

TOWARDS AUTOMATIC FEATURE TYPE
PUBLICATION

Vânia Vidal, Marcel Teixeira, Fábio Feitosa
Departamento de Computação - Universidade Federal do Ceará (UFC)

Abstract: The purpose of the WFS specification, proposed by the the OpenGIS
Consortium (OGC), is to describe the manipulation operations over geospatial
data using GML. Web servers providing WFS service are called WFS Servers.
Their objective is to provide queries, updates and exchange of geospatial data
as geographic features instances encoded in GML.

This work proposes an approach for automatic feature type publication by
WFS servers, where a feature type is specified by the feature type schema and
a set of correspondence assertions. The feature type correspondence assertions
formally specify relationships between the feature type schema and the base
source schema. The adoption of correspondence assertions allows the
automation of feature type publishing and maintenance. This paper presents an
algorithm that automatically generates, based on the feature type
correspondence assertion, the configuration file required to publish the feature
type by a Deegree WFS.

Key words: Automatic Publication, Feature Type, WFS, GML, Correspondence
Assertions, Deegree.

1. INTRODUCTION

The mission of the OpenGIS Consortium (OGC) is to promote the
development and use of advanced open system standards and techniques in
the area of geoprocessing and related information technologies. OGC
manages a global consensus process that results in approved interfaces and
encoding specifications that enable interoperability among diverse geospatial
data stores, services, and applications1. Two important OGC's initiatives are:

the Geography Markup Language (GML)2 and the Web Feature Service
(WFS)3 specifications. The purpose of the WFS specification is to describe
the manipulation operations over geospatial data using GML.

 According to OGC, a geographic feature is an “abstraction of a real
world phenomenon associated with a location relative to the Earth”. It is
possible to describe feature form and localization through its geometric
attributes, remaining the other attributes to represent its non-geographic
properties. Given that, WFS servers publish GML views of geographic
features stored in data sources, the user can query and update data sources
through the feature view (feature type).

Today, the publication of a feature type is largely manual. It requires the
generation of the feature type configuration file, which, usually, is a tedious
and error-prone task. In case of modifications of the database schema, many
feature types can be affected, which requires the re-generation of their
configuration file.

We proposed an approach for automatic geographic feature publication
which consists of four steps:
1. The User defines the XML schema of the feature type;
2. The base source schema is converted to an XML schema. Hence, the

feature type schema and the base source schema are expressed in a
“common” data model4;

3. The correspondence assertions of the feature type are generated by
matching the feature type schema and the base source XML schema4. The
feature correspondence assertions formally specify relationships between
the feature type schema and the base source schema;

4. The configuration file required to publish the feature type is
automatically generated based on the feature type schema and its set of
correspondence assertions.
In this paper we present an algorithm that generates the configuration file

required to publish a feature type by a Deegree WFS5. We chose the Deegree
WFS because it is a free implementation, and it enables one to define
complex feature types, including feature types obtained by joining of tables
in an Oracle database.

This paper is organized as follows. In Section 2, we describe how to
convert a relational schema into an XML schema. In Section 3, we discuss
how to generate feature correspondence assertions. In Section 4, we present
the GenerateDeegreeDataStoreConfigurationFile algorithm that automatically
generates, based on the feature type correspondence assertion, the
configuration file required to publish a feature by a Deegree WFS. Finally,
Section 5 contains the conclusions.

2. MAPPING RELATIONAL SCHEMA TO XMLS+

SCHEMA

We assume that each relational schema R is first mapped to an XML
schema S, generated according to the mapping rules described in4. Briefly, S
has a root complex type, denoted Troot[S], which contains an element Ri of
type TRi for each relation schemes Ri in R. The complex type TRi contains a
sequence of elements tuple_Ri of type Ttuple_Ri. The complex type Ttuple_Ri
contains an element e of a built-in XML data type for each attribute e of Ri.
The referential integrity constraints in R are represented by keyref
constraints6.

The mapping rules guarantee that the relational schema R and the XML
schema S are semantically equivalent, in the sense that each database state of
R will correspond to a XML document that has S as XML schema, and vice-
versa.

Consider in Figure 1(a) the relational schema DB_School for the base
source. The corresponding XMLS schema, XML_School, is shown in Figure
2. The root type Troot[XML_School] contains an element for each relation in
DB_School. For example, the element Project, of type Tproject, corresponds to
the relation scheme Project. Tproject contains a sequence of zero or more

SchoolProj
codeschool
codeproject

Project
code (PK)
title
description

School
code (PK)
name
grade
street
city
zipcode
geom

FK2

FK1

Project (TProject)
tuple_project * (Ttuple_Project)

code (integer)
title (string)
description (string)
keyRef2-1 (&Ttuple_SchoolProj)

SchoolProj (TSchoolProj)
tuple_schoolproj * (Ttuple_SchoolProj)

codeschool (integer)
codeproject (integer)
keyRef1 (&Ttuple_School)
keyRef2 (&Ttuple_Project)

Troot [XML_School]

School (TSchool)
tuple_school * (Ttuple_School)

code (integer)
name (string)

keyRef1-1 (&Ttuple_SchoolProj)

grade (string)
street (string)
city (string)
zipcode (string)
geom (geometry)

Figure 1. (a) Relational Schema DB_School; (b) Graphical Representation of
 XML_School Schema

tuple_project elements of type Ttuple_project, which in turn contains the
elements code, title and description. The referential constraint
Fk1:SchoolProj[codeschool] ⊆ School[code] in R is represented by the
keyref constraint keyref1.

We adopt a graphical notation, denoted XMLS+ for Semantic XML
Schema4, to represent the types of a XML schema S. Briefly, the notation
uses a tree-structured representation for the types of S, where bold fonts
denote the name of the type, “&” denotes references, “@” denotes attributes
and “*” denotes multiple occurrences of an element.

Figure 1(b) shows the graphical representation of the schema
XML_School. In our graphical notation the keyref keyRef1 is represented by
two reference elements: Ttuple_SchoolProj contains a reference element keyRef1
whose type is a reference to Ttuple_School (&Ttuple_School), and Ttuple_School
contains a reference element keyRef1

-1 whose type is a reference to
Ttuple_SchoolProj (&Ttuple_SchoolProj).

<schema>
 <element name="school"
 type="Troot[XML_School]">
 <key name="key1">
 <selector xpath=" School/tuple_school "/>
 <field xpath="code"/>
 </key>
 <key name="key2">
 <selector xpath="Project/tuple_project"/>
 <field xpath="code"/>
 </key>
 <key name="key3">
 <selector xpath="schoolproj/tuple_schoolproj"/>
 <field xpath="codeschool"/>
 <field xpath="codeproject"/>
 </key>
 <keyref name="keyRef1" refer="key1">
 <selector xpath="schoolproj/tuple_schoolproj "/>
 <field xpath=" codeschool"/>
 </keyref>
 <keyref name="keyRef2" refer="key2">
 <selector xpath="schoolproj/tuple_schoolproj"/>
 <field xpath="codeproject"/>
 </keyref>
 </element>
 <complexType name="Troot[XML_School]">
 <sequence>
 <element name="School" type="TSchool" />
 <element name="SchoolProj"
 type="TSchoolProj" />
 <element name="Project" type="TProject" />
 </sequence>
 </complexType>
 <complexType name="TSchool">
 <element name="tuple_school"
 type="Ttuple_School"
 minOccurs="0" maxOccurs="unbounded"/>
 </complexType>

<complexType name="TProject">

<element name="tuple_project"
 type ="Ttuple_Project"
 minOccurs="0" maxOccurs="unbounded"/>

</complexType>
<complexType name="TSchoolProj">
 <element name="tuple_schoolproj"
 type="Ttuple_SchoolProj"
 minOccurs="0" maxOccurs="unbounded"/>
</complexType>
<complexType name= "Ttuple_School">
 <sequence>
 <element name="code" type="integer"/>
 <element name="geom" type="string"/>
 <element name="name" type="string"/>
 <element name="grade" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 <element name="zipcode" type="string"/>
 </sequence>
</complexType>
<complexType name= "Ttuple_Project">
 <sequence>
 <element name="code" type="integer"/>
 <element name="title" type="string"/>
 <element name="description" type="string"/>
 </sequence>
</complexType>
<complexType name="Ttuple_SchoolProj ">
 <sequence>
 <element name="codschool"
 type="integer"/>
 <element name="codproject"
 type="integer"/>
 </sequence>
 </complexType>
</schema>

Figure 2. XML_School Schema

We adopt an extension of Xpath7 that permits navigating through an

reference element. Let $S be an instance of Troot[XML_School]. Let $t in
$S/SchoolProj/tuple_schoolproj. The path expression $t/keyRef1 returns the
element $e in $S/School/tuple_school of type Ttuple_School where
$t/codeschool=$e/code. Likewise, given $e in $S/School/tuple_school, the
path expression $e/keyRef1

-1 returns the elements $t in
$S/SchoolProj/tuple_schoolproj where $e/code= $t/codeschool.

3. USING CORRESPONDENCE ASSERTIONS FOR
SPECIFYING FEATURE TYPE

In general, we propose to define a feature type with the help of a feature
type schema, as usual, and a set of Path Correspondence Assertions
(PCAs)4,8,9. A feature type F is defined by a 4-tuple
F=< TF, RM, AF > where TF is the feature type schema, RM is the Master
table, and AF is the set of path correspondence assertions that matches the
proprieties of TF with attributes/path of Ttuple_RM (the Master table’s type).

A WFS GetFeature request3 delivers feature instances of a given feature
type, where each feature instance matches a tuple of the Master table10. We
say that a feature instance f matches a tuple t, denoted f ≡≡≡≡ t , if they
represents the same real world object.

Ψ2 : [TSchoolF/codeF] ≡ [Ttuple_School/code]

Ψ3 : [TSchoolF/geometryF] ≡ [Ttuple_School/geom]

Ψ4 : [TSchoolF/nameF] ≡ [Ttuple_School/name]

Ψ5 : [TSchoolF/gradeF] ≡ [Ttuple_School/grade]

Ψ6 : [TSchoolF/addressF,{streetF,cityF,zipcodeF}] ≡
 [Ttuple_School/{street,city,zipcode}]

Ψ7 : [TSchoolF/projectF] ≡
[Ttuple_School/keyref1-1/keyref2]

Ψ8 : [TProjectF/codeF] ≡ [Ttuple_Project/code]

Ψ9 : [TSchoolF/titleF] ≡ [Ttuple_Project/title]

TSchoolF
codeF (integer)

nameF (string)

geometryF (string)

gradeF (string)

addressF (TAddressF)
streetF (string)
cityF (string)
zipcodeF (string)

projectF * (TProjectF)

codeF (integer)

titleF (string)

Ttuple_School

zipcode (string)

grade (string)

street (string)

code (integer)

geom (string)

name (string)

city (string)

codeschool (integer)

codeproject (integer)

keyref1-1 (&Ttuple_SchoolProj)

keyref2 (&Ttuple_Project)

keyref1 (&Ttuple_School)

code (integer)

title (string)

description (string)

keyref2-1(&Ttuple_SchoolProj)

Figure 3. Feature Type Schema and PCAs of SchoolF

Consider, for example, the feature type SchoolF whose schema is shown

in Figure 3. Suppose that the table School of DB_School is the Master
table for SchoolF. The PCAs of SchoolF are generated by matching the
elements of TSchoolF with the elements/paths of the base type Ttuple_School,
and next recursively descend into sub-elements of TSchoolF to define their
correspondence. Figure 3 shows the set of PCAs for the feature type TSchoolF.

The PCAs of TSchoolF specify that:
(a) Given an instance $sf of TSchoolF and an instance $s of Ttuple_School, if

$sf matches $s ($sf ≡≡≡≡ $s) then:
1. $sf/codef = $s/code, from Ψ2;
2. $sf/geometryf = $s/geom, from Ψ3;
3. $sf/namef = $s/name, from Ψ4;
4. $sf/gradef = $s/grade, from Ψ5;
5. $sf/addressf/streetf = $s/ street from Ψ6;
6. $sf/addressf/ cityf = $s/city from Ψ6;
7. $sf/addressf/ zipcodef = $s/ zipcode from Ψ6;
8. $pf ∈ $sf/projectf iff exists $p∈ $s/keyref1

-1/ keyref2 and $pf ≡ $p, from
Ψ7;
 (b) Given an instance $pf of TProjectF and an instance $p of Ttuple_Project,

if $pf ≡≡≡≡ $p then:
1. $pf/codef = $p/code, from Ψ8;
2. $pf/titlef = $p/title, from Ψ9;
3. $pf/titlef = $p/title, from Ψ9;

4. AUTOMATIC FEATURE TYPE PUBLICATION
BY DEEGREE WFS

In this section, let S be a relational schema, S+ be the corresponding
XMLS+ schema and F=< TF, RM, AF > be a feature type over S+, where TF is
the feature type schema, RM is the Master table, and AF is the set of PCAs
that matches TF with Ttuple_RM .

In order to publish a feature type by a Deegree WFS, we need to generate
an XML file, named DataStoreConfiguration file, which defines the
correspondences between the feature type properties and the attributes of the
base tables. Figure 4 shows the DataStoreConfiguration file for the feature
type SchoolF (Figure 3).

The configuration file contains a <MappingField> element for each
property of the feature type schema. Each <MappingField> element indicates
the data type of its associated property and database attribute that matches
that property. For example, in Figure 4, the second <MappingField> element
(lines 31 to 35) defines that the property, nameF, matches the attribute, name,

1. <?xml version="1.0" encoding="iso-8859-1"
2. standalone="no"?>
3. <DatastoreConfiguration name="SCHOOL"
4. type="ORACLESPATIAL">
5. <Connection name="SCHOOL_con">
6. <driver>oracle.jdbc.driver.OracleDriver</driver>
7. <logon>
8. jdbc:oracle:thin:@127.0.0.1:1521:dbGEOM
9. </logon>
10. <user>geoUser</user>
11. <password> geoUser </password>
12. <spatialversion>8.1.6</spatialversion>
13. </Connection>
14. <FeatureType name="SCHOOL">
15. <OutputFormat>
16. <GML2 responsibleClass="org.deegree_impl.
17. services.wfs.oracle.DataStoreOutputGML">
18. <Param name="FILTER"
19. value="file:///.../SchoolTransf.xsl"/>
20. <SchemaLocation>
21. file:///…/SCHOOLSchema.xsd
22. </SchemaLocation>
23. </GML2>
24. </OutputFormat>
25. <MappingField>
26. <Property name="KEYREF1-1"
27. type="xsd:integer"/>
28. <DatastoreField name="SCHOOL.CODE"
29. type="NUMBER"/>
30. </MappingField>
31. <MappingField>
32. <Property name="NAME" type="xsd:string"/>
33. <DatastoreField name="SCHOOLL.NAME"
34. type="VARCHAR2"/>
35. </MappingField>
36. <MappingField>
37. <Property name="GRADE"
type="xsd:string"/>
38. <DatastoreField name="SCHOOL.GRADE"
39. type="VARCHAR2"/>
40. </MappingField>
41. <MappingField>
42. <Property name="STREET"
type="xsd:string"/>
43. <DatastoreField name="SCHOOL.STREET"
44. type="VARCHAR2"/>
45. </MappingField>
46. <MappingField>
47. <Property name="CITY" type="xsd:string"/>
48. <DatastoreField name="SCHOOL.CITY"
49. type="VARCHAR2"/>
50. </MappingField>
51. <MappingField>
52. <Property name="ZIPCODE"
type="xsd:string"/>
53. <DatastoreField
name="SCHOOL.ZIPCODE"
54. type="VARCHAR2"/>
55. </MappingField>
56. <MappingField>
57. <Property name="GEOM"
type="xsd:string"/>
58. <DatastoreField name="SCHOOL.GEOM"
59. type="GEOMETRY"/>
60. </MappingField>

61. <MappingField>
62. <Property name="KEYREF2"
type="xsd:integer"/>
63. <DatastoreField
64.
 name="SCHOOLPROJ.CODEPROJECT"
65. type="NUMBER"/>
66. </MappingField>
67. <MappingField>
68. <Property name="CODE"
69. type="xsd:integer"/>
70. <DatastoreField
name="PROJECT.CODE"
71. type="NUMBER"/>
72. </MappingField>
73. <MappingField>
74. <Property name="TITLE"
75. type="xsd:string"/>
76. <DatastoreField
name="PROJECT.TITLE"
77. type="VARCHAR2"/>
78. </MappingField>
79. <MasterTable name="SCHOOL"
80. targetName="SCHOOL">
81. <IdField number="true" auto="false">
82. CODE
83. </IdField>
84. <Reference tableField="CODE"
85. replaceable="true"
86. targetTable="SCHOOLPROJ"
87. targetField="CODESCHOOL"/>
88. <GeoFieldIdentifier>
89. GEOM
90. </GeoFieldIdentifier>
91. </MasterTable>
92. <RelatedTable name="SCHOOLPROJ"
93. targetName="SCHOOLPROJ"
94. jointable="false">
95. <IdField number="true" auto="false">
96. CODESCHOOL
97. </IdField>
98. <Reference
tableField="CODEPROJECT"
99. replaceable="true"
00. targetTable="PROJECT"
01. targetField="CODE"/>
02. </RelatedTable>
03. <RelatedTable name="PROJECT"
04. targetName="PROJECT"
05. jointable="false">
06. <IdField number="true" auto="false">
07. CODE
08. </IdField>
09. </RelatedTable>
10. <CRS>EPSG:4326</CRS>
11. </FeatureType>
12. </DatastoreConfiguration>
Figure 4. DatastoreConfiguration File for the Feature Type SchoolF

of the table, School, as defined by the PCA ΨΨΨΨ4: [TSchoolF/nameF] ≡≡≡≡
[Ttuple_School/name]. It is important to notice that a <MappingField> element can
only represent a PCA of the form [T/p]≡≡≡≡[Ttuple_R/e] where e is an
element(attribute) of Ttuple_R. So, we cannot define a <MappingField>
element for the PCA ΨΨΨΨ7: [TSchoolF/projectF] ≡≡≡≡ [Ttuple_School/keyRef1-1/keyRef2].
However, we can solve the problem by making some adjustments to the
feature type schema, by adding a new element keyRef1-1 which matches the
element keyRef1-1 of Ttuple_School, and contains projectF as a sub element. The
adjusted schema, named canonical feature type schema and its set of PCAs
are shown in Figure 5. Note that all the PCAs of the canonical schema have
the form [T/p]≡≡≡≡[Ttuple_R/e]. Therefore, we can define a <MappingField>
element for each of them (see lines 25 to 78 of Figure 4).

In cases where the canonical feature type schema differs from the feature
type schema defined by the user, we can define a filter for the GML output
(see line 18 to 19 of Figure 4) transforming the result of a GetFeature request
with “OutputFormat=GML2” to the schema defined in the referenced XSLT
stylesheet. For example, we can define stylesheet that transforms instances
of the canonical schema in Figure 5 to instances of TSchoolF.

In our approach, we propose a three-step process to publish a feature type
by a Deegree WFS: (i) The canonical feature type schema and its set of
PCAs are automatically generated based on the feature type schema and
PCAs. (ii) The DataStoreConfiguration file is generated for the canonical
feature type schema. (iii) Whenever the canonical feature type schema is
different from the feature type schema, generate the style file that specifies
the rules to transform instances of the canonical schema into instances of the

keyref1 (&Ttuple_school)

code (integer)
title (string)
description (string)
keyref2-1(&Ttuple_schoolproj)

codeschool (integer)
codeproject (integer)
keyref2 (&Ttuple_project)

Ttuple_School

zipcode(strin

grade (string)
street (string)

code (integer)
geom (string)

keyref1-1 (&Ttuple_schoolproj)

name (string)

city (string)

Tcan_schoolf

code (integer)
title (string)

Keyref2

codeF (integer)

zipcode (string)
Keyref1-1

grade (string)
street (string)

geometryF (string)
name (string)

city (string)

[Tcan_schoolf/codeF] ≡ [Ttuple_School/code]
[Tcan_schoolf/geomF] ≡ [Ttuple_School/geom]

[Tcan_schoolf/nameF] ≡ [Ttuple_School/name]
[Tcan_schoolf/gradeF] ≡ [Ttuple_School/grade]

[Tcan_schoolf/streetF] ≡ [Ttuple_School/street]

[Tcan_schoolf/keyref1-1] ≡ [Ttuple_School/keyref1-1]

[Tcan_schoolf/cityF] ≡ [Ttuple_School/city]
[Tcan_schoolf/zipcodeF]≡[Ttuple_School/zipcode]

[Tkeyref1/keyref2] ≡ [Ttuple_Schoolproj/keyref2]
[Tkeyref2/codeF] ≡ [Ttuple_Project/code]
[Tkeyref2/ titleF] ≡ [Ttuple_Project/title]

Figure 5. Canonical Feature Type Schema and PCAs of SchoolF

feature type schema. The style file is automatically generated based on the
Canonical schema, on the feature type schema and on their set of PCAs.

In Figure 6(a), we show the GenerateDeegreeDataStoreConfigurationFile
Algorithm. The algorithm receives as input: RM - the Master table, TC - the
canonical feature type and AC - the PCAs of TC. In the following, we present
a sequence of definitions used in the Algorithm. In those definitions, let R
be a table of S.

Definition 4.1: Let Ttuple_R be a type of S and e be a reference element
of Ttuple_R that represents the foreign key Rt[Ft] ⊆ R[FR] or the inverse of
the foreign key R[FR] ⊆ Rt[Ft]. Then, we say that: (i) Rt is the targetTable of
e, (ii) Ft is the targetField of e and (iii) FR is the tableField of e.

Definition 4.2: The set Ref(R) contains all the reference elements e of
Ttuple_R such that there exists a PCA of the form [T/ f] ≡ [Ttuple_R /e] in AF.

Definition 4.3: The set Tab(R) contains all tables R’ referenced by a
reference element in Ref(R). More formally, Tab(R) = { R’ | exists e ∈
Ref(R) where targetTable(e) = R’}.

Definition 4.4: The set RelTab(R) contains all tables R’ related with R.
More formally, RelTab(R) = Tab(R) ∪ { RelTab(R’) | R’∈ Tab(R)}

The procedure GenerateMappingFields in Figure 6(b) generates a
<MappingField> element for each property of TC and, recursively, for the sub
properties of TC. As we can see, the <MappingField> elements are directly
defined based on the PCAs of the properties.

The procedure GenerateRelatedTables in Figure 6(c) generates the
declaration of the <MasterTable> element and also the declaration of a
<RelatedTable> element for each table in RelTab(RM).

Given a table R (master table or related table), the procedure
GenerateReferences(R) in Figure 6(d) generates the declaration of a
<Reference> element for each reference element in Ref(R).

Algorithm GenerateDeegreeDataStoreConfigurationFile (TC, RM, AC)
 Let Map be a string, initially empty.
 Map + = GenerateFileHeading();
 Map + = GenerateMappingFields(TC, Ttuple_RM);
 Map + = GenerateMappingTables(RM);
 Map + = GenerateFileFooting();

Figure 6. (a) – GenerateDeegreeConfigurationFile Algorithm

Procedure GenerateMappingFields (T, Ttuple_R)
 Let Map be a string, initially empty and visitedTables[] be a set.
 visitedTables[] = visitedTables[] ∪ R
 For each property p of T Do
 Case 1: If ψp is of the form [T/p]≡[Ttuple_R/e], where Te (the type of e) is a simple type.

 Map + = “<MappinField>”
 “<Property name=’ “+ p + “ ’ type=’ “ + getGMLType(p) + “ ’/>”
 “<DatastoreField name=’ “ + R + "." + e + “ ’ type=’ “ + getType(e) + “ ’/>”
 “</MappingField>”
 Case 2: If ψp is of the form [T/p]≡[Ttuple_R/e], where e is a reference element and
 targetTable(e) = Rt .
 Map + = “<MappinField>”
 “<Property name=’ “ + p + “ ’ type=’ “ + getGMLType(tableField(e)) + “ ’/>“
 “<DatastoreField name=’ “ + R + “.”+ tableField(e) + “ ‘ type= ‘ ”+
 getType(tableField(e)) + “ ’/> ”
 “</MappingField>”
 If Rt ∉ visitedTables[] Then
 GenerateMappingFields(Tp , Ttuple_Rt)
 End If
End For
Return Map

Figure 6. (b) – GenerateMappingFields Procedure

Procedure GenerateMappingTables(RM)
Note: Deegree assumes the Primary Keys (PKs) of the relations has only one attribute.
In our notation we use kR for the name of key attribute in Key(R).
 Let Map be a string, initially empty.
 Let RM be the Master table where Key(RM) = {kM}. Let Ag the geometric atribute of RM.
 Map = “<MasterTable name=’ "+ RM + " ‘ targetName= ‘ "+ RM + " ’> “

 “<IdField number= ‘ " + IsNumber(getType(kM)) + " ‘ auto =’false’> “ +
 kM + “ </IdField> ”
 Map += GenerateReferenceFields(RM)
 Map += “<GeomFieldIdentifier>” + Ag + “</GeomFieldIdentifier>”
 Map += “</MasterTable>”
 For each R in RelTab(RM) Do

 Map += “<RelatedTable name=’ "+ R + " ’ targetName= ‘ "+ R + " ‘>“
 “<IdField number=’ “ + IsNumber(getType(kR)) + " ‘ auto =’false’> ” +

 KR + “</IdField>”
 Map += GenerateReferenceFields (R)
 Map += “</RelatedTable>”

 End For
 Return Map

Figure 6. (c) – GenerateMappingTables Procedure

5. CONCLUSION

In this paper, we proposed an approach for automatic feature type
publication by WFS servers. We first described how to generate the XMLS+
schema for a relational schema. Then, we discussed how to specify feature
type correspondence assertions, which formally specify the relationships
between the feature type schema and the XMLS+ base source schema. Our
formalism handles schematic heterogeneity11, and allows complex mappings
to be specified quite simply. We also presented an algorithm that
automatically generates, based on the feature type schema and its set of
correspondence assertions, the DataStoreConfiguration file required to
publish a feature type by a Deegree WFS. It is important to notice that the
algorithm can be easily adapted to publish a feature type by other types of
WFS implementation.

We have developed DFP (Deegree Feature Publisher)12, a tool to
support the publication of features by Deegree WFS.

6. REFERENCES

1. OpenGis Consortium. http://www.opengis.org/
2. S. Cox, P. Daisey, R. Lake, C. Portele, and A. Whiteside, OpenGIS®

Geography Markup Language(GML) Implementation Specification.
Version 3.00, 2003. http://www.opengis.org/ specs/?page=specs

3. P.A. Vretanos, Web Feature Service Implementation Specification.
Version 1.0.0, 2002. http://www.opengis.org/specs/?page=specs

4. V.M.P. Vidal, and R. Vilas Boas, A Top-Down Approach for XML
Schema Matching. In Proceedings of the 17th Brazilian Symposium on
Databases. Gramado, Brazil, 2002.

Procedure GenerateReferenceFields(R)
 Let Reference be a string, initially empty.
 For each e in Ref(R) Do

Reference += <Reference tableField=" + tableField(e) + " replaceable="true"
 targetTable=" + targetTable(e) + " targetField=" +

 targetField(e) + ">
 End For
 Return Reference

Figure 6. (d) – GenerateReferenceFields Procedure

5. Deegree. http://deegree.sourceforge.net/
6. World-Wide Web Consortium: Extensible Markup Language (XML).

http://www.w3c.org/XML.
7. World-Wide Web Consortium: XML Path Language (XPath): Version

1.0 (November 1999). http://www.w3.org/TR/xpath.
8. L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernandez, and R. Fagin,

Translating Web Data. In VLDB, pages 598–609, August 2002.
9. E. Rahm, and P.A. Bernstein, A Survey of Approaches to Automatic

Schema Matching. VLDB Journal, 10(4):334–350, 2001.
10. P. Rigaux, M. School, and A. Voisard, Spatial Database With

Application To GIS. (Morgan Kaufmann Publishers, 2002)
11. F. Fonseca, and M. Egenhofer, Sistemas de Informações Geográficos

Baseados em Ontologias. Informática Pública 1 (2):47-65, 2001.
12. M. Teixeira, Deegree Feature Publisher: Manual do Usuário, 2004.

http://www.lia.ufc.br/~teixeira/ dfp

