural local proximities to statistical properties among them. 
Therefore, it means that SOM acts as a data compressor and feature 
extractor. A learning process achieves this. 
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Figure 1. This picture illustrates an architecture of a two dimensional (NxM) SOM with a xk 
input vector and wj codevector. 

The learning process can be split into three phases. In the first phase, 
competitive, each input pattern is presented to all neurons searching for the 
Best Match Unit (BMU) using Euclidean distance measure. In the second 
phase, cooperative, a neighborhood relation, among the BMU and the other 
neurons, is defined by a neighborhood kernel function (hij).  Finally, in the last 
phase, adaptive, BMU and neighbors codevectors will be updated using some 
kind of adaptive rule, see Eqs.(1)-(2) (Vesanto, 1999). 
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where: si represents an input pattern sum for the ith-Voronoi region, Vi; 
and nVi is the number of samples for the Voronoi dataset of the ith-neuron. 
h(t) is the neighborhood kernel function a t time; m is the number of Voronoi 
regions. 

After the learning process codevectors should approximate, in a non-linear 
manner, the input data. Besides, SOM preserves the topological structure of 
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input data, so nearby patterns in the sample dataset are associated with nearby 
neurons in the SOM grid. 

SOM can vary as learning algorithm, grid's topological structure, 
neighborhood kernel function, initial parameterization etc. For this work we 
have choose a SOM batch learning because it generates the same result for the 
same initial parameters and there isn't learning rate (Kohonen, 2001). 

We defined and tested a limited set of SOM's configurations varying 
initial radius of neighborhood kernel function and the size of grid. All 
networks were bidimensional, has hexagonal grid, gaussian neighborhood 
kernel function, linear initialization, batch learning and only one learning 
phase. We used topological and quantization errors as quality metrics. Visual 
quality analysis was also used. 

To proceed our exploratory analysis we used two software, SOM Toolbox 
and CASAA. SOM Toolbox is a Matlab based package that implements all 
algorithms needed here, but we only used it to show visual results (Vesanto 
et al., 1999). Connectionist Approach for Spatial Analysis of Area (CASAA) 
is a software for SOM simulation created to manipulate geospatial data stored 
in a TerraLib database format (Câmara et al., 2002). Figure 2 shows the main 
screen of that system. 

 

Figure 2. The main screen of the CASAA system. 
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2.1 U-matrix 

The Unified distance matrix (U-matrix) makes the 2D visualization of 
multi-variate data possible using SOM's codevectors as data source. This is 
achieved by using topological relations property among neurons after the 
learning process. This algorithm generates a matrix where each component is 
a distance measure between two adjacent neurons, therefore we can visualize 
any multi-variated dataset in a two-dimensional display. Figure 3 shows an 
representation of an U-matrix calculation for an 3x3 2D hexagonal SOM. By 
U-matrix we can detect topological relations among neurons and infer about 
the input data structure. 

High values in the U-matrix represent a frontier region between clusters, 
and low values represent a high degree of similarities among neurons on that 
region, clusters. This can be a visual task when we use some color schema. 
Nevertheless, this visual interpretation can be very hard for very short U-
matrices because short SOM generates complex U-matrix when we are 
treating real datasets. 

 

Figure 3. U-matrix generation example for an 3x3 hexagonal SOM. 

2.2 Component Planes (CP) 

After the learning process we can color each neuron according with each 
component value in the codevector . Therefore, we will take a colored SOM 
for each variable (Fig. 4). Trought these Component Planes we can realize 
emerging patterns of data distribution on SOM's grid (Kohonen, 2001), detect 
correlations among variables and the contribution of each one to the SOM 
differentiation only viewing the colored pattern for each Component Plane. 
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Figure 4. One Component Plane example for an 3x3 hexagonal SOM. 

Some works used U-matrix and CP for spatial analysis, Kaski & 
Kohonen (1996) applied both to classify countries by their socioeconomic 
global indexes. Winter & Hewitson (1994) used CP to analyze the racial 
segregation matter in a City South Africa. Franzini et al. (2001) used a short 
SOM for clustering of urban spatial regions using socioeconomic data. 

These applications are different from our approach for some reasons: a) we 
used a batch SOM learning algorithm, they used an online learning scheme; 
b) they did not work with intra-urban dataset or high resolution, they work 
with global values that means low resolution; c) they did not use any automatic 
segmentation of data using CP, here we proposed an simple but very 
efficient procedure to do this. 

3. CASE STUDY: MAPPING URBAN SOCIAL 
EXCLUSION/INCLUSION 

Our case study is the mapping urban social exclusion/inclusion in the 
City of São José dos Campos, São Paulo, through composite indexes created 
by Genovez (2002) using the Brazilian Census Bureau (IBGE) data for each 
urban census region (Fig. 5). The main goal here is to find out how the 
dataset is distributed, how each variable correlates with each other and if 
there is some spatial correlation between the feature and physical spaces 
(Bailey and Gatrell, 1995). 
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Figure 5. Urban census sectors for São José dos Campos, SP. 

For this finding we used 8 socioeconomic indexes. Each one varying 
from -1, high level of social exclusion, to +1, high level of social inclusion. 
They are: familiar income (IFH), educational development (ED), educational 
stimulus (ES), longevity (LONG), environmental quality (EQ), home quality 
(PQ), concentration of family headed by women (CIWFH) and concentration 
of family headed by illiterate women (CWFH). 

4. RESULTS AND DISCUSSION 

Looking at the topological and quantization error graphics (Fig. 6) we 
realized that the quantization curve declines smoothly for an y asymptotic, so 
how big is the SOM how bit will be the quantization error, that means that more 
neurons represents better input pattern. In the topological graphic we can see 
an random behavior after 15th SOM's network configuration, so we cannot 
make any strong conclusion, only that for very short SOM we will have high 
values for the topological metric. These results were also reached by others 
authors (Kohonen, 2001). Therefore, we avoid short SOMs for U-matrix and 
Component Planes analysis. 
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Figure 6. Error graphics for topologial and quantization error metrics. 

4.1 General structure of dataset and outliers 

A well formation of an U-matrix depends of the quality convergence 
learning, that depends of the dataset structure, SOM grid size and the initial 
radius of the neighborhood kernel function. Figure 7 shows that with a short 
U-matrix, 9x9, we cannot see significant differences thought colored patterns 
because there is too few neurons to absolve the complexity of dataset. The 
same figure shows also that to a big U-matrix, 99x59, happens the opposite, 
there are too many neurons to map the data complexity, so we can see many 
short clusters, that represents an overtrained neural network. This visual 
analysis confirms the graphical analysis of the quality metric errors and shows 
to us that very big neural networks does not fit well, considering our case. 
Consequently, we've chose an intermediate 20x15 SOM to proceed our 
analysis. 
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Figure 7. These figures show that for our case neither short nor big SOM does not fits well. 

 

Figure 8. U-matrix for an 20x15 hexagonal SOM grid. 
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Figure 8 shows an U-matrix for an 20x15 SOM network. Looking at that 
picture we identify three patterns. First, there are two short clusters areas on the 
two top corners of picture. This suggests that these areas could be associated 
with census sectors outliers. Second, there is a big homogeneous area on the 
middle of the U-matrix. Here we can make two inferences, or the dataset 
has a high degree of similarity or the U-matrix could not separate the 
dataset in a proper manner. Finally, on the bottom of the U-matrix we 
register some differentiation, but not clear enough to be a cluster. 

Mapping census areas associated to neurons located on the two top 
corners of U-matrix we identify, visually, that we have a set of census sectors 
outliers, Fig. 9. In fact, these areas have differences when compared with 
the others. Some of them has high exclusion indexes values but is located in 
a high inclusion area. Another ones is located in a high exclusion area but 
has high inclusion values for some indexes. 

 

Figure 9. Census sectors highlighted represents outliers detected by the U-matrix 
visualization. 

4.2 Component analysis and Spatial distribution of 
phenomena 

If the U-matrix vary, significantly, for different size and neighbor radius 
the CP presents an opposite behavior. Although short SOM hide something 
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from us, in general, all CP shows a colored pattern that represents how 
variables is distributed in the SOM grid, Figure 10 shows two CPs for a short 
and a big CP SOM grid. Therefore, we've chose the same 20x15 hexagonal 
SOM to proceed our component analysis. 

Figure 11 shows an U-matrix and eight CP, one for each studied variable. 
High values is associated with red color and low values with blue colors. High 
values, near +1, also mean high level of urban social inclusion, and low values, 
near -1, mean high degree of urban social exclusion. Looking at Component 
Planes we can identify some visible patterns among components. First, IFH 
and ED have a very similar color pattern, this suggests that they should be 
strongly correlated. Second, LONG and EQ presents a very homogeneous 
colored pattern, so these variables could have a low contribution for 
differentiation among dataset. 

 

Figure 10. These figures shows that we can find the same color pattern for short or big Self-
Organizing Maps. 

Component Planes presents the same color pattern distribution for all CP, 
every one has high values on bottom and low values on top, with some 
exceptions. Therefore, we have a social exclusion-inclusion direction in 
SOM grid, and it is vertical (Fig. 12). Labeling all neurons starting on top 
to the bottom (vertical direction) and mapping this labeling to the map of 
census sectors we will generate a colored map illustrated by Fig. 13a. 



86 

 

Analyzing that map we concluded that the most inclusion's sectors, with 
high values, are located in center of the map, and the most of exclusion's 
sectors are located on peripherical areas. So, there are a general direction of 
the urban social exclusion/inclusion spatial distribution on sectors map, and it 
is center-to-peripherical zone. This result was also achieved using 
multivariated statistics (Genovez, 2002), see Fig. 13b. 

 

Figure 11. Component Planes for each variable using an 20x15 hexagonal SOM. 
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Figure 12. Possible directions of data distribution in SOM's grid. 

 

Figure 13. Figure 'a' shows the social inclusion/exclusion map segmentation using neural 
approach (SOM).  Figure 'b' shows the same segmentation using statistical techniques, Iex 

created by Genovez (2002). 

5. CONCLUSIONS 

This experiment showed that SOM and related visualization algorithms 
could be applied as an exploratory tool to investigate an urban matter with 
good results. In our case we also confirmed previous statistical results 
reached by Genovez (2002). The quality of U-matrix and CP can be viewed 
easily and can be measured by topological and quantization errors with some 
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cautions. CP was also used as spatial analysis tool, mapping the direction 
distribution on SOM grid onto the census sectors map. 

Initial radius of the neighborhood kernel function and the size of the 
SOM grid affect the final quality of the neural network and, consequently, 
the U-matrix and CP. Nevertheless, the size influences more than the initial 
radius. Short and big SOMs weren't good for visual interpretations. 

The automatic segmentation of census sectors based on CP patterns 
helped us to see the spatial distribution of the phenomena and suggests that 
there are a strong spatial dependence between feature and physical spaces. 

Although, more studies must be carried out to evaluate these 
visualization techniques for other spatial pattern problems, there is not any 
restriction for U-matrix and CP applications to other kind of spatial 
problems. 
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