

Using Service-Oriented Architecture in Context-Aware
Applications

Damião R. Almeida, Cláudio S. Baptista, Elvis R. da Silva, Cláudio E. C. Campelo,
Camilo P. Nunes, Bruno A. D. da Costa, Wilkerson de L. Andrade, Jairson M. Cabral

Computer Science Department – Universidade Federal de Campina Grande (UFCG)
Rua Aprígio Veloso, 882, 58107-970, Campina Grande - PB, Brazil

{damiao,baptista,elvis,campelo,nunes,bcosta,wilker,jairson}
@dsc.ufcg.edu.br

Abstract. The enhancements in mobile device infrastructure enable the use of
a location computer service while user is on the move; such systems are known
as Location-Based Services (LBS). When these applications manage user
profile and context, they are coined context-aware applications. In this paper
we propose a service-oriented architecture for context-aware applications
named Omnipresent. Omnipresent is based on well-established standards such
as Web services, and those from the OpenGeoSpatial Consortium.
Omnipresent offers several services including map presentation, routing,
advertisement, and also works as a reminder tool. Users may use Omnipresent
either by mobile devices or Personal Computers.

1. Introduction
The enhancements in mobile devices which include better processing power and large
storage capability have motivated the development of more sophisticated embedded
applications. Nowadays such mobile devices enable the use of a remote computer
service while user is on the move. This gives raise to a new computer paradigm known
as ubiquitous computing, which provides computing services anywhere and anytime
[Feng et al. 2004].

 In the approaching Information Society, people will be surrounded by electronic
sensors and they will use a set of environment states, which guide application behavior
according to a context. These applications are known as context-aware [Chen and Kotz
2000]. Context-aware applications are sensible to user necessities, personalized
according to its profile, requirements and context. They pro-actively help users in daily
activities through user-friendly interfaces.

 Context has been categorized in user-centric and environmental. According to
Apers [Feng et al. 2004], user-centric context may be classified into:

• Background: information related to user profile, its opinions and working
place;

• Dynamic Behavior: information related to user habits, its tasks and daily
activities;

• Physiological State: information obtained from sensors such as temperature,
blood pressure, heart beat, etc;

15

• Emotional State: information obtained through visual and acoustic analysis, or
directly provided by the user.

 Yet, environmental context is classified as:

• Physical Environment: information about the environment. For instance,
location, temperature, weather, noise level, lightness, etc;

• Social Environment: information about people nearby, shop offers, traffic jam,
etc;

• Computational Environment: information about electronic devices available to
the user.

 Location-Based Services (LBS) may integrate information about geographic
location and context. This work presents a service-oriented context-aware LBS
architecture, known as Omnipresent, based on push and pull services [Schiller and
Voisard 2004]. In push mode, user does not control the time when information is going
to be delivered to himself, hence maps with Points of Interest (PoI) and other
information may be sent automatically to the user, according to his profile and context.
The aim of our system is to help user in finding products, services, PoIs, friends nearby,
and the management of his daily tasks according to context.

 The proposed service-oriented architecture is based on Web Services technology
[Alonso et al. 2004]. Thus, there exists a LBS service which interacts with other
services such as map service, routing service, advertisement service, through a standard
WSDL interface. These services may be published in a UDDI (Universal Description,
Discovery and Integration) directory.

 The remainder of this paper is structured as follows. Section 2 presents context
modeling. Section 3 focuses on the overall architecture. Section 4 presents a prototype
using the proposed architecture. Section 5 discusses related work. Finally, section 6
concludes the paper and highlights further work to be undertaken.

2. Context Modeling
Our context model is based on ontologies using OWL (Ontology Web Language) [W3C
OWL 2005]. Ontologies are useful for context modeling as they map the three basic
concepts in a context model:

• Class: which represents existing things in a domain, such as user, profile,
products, appointments, etc;

• Relationship among classes, for instance, located_at, likes, works, etc;

• Class properties or attributes, e.g. user name, date of birth, blood pressure,
temperature, etc.

 Also, ontologies may use rules for context reasoning. For instance, rules can be
expressed using the Jena framework by using pre-conditions and conclusions such as:

[rule1: (?f omnipresent:father ?a) (?u omnipresent:brother ?f) -> (?u omnipresent:uncle
?a)]

16

 Figure 1 presents part our ontology for context modeling. The User class is the
main concept. The ontology may be divided into context categories such as:

• Background is represented by the Profile class and its subclasses. User profile
is classified into three categories: personal, professional, and social profiles. Personal
profile contains information about user interests, marital status, date of birth, etc.
Professional profile contains information about related job activities such as job title,
email, company name, and so on. Social profile contains information about social
behavior such as religion, smoking and drinking customs;

• Dynamic Behavior is represented by the Task class which contains user tasks
and meetings. The Task class may contain either the interest on buying or selling
products; or a scheduled meeting. Either products or services may be advertised. Both
people and shops may advertise products or services. This advertisement is going to be
pushed to clients whenever they are close to the shop or seller, and are obviously
interested in the product or service. In Figure 1, the Appointment class represents a
scheduled appointment. However, these appointments are reminded not only by using a
specific date and time, but also according to user context. For instance, the system is
able to trigger a reminder for “remind me to call a friend when both of us are idle and
his emotion status is happy”;

• Physiological State is represented by the Physiologic class which contains
information about client physiologic state such as: heart beat, temperature, blood
pressure, etc;

• Emotional State is represented by the Emotion class which indicates user
emotional status: sad, happy, nervous, bad-humor, etc.

User

Physiologic

Profile
Location

Emotion

Personal SocialProfissional

Interests

Address

Task

Appointment

Product

lives_in

has_profile

has_interests

buy sell

located_in

has_emotion
has_physiologic near_by

has_contact

Buy Sell

Food Sourvernir
automobile ...

Figure 1. User context ontology

17

2.1. Action triggered by context

As in the OSGi framework [Gu et al. 2004], some actions may be triggered according to
context changing. Users may define decision rules and specify the action to be triggered
(e.g. send an email, activates an emergency service, or send a specific message to
client). These rules are deployed using the Jena framework, which enables inference.
Table 1 presents some of such context based rules.

Table 1. Rule-based actions

Remind Rule

Whenever my son leaves school
during class time, I would like to
be notified in my mobile device.

If (User’s son ¬located_in school) � (User’s son’s
task status busy) then active message (“Son out of
the school”)

Remind me to pay the bills when
I am close to a bank.

If (User near_by_location bank) � (bank status
open) then activate reminder (“pay the bills”)

Remind me to call to my friend
John when both of us are idle and
he is not angry.

If (task status iddle) � (John’s task status iddle) �
(John’s humor ¬angry) then activate reminder (“call
john”)

Call an emergency service
whenever a sick man´s overall
health status is bad

If (heart_beat > threshold_1) V (blood_pressure >
threshold_2) V (temperature > 101 ºF) then activate
alert (“Call 190”)

3. The Omnipresent Architecture
The Omnipresent service-oriented architecture is based on four services: a LBS Web
service, a Presentation Web service, a Routing Web service, and an Advertisement Web
service. Moreover the system still provides a client application which is responsible for
user-interaction with these services. By using such application, clients may fulfill forms
which enable the system to obtain information about their lives, appointments, and daily
activities. This information is collected and sent to the LBS Web service.

 Web services encapsulate the underlying applications and publish them as a
service which may be accessed remotely and enables reuse of existing services using a
set of standard protocols and formats. By using Web services, the load balancing may be
well distributed so that scalability and better performance on query execution may be
achieved [Nagappan et al. 2003]. Another advantage of using Web services is related to
the rapid application development and reuse of existing components.

 In the following, the Omnipresent services are described in more detail. Each
service has a correspondent WSDL file which describes its interface.

3.1. The LBS Web Service

The LBS Web service is the main service in our architecture. It is responsible for
receiving and managing user context information. When a client is registered and
provides profile, advertisements, and appointments, it is able to receive context-aware
information. The main available operations are:

18

Figure 2. The Omnipresent architecture

• registerUser() which registers a user in a Web service, its profile and context
information;

• registerCompany() which registers a company interested in publishing products
or services;

• updatePosition() which enables to update user geographic location in the
system, and analyses the context searching for actions which are relevant to user
context. Each time user location is updated the context is analyzed;

• updateEmotion() which updates user emotional status;

• updatePhysiologic() which updates physiological status;

• registerAppointment() which registers a user appointment.

3.2. The Advertisement Web Service

This Web service manages products and services offered by users. Products are
organized according to their ontology description. New categories and services may be
added to this service. This service is based on the Directory Service of the OpenLS
Service specification [OpenGeoSpatial LS 2005]. However, this service extends that
specification by providing a semi-structured way for describing products, so that better
retrieval can be achieved. We use a XMLSchema to describe products and services, and
the existing categories may be expanded whenever necessary. For example, let us
suppose that a car is a new product to be registered in the system. Therefore, it is
necessary to provide a XMLSchema which describes this product, so that, each instance
of this category will have a well-defined structure. Figure 3 presents part of a

19

XMLSchema which describes the features of a car product. In this example a car has the
following properties: make, year, miles, number of doors, color, and fuel.

Figure 3. An example of an XMLSchema for a product

 Hence, by using such XML documents, a Web application may discover product
properties. In Omnipresent, a Web application searches for available products and
services in the Advertisement Web service. Figure 4 presents a product search form
which was built according to the XMLSchema of Figure 3. Users may register a demand
for a specific product or service. Then the Advertisement service searches for products
demanded by logged users, while the user is on the move.

Figure 4. An example of a form generated from the XMLSchema

3.3. The Presentation Service

This Web service is responsible for providing maps of a given geographic area. The
Presentation Service interface is based on the OpenGeospatial OpenLS specification
[OpenGeoSpatial LS 2005]. Nonetheless, we extend this Web service with the
capability of analyzing user profile so that maps are provided with PoIs according to
user context. For instance, if a user is visiting a city and likes seeing paintings, the
system may locate museums and expositions and send to the user a map of the region
containing such PoIs.

20

 In the Presentation Service, the request parameters are specified in the
MapRequest class, the design of which was based on the OpenLS Presentation Service
specification. According to this specification, the map request is divided in three parts:
Output, Basemap and Overlays. In the following the first two will be described, the
overlay one is part of the routing service which is going to be detailed in the section 3.4:

• Output − which specifies the map size, format, transparency, content type (e.g.
URL o base64 data), etc. The output also contains a class called BBoxContext
which has two points in a given spatial reference system and the dimension
which specifies the bounding box of the area of interest. Only the BBoxContext
and the width, height and format attributes are mandatory;

• BaseMap − which specifies the layers which will be used in the map. Each layer
is composed of name and style. According to the OpenLS specification, the
BaseMap is not mandatory, however in our design we have decided to become
the BaseMap mandatory in order to achieve compatibility with the
OpenGeospatial Web Map Service specification, as in the latter it is necessary to
provide at least one layer.

Figure 5 presents the MapRequest class diagram, using the UML notation.

Figura 5: MapRequest class diagram

 The Presentation Service works together with the Web Map Service and the Web
Feature Service. These services are based on the OpenGeospatial Web Map Service
specification – WMS [OpenGeoSpatial WMS 2005] and Web Feature Service
specification - WFS [OpenGeoSpatial WFS 2005]. Nonetheless, we have implemented a
Web service interface for such services. A request is done through several parameters in
a URL. By implementing these services as Web services we not only make the requests
easier, but also it is possible to publish these services in a directory services such as
UDDI, in order to provide automatic service discovery and invocation [Alonso et al.
2004].

 Currently, we have implemented the following WMS operations: getCapabilites,
getMap and getFeatureInfo. The getCapabilites method obtains service metadata which

21

describes relevant information including maximum number of layers which may exist
in a map, layers and styles available, coordinate reference systems (CRS), bounding box
and scale. The getMap method returns a map according to the parameters received.
These parameters include Layers, which contains the list of layers in a map; CRS, which
contains the coordinate reference system; BBOX, which expresses the bounding box of
interest; and Format, which contains the map output format. Currently we are working
with the SVG format. Lastly, the getFeatureInfo method enables to retrieve more
information about a chosen feature, for instance, a hotel name, address, number of
rooms, etc. The maps provided by the Presentation Service are obtained from the WMS,
however it is the former which is responsible for map personalization using the user PoI.

 The Web Feature Service specification enables the user to query and update
geospatial data is a interoperable way. This service contains the following operations:
getCapabilities, describeFeatureType and getFeature. The getCapabilities method is
responsible for describing available features, and the operations supported by each
feature. The describeFeatureType method obtains the structure of a given feature type,
which is described in a XMLSchema. Finally, the getFeature method enables users to
specify which feature properties will be queryed, as for example the name of a given
feature.

 Figure 6 presents the architecture of the map service. There is a unique Web
Service interface, which encapsulates the WMS and the WFS web services. All requests
are implemented through remote function calls in the Web service.

Figure 6. Map service architecture.

3.4. The Routing Service

This service follows the OpenGeoSpatial OpenLS specification. This routing service is
responsible for providing on demand routes among two or more places. The client sends
a request to this service by providing two points. Besides these two points, the client
may inform some preferences to be taken into account by the service such as road and
traffic conditions. The service receives the request, and then calculates the route and
sends it back as geometry (path) to the client. This geometry may be used by a
presentation service in order to render a map with the specific route highlighted.

 The routing Web service stores data about roads and their intersections as a
graph. The path between each two pairs is pre-computed and stored in the database,

22

using the total materialization strategy [Shekhar et al. 1997]. The cost of such storage is
high, but as disk costs are decreasing, the gains obtained in processing power are
worthy. We use a graph hierarchy to minimize the storage costs [Jing et al. 1996]. The
graph is partitioned in non-interleaving sub-graphs and each partition is represented by a
node in a super-graph. There are nodes which take part in more than one sub-graph.
They are called border nodes and take part in the super-graph.

 Paths are computed in each fragment and in the super-graph. Hence, best path
can be computed according to the following possibilities:

• source and target nodes take part in the super-graph. Hence, it is sufficient to
return the pre-computed path between them;

• the source node is not in the super-graph, but only the target one. Thus, an
intermediary node in the super-graph should be encountered. This node should be in the
same partition of the source node. Thus, the path from the source node to the
intermediary one plus the path from the intermediary node to the target one is the full
path returned;

• the source node is in the super-graph, but the target one is not. This situation is
symmetric to the previous one;

• neither source nor target nodes are in the super-graph, but they are in the same
partition. So, it is sufficient to return the pre-computed path between them;

• neither source nor target nodes are in the super-graph, and they are in different
partitions. Therefore, a border node in the source node partition and a border node in the
target node partition should be encountered. The best path is going to be the union of the
best path from the source node to its partition border node, and the best path from the
target partition border node to the target node.

 We used the classical Dijkstra best path algorithm to pre-calculate all costs
[Dijkstra 1959]. This algorithm is simple and once we are maximizing performance in
our approach due to pre-materialization of all paths, then it has been used with success.
We use weights for computing both road and traffic conditions. Obviously, the path
with minimum weight is stored.

 Users may request simple shortest path, shortest path using road condition,
shortest path using traffic condition, and a mixture of the two latter. When a client
requests for a best path, the service accesses the database of materialized paths, searches
for it, and returns the geometry to the client. This Web service has a unique method:
getRoute(), which receives as parameters the route type (for instance “shortest”), two
pairs of latitude and longitude coordinates for the source and target; a Boolean which
indicates whether user takes into account traffic condition; and another Boolean which
indicates whether user takes into account road condition. The getRoute() method returns
the path in SVG and the total distance.

4. Implementation issues
The Web services were implemented using the Java J2EE and JAX-RPC. Each service
was developed in three steps: interface definition, which contains the methods which
may be called by a client; interface implementation, which contains the service logic;

23

and the service deployment in an application server. We have used the Java Sun
Application Server. After the second step is done, the WSDL file is generated
automatically. The WMS, WFS and Routing services were implemented as an extension
of the iGIS, which is a framework for rapid application development of Web GIS
[Baptista et al. 2005]. The advantage of using such framework is that the maps may be
stored in any spatial database system, such as Postgresql, Oracle, IBM DB2 and
MySQL. Moreover, this framework provides two map formats: vector (SVG) and raster
(JPEG or PNG).

 In order to validate the proposed architecture we have built a prototype in a PDA
using a PocketPC running Windows CE v3.0 and Jeode Java Virtual Machine. A GPS
receiver was connected to the PDA in order to capture location. At the moment, the GPS
is the only real sensor we have, so that other information such as physiological and
emotional information is simulated.

 The first thing the user should do is to register itself in the system and describe
its profile through a Web form. This information is sent to the LBS service which stores
it. The registration of reminders, appointments, and meetings may be done through Web
forms, so that the system is not limited to the usability restrictions of mobile devices.

 After registration, the user may interact with the LBS service. An authentication
procedure, using login and password, was implemented for security reasons. The LBS
service function calls are implemented using the SUN JAX-RPC package. This package
is a version of the SUN JAX-RPC for mobile devices with limited capacity [Yuan
2003].

 Map rendering in the PDA uses the SVGT (Scalable Vector Graphics Tiny)
standard. SGVT is a version of SVG for mobile devices [W3C SVG 2005]. Usually, a
map in SVGT has smaller size than the same map in JPEG, GIF or PNG formats.
Moreover, SVG provide some spatial operations such as zooming in and out and
panning, visible layers, and so on. These operations are processed in the client, without
needing to invoke the server.

 When the PDA sends the geographic location to the LBS service, the user profile
and context are analyzed, and then the PoIs and advertisements of user interest are sent
to the device. By monitoring user context, the system may find an appointment or
reminder registered that should be alerted. When a message concerning a particular
appointment is sent to the client, it is marked in the database as sent. Other information
may be obtained such as friends nearby, product advertisement, PoIs, and routing. When
the client position is near the map bounding box, another request is sent from the device
to the Presentation Service in order to obtain a new map.

 Figure 7 shows a form in which user may choose his interests by providing a
weight (from none to 5) to each one chosen. This procedure helps to specify user profile,
and the system may choose PoIs according to user preferences. Figure 8 presents the
interface in the mobile device, which contains a map with hotels. The circle shows a
PoI. The user may point to that particular PoI and obtain detailed information, as
presented in Figure 9. User may invoke the routing service to obtain a route from his
current location to that particular PoI, as shown in Figure 10. The desktop client has

24

been developed using the iGIS framework. Figure 11 presents a screenshot of the
Omnipresent PC client.

Figure 7. Profile definition

Figure 8. Event of interest represented by a circle

Figure 9. Information about the event

25

Figure 10. Routing to the PoI

Figure 11. PC Client

5. Related Work
Following the advances in ubiquitous computing, many context-aware tools have been
proposed in the literature so far. Some of these tools provide push service, however they
do not take into account user context as it is the case of the Online Aalborg Guide
[Andersen et al. 2003]. This framework is based on LBS and it was developed aiming to
serve as an online guide for tourists who visit the city of Aalborg in Denmark. The main
features of this tool include map rendering with information about PoIs close to user
location and according to user profile; and shortest path to a given PoI. This system
provides both push and pull technologies. A request to the server is done every time user
asks for information of a given PoI. One of the main drawbacks of the Aalborg Guide is
that the system is limited to the nearest PoIs, and there is no analysis based on context
information.

26

 FLAME2008 [Weißenberg el al. 2004] is a context-aware tool which uses user
profiles in order to provide relevant services. However the system was designed for a
specific domain: the Beijing Olympics Games in 2008. Moreover, information about
people nearby, such as friends and relatives, is not provided.

 AROUND [Jose et al. 2003] provides a LBS architecture which enables to locate
services according to a given spatial area. The main drawback of this tool is the lack of
context modeling.

 Moreover, there are reminder tools such as ComMotion [Marmasse and
Schmandt 2000] and CybreMinder [Dey and Abowd 2000]. A reminder is a kind of
special message that is sent to ourselves or to other people, in order to inform about
activities that we need to undertake. For instance, “at 10:30 a.m. remind me about a
meeting with the boss to discuss a specific problem”. The ComMotion tool uses space
and time to present the registered reminders. CybreMinder provides a more complex
environment for dealing with context, as people nearby and weather condition are taken
into account.

 Omnipresent works as both a reminder tool, and as a context-aware LBS system.
Omnipresent enables personal management with information about user and the
surround environment. The tool uses both push and pull technologies. The user may
access the software not only via mobile devices but also from any computer connected
to the Internet. Moreover, differently from FLAME2008, Omnipresent is domain
independent. Lastly, Omnipresent is based on well-established standards such as Web
services, OpenGeospatial Web Map Service [OpenGeoSpatial WMS 2005] and OpenLS
specifications [OpenGeoSpatial LS 2005].

6. Conclusion
The advances in mobile computing, sensors and wireless networks have motivated the
development of context-aware applications. These applications evaluate user
environment and pushes information which are relevant to user context. In this paper we
present Omnipresent, which is a service-oriented architecture for context-aware.
Omnipresent may be accessed from either mobile devices or PC, is based on Web
services and well-established standards for LBS applications such as those proposed by
the OpenGeoSpatial Consortium. Omnipresent offers several services: map presentation,
routing, advertisement, and also works as a reminder tool. Users may also locate friends
and search for their context (e.g. emotional status, health status, etc.).

 As further work, we intend to use sensors to get more contextual information,
more specifically to deal with Physiological environment, as currently we are simulating
such information. Also, we intend to implement a client on smart phones. Finally, an
evaluation study, which includes usability and overall performance tests, is due.

References
Alonso, G., Casati, F., Kuno, H., Machiraju, V. (2004) “Web Services: Concepts,

Architectures and Applications”, Springer-Verlag, Berlin Heidelberg New York.

Andersen, K. V. B., Cheng, M., Klitgaard-Nielsen, R. (2003) “Online Aalborg Guide –
Development of a Location-Based Service”, Technical report, Aalborg Universitet.

27

Baptista, C.S., Nunes, C.P., de Sousa, A.G., da Silva, E.R., Leite, F.L., de Paiva, A.C.
(2005) “On Performance Evaluation of Web GIS Applications”, IEEE Sixteenth
International Workshop on Database and Expert Systems Applications, 2005.
Proceedings.22-26, August, pp. 497 – 501.

Chen, G. and Kotz, D. (2000) “A Survey of Context-Aware Mobile Computing
Research”, Technical Report TR2000-381, Dartmouth College, November.

Feng, L., Apers, P.M.G., Jonker, W. (2004) “Towards Con-text-Aware Data
Management for Ambient Intelligence”, In: Proc. of the 15th Intl. Conf. on Database
and Expert Systems Applications, Zaragoza, Spain, pp. 422-431.

Dey, A.K., and Abowd, G.D. (2000) “CybreMinder: A Con-text-Aware System for
Supporting Reminders”, In the Proceedings of the 2nd International Symposium on
18 Handheld and Ubiquitous Computing (HUC2K), pp. 172-186, Bristol, UK,
Springer-Verlag, September.

Dijkstra, E.W. (1959) “A Note on Two Problems in Connec-tion With Graphs”,
Numerische Mathematik.

Girow, A. “TinyLine: Mobile SVG software for J2ME”. Available in
http://www.tinyline.com. Last access in September 2005.

Gu, T., Pung, H. K., Zhang, D. Q. (2004) “Towards an OSGi-Based Infrastructure for
Context-Aware Applications in Smart Homes”, IEEE Pervasive Computing, Vol. 3.

Hewlett-Packard, Jena Framework. http://jena.sourceforge.net/inference. Last access
2005.

Jing. N., Huang, W., Rundensteiner, E. A. (1996) “Hierarchi-cal Optimization of
Optimal Path Finding for Transporta-tion Applications”, ACM Conference on
Information and Knowledge Management, pp. 269-276.

Jose, R., Moreira, A., Rodrigues, H., and Davies, N. (2003) “The AROUND
Architecture for Dynamic Location-Based Services”, Mobile Networks and
Applications 8, pp. 377-387.

Marmasse, N. and Schmandt, C. (2000) “Location-aware information delivery with
ComMotion”, In Proceedings of Second International Symposium on Handheld and
Ubiq-uitous Computing, HUC 2000, pages 157-171, Bristol, UK, Springer Verlag,
September.

Nagappan, R., Skoczylas, R., and Sriganesh, R. P. (2003) “Developing Java Web
Services: Architecting and Develop-ing Secure Web Services Using Java”,
Indianapolis, IN: John Wiley & Sons.

OpenGeoSpatial, “Location Services”. Available in http://www.opengeospatial.org. Last
access in September 2005.

OpenGeoSpatial, “Web Feature Service”. Available in http://www.opengeospatial.org.
Last access in September 2005.

OpenGeoSpatial, “Web Map Service”. Available in http://www.opengeospatial.org. Last
access in September 2005.

28

Schiller, J. and Voisard, A. (2004) “Location-Based Services”. Morgan Kaufmann, San
Francisco, pages 10-24.

Shekhar, S., Fetterer. A., Goyal, B. (1997) “Materialization Trade-Offs in Hierarchical
Shortest Path Algorithms”, Symposium on Large Spatial Databases, Springer Verlag,
pp. 94-111

Weißenberg, N., Voisard, A., Gartmann, R. (2004) “Using Ontologies in Personalized
Mobile Applications”, In Pro-ceedings Intl. ACM GIS Conference, ACM Press, pp.
2-11.

World Wide Web Consortium (W3C), Scalable Vector Graphics (SVG) 1.1. Available
in www.w3.org/TR/SVG. Last access in September 2005.

World Wide Web Consortium (W3C), W eb Ontology Language (OWL). Available in
http://www.w3.org/TR/owl-features/. Last access in September 2005.

World Wide Web Consortium (W3C), W eb Ontology Language (OWL) Use Cases and
Requirements. Available in http://www.w3.org/TR/webont-req. Last access in
September 2005.

Yuan, M. J. (2003) “Enterprise J2ME: Developing Mobile Java Applications”, Prentice
Hall.

29

	cb: VII Simpósio Brasileiro de Geoinformática, Campos do Jordão, Brasil, 20-23 novembro 2005, INPE, p. 15-29.

