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Abstract. The study investigates the correlation between mobility network cen-
tralities, demographic features, and RMSE in COVID-19 prediction models
(Graph Convolution Networks - GCN, Prophet, and Long Short-Term Memory
- LSTM) across Brazilian municipalities. The analysis reveals that betweenness
centrality, Degree, Strength, and Municipal Population exhibit positive correla-
tions with RMSE, indicating that municipalities with central positioning, numer-
ous connections, high neighbor flow, and larger populations negatively influence
the predictions.

1. Introduction

Predicting patterns that evolve is a popular area of investigation in data analytics for
forecasting future trends and behaviors. Various approaches, including machine learning
models, are commonly used to capture the complexity of the series and generate reliable
estimates [Smith et al. 2004, Vaishya et al. 2020].

Mobility networks offer a substantial data source for analyzing flow dynamics in
complex systems [Albert and Barabdsi 2002]. This can be exemplified by nodes that rep-
resent specific locations connected by edges, possessing weights that determine the move-
ment of individuals between locations within a given time frame [Fanelli and Piazza 2020,
Freitas et al. 2020a, Freitas et al. 2020b, Rothan and Byrareddy 2020].

By combining temporal pattern predictions with mobility networks, the tempo-
ral and spatial dynamics of events can be objectively analyzed. In this context, Graph
Convolutional Networks (GCNs), a machine learning algorithm specifically developed
for graphs, facilitate the inclusion of connections between elements to build a com-
plex network. Models such as the Graph Convolutional Long Short-Term Memory
(GCLSTM) [Chen et al. 2022] and the Graph Convolutional Recurrent Network (GCRN)
[Seo et al. 2018] have recently been utilized for forecasting COVID-19 case time series
in Brazil, as described in [Duarte et al. 2023]. They mix GCNs with Long Short-Term
Memory (LSTM) and Recurrent Neural Network (RNN) layers and will be referred to as
GCN-based models here.
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This study builds upon the foundational work presented in [Duarte et al. 2023] by
delving into the intricate relationships between mobility network centrality metrics, de-
mographic and socioeconomic indicators, epidemiological variables, and the prediction
errors of COVID-19 time series. In our prior investigation [Duarte et al. 2023], a di-
verse array of predictive models, including LSTM, Prophet, GCLSTM, and GCRN, were
employed. Particularly noteworthy were the outstanding R? scores achieved by the GCN-
based and Prophet models, surpassing 0.97. The Prophet model, in particular, emerged as
the leading performer, attaining a remarkable mean RMSE of 1758.21 with a standard de-
viation of 430.81. Following closely, GCRN exhibited the second-best performance with
a mean RMSE of 2990.40 and a standard deviation of 1035.11, while GCLSTM secured
the third position with a mean RMSE of 3535.38 and a standard deviation of 1221.01.
In contrast, the LSTM model ranked last, displaying a mean RMSE of 4298.89 and a
standard deviation of 1670.56.

2. Methodology

2.1. Data Sources

To depict the spread of COVID-19 in Brazil, we examined its temporal and spatial dimen-
sions. Temporally, we calculated the “Avg Daily Cases”, representing the mean number of
daily COVID-19 cases, and “Reported Days”, indicating the number of days COVID-19
cases were reported for each municipality, using the publicly available dataset of COVID-
19 daily cases provided by [Cota 2020]. This dataset covers the period from February
2020 - when the epidemic began in Brazil - to November 2022, totaling 1009 consecu-
tive days. It gathers official Ministry of Health data collections, with updates provided
asynchronously.

Concerning the spatial dimension, we use the origin-destination survey for “Road
and Waterway connections” [IBGE 2017]. In this network, each city represents a node
and their weighted connections account for the weekly flow of vehicles between them.
The resulting network has N = 5385 nodes and L = 65639 edges.

The 2022 Brazilian census provides the variable POPMUN, which indicates
the population size of municipalities and enables demographic analysis. According
to the “Regions of Influence of Cities 2018” (REGIC 2018) survey, documented in
[IBGE 2020], VARO3 reflects the Gross Domestic Product (GDP) of each municipality,
serving as an economic activity measure. Next, the Territory Management Centrality
Score (VAR19) provides insights into the effectiveness of municipal governance through
both public and private management centrality indices. Additionally, the General Attrac-
tion Score (VARS56) measures the overall attractiveness of municipalities in terms of their
ability to attract people and resources. VAR79, the Quantity of Commercial Categories,
indicates the range of available services in each municipality, which is often associated
with the diversity of commerce. These variables collectively provide significant insights
into the distinctive features of Brazilian municipalities.

2.2. Network Metrics

The analysis of mobility networks’ structure and dynamics requires the utilization of net-
work metrics such as Degree, Betweenness, Strength, and Closeness. Since the weights
of the mobility network signify the flows of vehicles, the computation of shortest paths
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for Betweenness and Closeness relies on distances. Therefore, we used the inverse of the
flow, whereby larger flows correspond to shorter distances. We used the demographic and
flow data presented in Section 2.1 to calculate those metrics.

2.3. Time Series Prediction Models

In [Duarte et al. 2023], we presented two models based on GCNs, the GCRN and
GCLSTM, that incorporate a mobility network to forecast COVID-19 cases in Brazil. The
network serves as an approximation of the disease path, as shown in [Freitas et al. 2020b,
Freitas et al. 2020a]. The models utilize convolutions to capture the interconnections
between neighboring municipalities in the graph for making predictions on temporal
data. For comparison purposes, we implemented Prophet [Taylor and Letham 2018] and
LSTM (Long Short-Term Memory) [Hochreiter and Schmidhuber 1997] models, that do
not make use of mobility data.

In  contrast, the  Prophet [Taylor and Letham 2018] and LSTM
[Hochreiter and Schmidhuber 1997] models are solely temporal. LSTM is a type
of RNN, a deep learning model characterized by its ability to handle data sequences
such as time series. Prophet is an additive regression model extensively employed in
time series analysis and data forecasting, recognized for its versatility and effectiveness
[Hastie 2017]. Both models can capture complex temporal features appropriate for
forecasting series with startling changes, trends, and seasonal variance.

The analysis presented in [Duarte et al. 2023] suggests that the Prophet model has
high accuracy in prediction, with exceptional performance in certain regions but not as
impressive in others, presenting a large standard deviation. Conversely, the LSTM model
exhibits the lowest accuracy levels. The two GCN-based models demonstrate similar
performances, with a performance between the Prophet and LSTM models.

2.4. Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is a commonly used metric to evaluate the perfor-
mance of prediction models. It is calculated by taking the square root of the average of
the squared differences between the predicted value g and the actual value y:

n

RMSE = \/2?21(% — 0 (1)

where 7 is the number of data points. The RMSE quantifies the prediction power of the
model, with lower values indicating better performance.

3. Results and Discussion

Figure 1 depicts the logarithmic-scale RMSE values for LSTM model predictions across
Brazilian municipalities. The displayed map reveals a similar pattern in RMSE distri-
bution among all models. Despite the expectation of identifying a discernible pattern
associated with the spread of COVID-19, such a trend proved elusive in the observed
data.

Figure 2 illustrates correlation coefficients between RMSE and other variables.
Non-significant correlations (p-value > 0.05) are excluded. The results highlight a robust
correlation among the RMSE of all models.
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Figure 1. RMSE for COVID-19 predictions across Brazilian municipalities for the
LSTM model, depicted on a logarithmic scale.
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Figure 2. Significant Pearson Correlations (p-value < 0.05) in Brazil.
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The Betweenness centrality, along with Degree, Strength, and POPMUN, exhibits
a positive correlation with RMSE in prediction models. This implies that centrally lo-
cated municipalities with numerous connections, high flow between neighbors, and larger
populations may experience less accurate predictions.

The variables VARO3 and VARS6 show a strong positive correlation with met-
rics POPMUN and Betweenness, and a moderate correlation with Degree, Strength and
RMSE. Variables VAR19 and VAR79 display a high positive correlation with Degree and
Strength, and a lower correlation with POPMUN, Betweenness and RMSE.

Based on the analyzed correlations, we observe that cities characterized by higher
population (POPMUN), a significant number of connections (Degree), substantial flow
in their connections (Strength), playing a central role or hub in the network (Between-
ness), and a more pronounced economic development (VARO3 and VARS56) exhibit higher
RMSE values in prediction models. This trend suggests that, potentially, the complexity
and dynamics of these municipalities, marked by a combination of socio-economic factors
and connectivity, may render less precise predictions. Our hypothesis is that the hetero-
geneity of these areas, marked by higher population density, a more intricate network
of connections, and a more robust economy, could potentially lead to increased noise or
disturbances in predictions, especially in locations that are more frequented and densely
populated, interpreted as areas of potential aggregation.

4. Conclusions and future work

In conclusion, the analysis reveals correlations among economic indicators (VARO3,
VAR19, VARS56, VAR79) and their positive association with centrality metrics. The cen-
trality metrics (Betweenness, Degree, Strength) and POPMUN exhibit positive correla-
tions with RMSE in prediction models, emphasizing their influence on prediction accu-
racy. Notably, the strong correlation between robust economic indicators and prediction
errors suggests that highly developed locales may potentially lead to an unpredictable
outcome, causing disturbances in the accuracy of prediction models. This hypothetical
interpretation aligns with the notion that areas with higher population density or greater
connectivity, whether in terms of quantity or flow, may introduce noise and disturbances,
impacting the precision of prediction errors.

For future work, a more in-depth exploration of the intricate relationships between
demographic and economic data and the RMSE obtained from forecasting models is war-
ranted, with a focus on elucidating trends, seasonal patterns, and characteristics at macro
and micro levels. This entails investigating variations among different regions, including
states, capital cities, commercial zones, and others. Such an endeavor would contribute
to a more comprehensive understanding of the underlying factors impacting predictive
accuracy, thereby providing valuable insights for tailored and context-specific modeling
and public health strategies.
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