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Abstract. Triangular Irregular Networks efficiently define Digital Elevation 
Models that represent terrain surfaces and drainage paths can be calculated 
from these terrain models. This paper describes a method for calculating 
drainage paths from a triangulated irregular terrain model that was obtained 
from contour lines and points. Contour lines crossed by triangles edges and 
flat areas, which prevent path continuity, are removed by edge rotations and 
by inserting interpolated points into the triangulation, respectively. Drainage 
paths are connected by processing the triangles with an associated priority. 
Results achieved are consistent with an available drainage network and with 
real-world terrain information from a RapidEye image. 

1. Introduction 
Digital Elevation Models (DEM) can be defined by Triangular Irregular Networks 
(TIN) in order to represent terrain models. A TIN is a very efficient terrain model as the 
density of information can vary from region to region in a way that more points are 
included where there is more elevation variation while fewer points are necessary in 
regions of less elevation variation avoiding data redundancy. 
 The triangulation is calculated from a set of points where each point is defined 
by its x, y coordinates on the plane and an elevation z. These points contain the main 
features and characteristics of the terrain and the most common triangulation used is the 
Delaunay triangulation that maximizes the minimum angle among all triangles thus 
creating less skinny triangles [De Berg et al. 2008]. 

 In this work, all the points used as input for calculating the triangulation define 
contour lines and elevation points, and as the original Delaunay triangulation could 
produce edges crossing these contour lines, it turns out to be necessary to apply a 
further procedure that removes these intersections in order to modify connections 
between points that could result in wrong terrain features. This procedure defines a 
Constrained Delaunay Triangulation [Zhu and Yan 2010] where every contour line is 
considered as a restriction line. 

 Besides intersections of triangles edges and contour lines, another problem that 
may arise when using a TIN as a terrain model is the existence of flat triangles. These 
triangles define flat areas where it is not possible to determine a flow direction because 
all three points or vertices of each triangle have the same elevation. This problem is 
solved by the insertion of new points into the triangulation with interpolated elevation 
values in order to guarantee that every new triangle created, after a re-triangulation with 
these new points, has a defined flow direction and drainage paths have no 
discontinuities. 
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 DEMs are very important in many research areas and they have useful 
applications especially in Hydrology where drainage patterns calculated from a DEM 
are essential in the understanding of many hydrologic processes of nature. This paper 
focuses on a method for calculating drainage paths in a TIN where the flow direction in 
a triangle is determined by a gradient vector. Results are consistent with real-world 
terrain information and with an available drainage network indicating that a TIN is an 
appropriate alternative structure for terrain modeling and hydrologic applications. 

 The paper is organized as follows. Next section mentions works already 
developed and the motivation for the theme of drainage paths derived from TIN. 
Section 3 contains the methodology including a description of the Constrained 
Delaunay Triangulation, the procedure for removing flat areas and the gradient method 
for tracing drainage paths. In section 4, drainage paths are compared to an available 
drainage network of the analyzed region where similarities between them indicate that 
these drainage paths represent good approximations and are also consistent with water 
flow patterns. Computational times took by the procedures are also given. Section 5 
presents the conclusions as well as suggestions for future work. References are placed at 
the end. 

2. Related Work and Motivation 
Some authors investigated and developed techniques to calculate drainage paths directly 
from TIN terrain models. Many important concepts were described by [Jones et al. 
1990] considering the flow direction in each triangle defined by the gradient of the 
plane that contains it. Another approach was developed by [Silfer et al. 1987] 
determining how water should be routed across the surface of a TIN distinguishing from 
two different conditions between TIN facets. More recently, a trickle path procedure by 
[Tsirogiannis 2011] traces a sequence of edges and vertices determined from 
intersections between points and terrain features. 
 The above-mentioned techniques can be added as hydrology-specific 
functionalities in Geographic Information Systems (GIS) as these systems are able of 
storing and processing a wide range of georeferenced data. Many GIS applications that 
process terrain models have limited capabilities when it comes to flow modeling in TIN 
because they require the design of more robust data structures and algorithms in order to 
solve problems of computational geometry so that this type of functionality is less 
developed than for the most common and simple DEM defined by regular grids. 
 TIN datasets used for terrain modeling and analysis raise many challenges in the 
development of efficient algorithms that can process and extract useful results from 
them because their use usually involves complex tasks. Computing flow-related 
structures on TIN such as drainage paths can present a worst-case  complexity  of  Ɵ(n3) 
when considering the whole river network with n triangles where this complexity is 
measured by the number of segments of all paths [Agarwal et al 1996]. 

 This work addresses the problem of automatically calculating drainage paths in a 
TIN obtained from a dense set of points after removing inconsistencies such as contour 
lines crossing triangles edges and flat areas that can occur when using triangulated 
structures as terrain models. The aforementioned works do not define specific 
procedures for removing flat areas comprised of several flat adjacent triangles 
branching in different directions and do not specify how drainage paths can be 
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connected in order to make it possible to calculate accumulated flows and drainage 
networks. 

3. Methodology 
The set of triangles that defines a TIN is a good approximation to the irregularities 
inherent to a terrain structure. This structure can be characterized by surface-specific 
points and lines representing terrain features that are considered as the backbone of the 
surface [Fowler and Little 1979]. In the present work, a TIN is calculated by a 
Constrained Delaunay Triangulation algorithm from a set of points that defines contour 
lines and elevation points. 

3.1. Constrained Delaunay Triangulation 
There are several different triangulations that can be calculated from the same set of 
points and a good approximation used for terrain modeling is given by the Delaunay 
triangulation [De Berg et al. 2008]. The main property of the Delaunay triangulation is 
that every triangle defines a circle through its three vertices that does not contain any 
other point of the set inside it. This property is also considered as criteria for calculating 
the triangulation [Tsai 1993] which indicates that a Delaunay triangulation consists of 
more equiangular triangles and therefore the minimum angle among all triangles is 
maximized. Figure 1 shows a Delaunay triangulation calculated from a set of points and 
its criteria for a circle defined by the three vertices of a triangle. 

 
Figure 1. Delaunay triangulation criteria (modified from [Jones et al. 1990]) 

 Many algorithms that calculate the Delaunay triangulation can be found in the 
literature. Some of them are: Bowyer-Watson [Bowyer 1981, Watson 1981], 
Incremental [Guibas et al. 1992, De Berg et al. 2008], Divide-and-Conquer [Cignoni 
1998],  Fortune  [Fortune  1987]  and  Brute  Force  [O’Rourke  1998].  For the present work, 
the Incremental algorithm was used because its time complexity is O(n log n) [De Berg 
et al. 2008] where n is the number of points. A C++ implementation was developed 
because the structures and procedures from the source code could be easily modified in 
the future so that they work with the Terralib library [Câmara et al. 2000]. 
 The algorithm works by initially determining a triangle that contains the set of 
points all inside it, then inserting each point one at a time, and when a point is inserted 
into the triangulation, a new triangulation is calculated with possible local changes in 
the current one. The algorithm also defines a tree structure for storage and search of the 
triangles and this structure is modified after every insertion of a point. When a triangle 
contains the inserted point it is divided into new triangles and this triangle division is 
reflected on the tree structure in a way that old and new triangles are connected by a 
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hierarchy link in the tree. At the end, all Delaunay triangles are leaf nodes of the tree 
and the initial triangle together with all its incident edges are discarded. The tree height 
is proportional to log(n) where n is the number of points, which determines that the 
search for a triangle that contains some point can be computed in logarithmic time. 
 It is noteworthy that if the points used as input for calculating the triangulation 
do not have any kind of specific connection between them, the Delaunay triangulation 
suffices to define a TIN as a terrain model. However, if the set of points define contour 
lines, as it is the case in this work, every segment of a contour line must be considered 
as a restriction line that cannot be crossed by a triangle edge otherwise that intersection 
would create inconsistencies with the terrain surface. In order to solve this problem, an 
initial Delaunay triangulation is calculated and a further procedure removes the 
intersections between contour lines segments and triangles edges. Figure 2 shows 
triangles edges (dashed lines) that intersect contour lines segments (solid lines) and the 
resulting triangulation after removing these intersections. 

 
Figure 2. Triangulations before and after removing intersections (taken from 
[Eastman 2001]) 

 The procedure for removing intersections initially detects for every contour line 
segment a triangle connected to one segment endpoint such that its edge opposite to the 
endpoint intersects the segment. This triangle is then processed by a search procedure 
that verifies each of its adjacent triangles and checks if there is one triangle not 
processed yet that also intersects the segment. If another triangle is found, this adjacent 
triangle is tested similarly and the search continues until no more intersections are 
found, that is, when the other segment endpoint is reached. 
 All triangles found in the search process are inserted into a queue structure and 
every pair of triangles in the queue is processed in order to remove all intersections. If 
an edge of a triangle in the queue intersects the segment (not in a vertex), then its 
adjacent triangle in the queue also intersects the segment, so their common edge is 
rotated and the new modified triangles are inserted back into the queue for a further 
verification. This procedure continues as long as there are intersections between 
triangles edges and contour lines segments. 

3.2 Flat Areas 
Flat areas are not common over terrain surfaces, except in plateau areas that consist of 
relatively flat terrains, but terrain models are prone to such inconsistencies as they are 
near-to-real approximations. TIN used as terrain models can present flat areas whenever 
all three vertices of a triangle have the same elevation. This situation must be avoided as 
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the flow direction over a flat area is undefined which turns out to be a major problem in 
hydrologic computations. 

 Every flat triangle is removed by first detecting its critical edges that are 
identified by two cases: a) an edge that connects two non-consecutive points in the same 
contour line; b) an edge connecting two points in different contour lines but of equal 
elevation. These two cases are illustrated in figure 3 where solid lines are contour lines 
and dashed lines are triangles edges with critical edges in red. 

 
Figure 3. Flat triangles and critical edges (modified from [Eastman 2001]) 

 The procedure for removing flat triangles inserts critical points into the 
triangulation that are placed exactly in the middle of critical edges assigning to each of 
these critical points a linearly interpolated elevation value that is calculated after a path 
of flat triangles is determined by a search process. 
 Initially, every search process defines a path by starting at corner triangles which 
are triangles that contain one critical edge and two edges that are non-critical, that is, 
either contour lines segments or edges connecting points of different elevations. The 
point that connects the two non-critical edges is defined as the initial point for 
interpolation. This search process continues always going from the current triangle to 
one of its adjacent triangles that share a common critical edge, following through the 
critical edge that contains the closest critical point in relation to the last point considered 
for interpolation. The search terminates when there are no more adjacent triangles to be 
visited (and the last point is a critical point) or the current triangle is another corner 
triangle (in this case, the last point has a defined elevation). All critical points found in 
the search process have their elevation values linearly interpolated between the 
elevation values of the initial and final points. 

 Branches found in the search process (triangles with three critical edges) are 
processed after the interpolation procedure has assigned an elevation value to every 
critical point included in the path. The search process repeats once again beginning at 
every branching triangle found and the same procedure is executed until all critical 
points have been assigned an interpolated elevation value. Finally, these critical points 
are inserted into the triangulation and the areas around them are then re-triangulated. 
 This procedure is illustrated in figure 4 where contour lines segments are dark 
lines with their endpoints in light green, triangles edges are in red and the critical points 
in magenta. Flat triangles are in light blue and corner triangles in yellow. In this 
example, the initial point used for interpolation is circled in red at the top corner triangle 
and the final point is also circled in red at the bottom. The path from the initial point to 
the final point following through critical edges is in dark green with branches in cyan. 

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

35



  

 
Figure 4. Paths for interpolation of critical points 

 As mentioned before, a linear interpolation of the critical points is performed 
considering both initial and final points found in the path. If the final point elevation is 
not defined (in the case of a critical point) then the elevation variation from the contour 
line that encloses the flat area in relation to its neighboring contour lines indicates 
whether the interpolated elevation values to be assigned to every critical point should be 
increasing (neighboring contour lines values are lower) or decreasing (neighboring 
contour lines values are higher). 

3.3 Drainage Paths 
Terrain models represented by TIN consist of several adjacent triangles of different 
sizes and shapes. Each triangle defines a plane surface that passes through its three 
vertices and drainage paths can be calculated from any starting point in a triangle 
following the path of steepest descent given by the plane gradient [Jones et al. 1990]. A 
plane equation and its coefficients are determined by the equations below, where each 
(𝑥, 𝑦, 𝑧) is a triangle vertex with index i = 1,2,3: 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 (1) 

𝐴 = 𝑦ଵ(𝑧ଶ − 𝑧ଷ) + 𝑦ଶ(𝑧ଷ − 𝑧ଵ) + 𝑦ଷ(𝑧ଵ − 𝑧ଶ) (2a) 

𝐵 = 𝑧ଵ(𝑥ଶ − 𝑥ଷ) + 𝑧ଶ(𝑥ଷ − 𝑥ଵ) + 𝑧ଷ(𝑥ଵ − 𝑥ଶ) (2b) 

𝐶 = 𝑥ଵ(𝑦ଶ − 𝑦ଷ) + 𝑥ଶ(𝑦ଷ − 𝑦ଵ) + 𝑥ଷ(𝑦ଵ − 𝑦ଶ) (2c) 

𝐷 = −𝐴𝑥ଵ − 𝐵𝑦ଵ − 𝐶𝑧ଵ (2d) 

 Writing the plane equation (1) with z as a function of x and y, then calculating 
the negative gradient of this function by partial derivatives, the direction of steepest 
descent projected onto the xy plane is defined by equation (4) which determines the flow 
direction from a point in a triangle. 

𝑧 = 𝑓(𝑥, 𝑦) =   − ൬𝐴𝐶 𝑥 + 𝐵
𝐶 𝑦 + 𝐷

𝐶൰ (3) 

−∇𝑓 = −൬𝜕𝑓𝜕𝑥 𝒊 +
𝜕𝑓
𝜕𝑦 𝒋൰ =

𝐴
𝐶 𝒊 + 𝐵

𝐶 𝒋 (4) 
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 Every drainage path begins at a starting point in a triangle always following the 
direction given by the gradient vector of each triangle. When tracing a drainage path, 
different situations can occur regarding the intersections between gradient vectors and 
triangles edges. If the gradient vector of a triangle intersects one of its edges and the 
gradient vector of the adjacent triangle opposite to that edge points back to the first 
triangle, thus forming a channel edge, then the drainage path should continue along the 
edge towards the vertex of lowest elevation otherwise the path continues across the 
adjacent triangle. 

 When the intersection is exactly in a triangle vertex, then all the edges and 
triangles incident to that vertex are checked in order to find the lowest elevation point 
reached from the vertex. Each edge is first verified if it is a channel edge (both gradient 
vectors of the adjoining triangles by the edge point to each other) and then if the other 
vertex of the edge has a lower elevation. Triangles are tested by checking if there is an 
intersection between its gradient vector based at the current vertex and its edge that is 
opposite to the vertex (the gradient vector lies between the other two edges) and if this 
intersection has also a lower elevation. After the lowest elevation point has been found, 
the drainage path continues through an edge to another vertex (in the case of a channel 
edge) or across a triangle and the process is repeated. 

 Part of a drainage path can be visualized in figure 5 which contains interpolated 
elevation values on each plane and the path that every gradient vector follows across 
triangles and edges beginning at the starting point a. 

 
Figure 5. Path of steepest descent in a TIN (taken from [Jones et al. 1990]) 

 The procedure described for constructing drainage paths can be applied by 
selecting any point as the starting point. In this work, the points selected as starting 
points are the triangles centroids which approximately represent the elevation of the 
triangles. Every starting point has its elevation considered as a priority value associated 
to the point defining the order in which all the points will be processed in the 
calculation of drainage paths. This approach indicates that it is possible to delineate 
potential drainage patterns by calculating drainage paths beginning at these starting 
points ordered from highest to lowest elevations. Another important aspect of this 
procedure is that when a drainage path is being traced and it reaches a triangle where 
another path has already been defined, then the current path is connected to the existing 
path. This procedure terminates after every starting point has been processed and all 
drainage paths have been connected. 
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4. Results 
All results were obtained from contour lines and elevation points of an area in the city 
of São José dos Campos – Brazil in a geographic region with bounds 396000.0m-
427400.0m West and 7421000.0m-7445000.0m South given in UTM coordinates and 
SAD69 projection. These UTM coordinates correspond to the geographic coordinates 
ranging from -46.017 to -45.709 in longitude and from -23.317 to -23.102 in latitude. 
The entire dataset used as input is from a database named  “Cidade  Viva”  that is updated 
every 6 months and made publicly available since 2003 by the city’s  Geoprocessing 
Service of the Urban Planning Department in a format that is easily imported by a GIS. 
 As the main focus of this work is to calculate drainage paths from a triangulated 
terrain model, a TIN was defined by the Constrained Delaunay Triangulation detailed in 
section 3.1 and the terrain model was calculated from ~20 m xy resolution contour lines 
and elevation points with neighboring contour lines having a 5 m elevation difference 
represented by approximately 200000 points. Flat areas and drainage paths were 
processed by the procedures described in sections 3.2 and 3.3. 
 Figure 6 shows in blue the drainage network available from the previously 
mentioned database over a RapidEye image of 5 m spatial resolution for part of the total 
region. This drainage network is considered as the reference drainage for comparison 
with the drainage paths. The dashed rectangle indicates an area that is shown next in 
figure 7. 

 
Figure 6. Drainage network from the “Cidade  Viva” database over a RapidEye image 

 Drainage paths in cyan can be visualized in figure 7 together with the reference 
drainage network for the small region took from the upper-right part of figure 6 that is 
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highlighted by the dashed rectangle. It can be noticed that these drainage paths 
approximately converge to the drainage network, thus forming drainage patterns very 
close to the real hydrologic processes governed by the terrain surface. 

 Discrepancies between the two drainage patterns may be due to the precision of 
the input data, i.e., the contour lines and elevation points, as it can change the direction 
of flow from triangle to triangle. Discontinuities in the drainage paths occur by the 
presence of pits that are located at vertices where flow does not follow through an edge 
or a triangle because the gradient conditions are not satisfied. Once again, a dashed 
rectangle indicates another area which is detailed in figure 8 that follows in sequence. 

 
Figure 7. Drainage paths converge to the reference drainage network 

 For a more precise view of how the drainage paths are distributed across the 
triangles of the TIN used as terrain model, a closer look at both the drainage paths in 
cyan and the triangulation in red is given in figure 8 that contains the area bounded by 
the dashed rectangle of figure 7. 
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Figure 8. Drainage paths over a TIN 

 The primary and most significant concern to be considered when analyzing the 
effectiveness of the methods is the quality in the results obtained after applying all the 
procedures to the TIN terrain model, i.e., the drainage paths converging to streams of a 
drainage network, although computational times are also an important aspect related to 
the complexity of drainage-related structures. 
 The number of triangles in the final TIN and computational times took by the 
algorithms described in this work are given in table 1 for different numbers of input 
points. The total times shown below include the execution times of the procedures for 
removing the intersections between triangles edges and contour lines, interpolating new 
elevation values to the critical points in order to remove flat areas, re-triangulating the 
entire set of points after the addition of these new critical points into the set, calculating 
the plane gradient and all the drainage paths defined from each triangle. The algorithms 
were compiled for 64-bit and executed on a PC with Intel Core i7 2.93 GHz CPU and 8 
GB of RAM memory. 

Table 1. Details on TIN and execution times 

Number of 
points 

Number of 
triangles 

Total execution 
time (s) 

50000 148857 1.95 
100000 265069 3.33 
150000 396958 4.92 
200000 512437 6.26 
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5. Conclusions and Future Work 
Triangulated irregular terrain models are structures that can efficiently represent terrain 
surfaces. These models are calculated from terrain-specific points scattered over a 
region obtained from a land survey. 
 The algorithms and procedures developed for processing a TIN have low 
computational complexities which make this model an attractive alternative to other 
terrain models. Drainage paths following the streams of the drainage network illustrated 
in the previous section indicate that these patterns represent good approximations that 
are consistent to potential surface water flows and can be used in decision-making 
systems supporting studies of their impacts in hydrologic processes. 

 In this work, flat areas were removed by a procedure that defines a path of flat 
triangles and interpolates elevation values of critical points. Branches found in the path 
are also processed in order to complete paths previously found. The delineation of 
drainage paths traced by starting at each triangle centroid, ordered by their elevation 
values and also connected to each other result in very good water flow patterns that are 
consistent to real-world terrain surfaces. 

 Next steps to be taken in future works are careful investigations of precise 
definitions about the concepts of flow accumulation and contributing areas for the 
delineation of watersheds given by a drainage network. Pit removal must also be 
considered as the flow directions need to be continuous between all the triangles. 
Computational times could be improved by a detailed analysis and further optimizations 
in the algorithms. 
 The assignment of flow directions obtained from drainage paths to triangles and 
vertices in flow computation processes can produce important quantifications of water 
flow distribution that are essential to Hydrology. 
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