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ABSTRACT: 

 

Image segmentation is a computationally expensive task that continuously presents performance challenges due to the increasing 

volume of available high resolution remote sensing images. Nowadays, Graphics Processing Units (GPUs) are emerging as an 

attractive computing platform for general purpose computations due to their extremely high floating-point processing performance 

and their comparatively low cost. In the image analysis context, the use of GPUs can accelerate the segmentation process. This work 

presents a parallel implementation of a region growing algorithm for GPUs. The parallel algorithm is based on processing each pixel 

as a different thread so as to take advantage of the fine-grain parallel capability of the GPU. In addition to the parallel algorithm, the 

paper also suggests a modification to the heterogeneity computation that improves the segmentation performance. The experiments 

results demonstrate that the parallel algorithm achieve significant performance gains, running up to 6.8 times faster than the 

sequential approach. 
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 INTRODUCTION 

Image segmentation has been the subject of extensive research 

in the areas of digital image processing and computational 

vision. The segmentation process plays a key role in the image 

analysis process (Blaschke and Strobl, 2001), and many 

segmentation methods have been proposed in the literature 

(Riseman and Arbib, 1977; Fu and Mui, 1981; Haralick and 

Shapiro, 1985; Pal and Pal, 1993; Deb, 2008) together with 

metrics for quality assessment (Zhang, 1996; Correa and 

Pereira, 2000; Cardoso and Corte-Real, 2005; Zhang et al., 

2008). Among the image segmentation methods, the region 

growing algorithm is one of the best known and the most widely 

used in the remote sensing area (Tilton and Lawrence, 2000).  

 

 Region growing algorithms group pixels or sub-regions in 

larger regions on an iterative way. The process starts with a set 

of initial points, called seeds, that grows by merging adjacent 

regions that contains similar properties such texture or color. 

However, this segmentation technique is computationally 

expensive when large images are considered (Wassenberg et al., 

2009). In addition, region growing usually has some parameters 

that must be adjusted for each type of application, which 

implies in a number of executions until the optimal parameter 

values are found. Thus, the execution time of the segmentation 

is decisive for its operational use in automatic image 

interpretation systems. For this reason, computational 

acceleration is highly required. 

 

Recent advances in the hardware architecture and 

programmability of Graphics Processing Units (GPUs) have 

turned them into an attractive platform for accelerating general 

purpose floating-point computations. They offer promising 

speedups, are available off-the-shelf, and it is likely that most 

computers will be equipped with such devices in the future. 

Modern GPUs can achieve performance of at least one order of 

magnitude higher compared to that of the traditional CPUs. 

However, the problem is how to program these devices 

efficiently. Parallelizing the algorithm to fit the highly parallel 

architecture of the GPU can be a challenging task.  

 

Several GPU implementations of image segmentation methods 

have been proposed in the literature. Some of them were built 

on the facility of implementing the evaluation of partial 

differential equations in a stream processing model (Sherbondy 

et al., 2003; Lefohn et al., 2003). There are also some research 

efforts in the area of medical imaging (Ruiz et al., 2008; Erdt et 

al., 2008; Ahn et al., 2005; Unger et al., 2008; Pan et al., 2008). 

The particular case of satellites images has to be pointed out. 

Sun et al. (2009) implemented a parallel segmentation method 

in GPU for remote sensing images based on the clustering Mean 

Shift algorithm. Their approach starts from selected seeds and 

clusters the pixels near the seeds. The center of each cluster is 

computed and the regions grow from these centers. This two 

step method implies in a pixel independent parallel 

implementation that provided a speedup around 20 for 

IKONOS and Quickbird images. Nevertheless, as far as we 

know, there is no GPU implementation of unseed region 

growing algorithm. 
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Algorithms that consider every pixel as a seed pose an extra 

difficulty to the parallel implementation due to the large number 

of processes/threads and the synchronization required among 

them. In (Happ et al., 2010), we suggest a parallel strategy for 

multicore architectures that deals with unseeded region growing 

using a tile image division approach. In this paper, we propose a 

different parallelization scheme that takes benefit of the highly 

parallel architecture of the GPU. Instead of dividing the image 

into tiles, each pixel is processed by a different thread. Also, 

two new attributes for calculating spatial heterogeneity are 

presented in order to maximize computational efficiency. The 

algorithm is implemented using the programming languages C 

and CUDA and the computational performance is evaluated for 

a given set of remote sensing images.  

 

The organization of this paper is as follows. In Section 2, the 

GPU architecture is briefly described. In Section 3, the 

sequential region growing is depicted. In Section 4, the parallel 

algorithm is exposed. In Section 5, comparisons between the 

serial and parallel algorithms are presented. In the last section, 

the conclusions are presented. 

 

 

 GPU ARCHITECTURE 

Modern GPUs are massively parallel processors that support a 

great number of fine-grain threads. They are especially well-

suited to explore computations on many data elements that have 

high arithmetic intensity. The GPU architecture is composed of 

a scalable array of so-called streaming multiprocessors. One 

such multiprocessor contains amongst others a number of scalar 

processor cores, a multi-threaded instruction unit, a number of 

registers and a shared memory. The number of multiprocessors 

and processor cores depends of the architecture and model of 

the GPU.  

 

CUDA (NVidia, 2010) is the NVidia C-based development 

environment for GPUs, that includes a parallel programming 

model and an instruction set architecture. CUDA allows the 

programmer to define special C functions, called kernels, which 

are executed in parallel by different CUDA threads. The 

programmer organizes these threads into a hierarchy of grids of 

thread blocks. A thread block is a set of concurrent threads that 

can cooperate among themselves through barrier 

synchronization and shared accesses. During execution, the 

threads can access data at different levels of hierarchy: registers, 

shared memory and global memory. The global memory is 

accessible by all threads, but its access time is about 500 times 

slower than the access time to shared memory and registers. 

 

Thread processing is not independent on the GPU. Threads are 

executed in groups called warps. Within a warp, all the threads 

execute the same instruction. If one thread diverges from the 

others, there is performance degradation, since this thread starts 

to operate singly while the remaining are disabled. 

 

 

 REGION GROWING ALGORITHM 

As we focus in remote sensing applications, we choose a 

popular region growing algorithm, proposed originally by Baatz 

and Schäpe (2000), as the basis of our parallel implementation. 

This method was considered as one of the most effective 

segmentation algorithms (Neubert and Meinel, 2003). 

Furthermore, variants of this algorithm are available as 

operators on the InterIMAGE platform (InterIMAGE, 2012) 

and on the Definiens system (Definiens, 2008). 

 

This algorithm consists of an iterative method that seeks to 

minimize the average heterogeneity of the image objects. All 

image pixels are first considered as seeds or initial segments 

and, at each step, the heterogeneity increase is calculated as a 

result from merging two adjacent segments. This value is given 

by a fusion cost that must be below a given threshold to enable 

merging both segments into a single one. The process is 

repeated until no merge is possible. 

 

The fusion cost (f) represented by Equation 1, is defined by a 

weighted sum between a component related to spectral 

heterogeneity (hcolor) and another referred to spatial 

heterogeneity (hshape). The importance of these components is 

defined by a relative weight between color and shape (wcolor) 

and for both heterogeneity components the formula is based on 

the difference between the merged object (obj3) and the sum of 

the separated objects (obj1 and obj2) as it can be seen in 

Equation 2. 

 

 

shapecolorcolorcolor hwhwf ).1(.   (1) 

 

)( 213 objobjobjx hhhh   (2) 

 

 
Spectral heterogeneity (hcolor)  is given by the standard deviation 

of each pixel value, considering each color band separately and 

given a different weight for each band. On the other hand, 

spatial heterogeneity (hshape) is composed by two different shape 

components: one related to compactness and another related to 

smoothness. Compactness (Cmp), formulated in Equation 3, is 

given by the ratio between the edge length (l) and the square 

root of the object area (n). Smoothness (Smt), as seen in 

Equation 4, refers to the ratio between the object edge length (l) 

and the edge length of its bounding box (b) It is worth to note 

that there is also a weight to manage the importance between 

compactness and smoothness on the composition of the spatial 

heterogeneity. 

 

 

n

l
Cmp   (3) 

 

b

l
Smt   (4) 

 

 
The algorithm has, therefore, an adjustable heterogeneity 

criterion.  Parameters such as the relevance of each spectral 

band and the relative importance of shape and color and 

between compactness and smoothness can be tuned in order to 

achieve a better segmentation result. A final parameter called 

scale, which defines the maximum admissible fusion cost 

directly influences the size of the generated objects. 

 

 

 PARALLEL ALGORITHM 

The fundamental characteristic of the GPU architecture is that it 

has a highly parallel architecture that supports a great number of 
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fine-grain threads. In this way, the proposed parallel algorithm 

assigns the processing of each pixel of the image to each thread. 

This parallelization scheme exploits the massive computational 

capacity of the GPU and also provides a good load balancing, 

since each thread deals with the same amount of computation. 

Another advantage of this parallelization scheme is the ability to 

process every image segment directly, without dividing the 

image into tiles and having to deal with bordering issues. 

 

A data structure is created on the GPU global memory for each 

image pixel to store information about the pixel and the 

segment it belongs to, as shown in Figure 1. This structure is 

organized in a vector whose indexes represent the pixel 

identifiers (pixel Id). The structure holds the following 

information: a) the segment identifier (segment Id) the pixel 

belongs to; b) if the pixel is part of the segment border; c) the 

previous and next pixel of that segment; d) segment area; e) 

segment spectral and spatial attributes; f) the Id of its best 

neighbor segment, as will be later explained; and g) the fusion 

cost. The pixel called hereafter segment maker is the one, whose 

Id coincides with the Id of its segment. The information from d) 

to g) is only relevant for segment makers.  

 

 
Figure 1.  Data structure 

 

The parallel algorithm consists of six kernels to be executed by 

the GPU (see Figure 2) described below:  

 

 
Figure 2.  Diagram of the parallel segmentation algorithm 

 

Initialize Seeds 

The function Initialize Seeds marks each image pixel as a seed, 

which will represent an initial segment. Then, the attributes of 

these pixels are computed and stored in a specific data structure 

(see Figure 1). 

 

Evaluate Neighbors 

The function Evaluate Neighbors first detects the pixels over 

segment borders. The fusion cost of the adjacent segments to 

each of those pixels is then calculated. That one representing 

the lowest cost for a pixel is denoted as its best neighbor in the 

shared memory. As the processing is pixel based and a segment 

can have lots of border pixels, there must be a comparison 

between the local result (by pixel) and the global result (by 

segment). This task is executed inside a critical section to 

update the Id of the best neighbor and the fusion cost at the 

segment former structure on GPU global memory. 

 

Process Fusions 

If any of the segment makers has the fusion cost lower than the 

maximum fusion cost (a given threshold), it is selected to grow. 

A critical section should then be created to avoid information 

overlapping like two threads attempting to merge its segment 

with the same adjacent segment. The fusion itself then occurs, 

updating the attributes of the segment chosen to grow by 

merging it with its best neighbor. Consequently, the adjacent 

segment is no longer considered as a valid segment and its 

representing pixel (segment maker) is included in the merged 

segment. It should be noted that in order to avoid performance 

loss, we created a mechanism to perform control over the 

waiting threads on the critical section. Therefore, when a thread 

is waiting, its pixel is marked as "unprocessed" and the thread is 

aborted. To ensure the execution of every pixel, the function 

Process Fusions is called repeatedly until there are no pixels 

marked as "unprocessed". 

 

Redefine Segments 

 This function is responsible for updating the pixels belonging 

to segments that were merged with their new segment identifier 

- the one from the segment which have encompassed them. This 

function should be performed only if a fusion has occurred in 

the previous function. 

 

Recalculate Borders 

This function aims at excluding from processing those pixels no 

longer lying on any segment border. Thus, for each border pixel 

it is checked whether at least one of its adjacent pixels belongs 

to a different segment. Otherwise, the pixels are no more part of 

the edge. 

 

Write Image Result 

When no more merging is possible, the algorithm is finished by 

the Write Image Result function. Each pixel is processed in 

parallel writing the average of each spectral band of every 

segment on a resulting image. It is worth to mention that the 

segments borders are printed with a particular given color. 

 

Spatial Attributes 

The features defined in equations (3) and (4) must be 

recalculated whenever two segments are merged. It requires the 

calculation of the border length of the new segment. This can be 

performed by adding the border lengths of both segments being 

merged and then subtracting the pixels on the common border. 

The execution time of this operation increases as segments 

grow, and may become computationally expensive. Since this 

operation must visit each border pixel, it may involve a large 

number of accesses to the structure of the segments stored in the 

high latency GPU global memory. In addition, this operation 

leads to load imbalance as the involved processing effort is 

proportional to the border length of each segment. 

 

In order to circumvent this problem, we propose the 

replacement of these features by other ones, which do not 

involve the border length computation and are semantically 
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equivalent, in the sense they reach their minimum for similar 

shapes. Inspired by the discussion of Russ (1998) on shape 

features, we propose a new definition for compactness (Comp) 

and a new feature called solidity (Sol) to describe shape in the 

region growing algorithm described in section 3. The former, as 

the feature in equation (3), diminishes as the object becomes 

more compact. It is defined in Equation 5, where n is the object 

area and dmax is the diameter of the adjusted ellipse around the 

object. The latter, like the smoothness, varies according to 

object´s convexity and involves only the object area n and the 

area of its bounding box nbox as defined in Equation 6. 

 

 

max

4

d

n

Comp


  
(5) 

 

nbox

n
Sol   (6) 

 

 

 EXPERIMENTAL ANALYSIS 

5.1 Impact of the new shape features on the segmentation 

outcome 

The goal of these experiments was to test if the segmentation 

results obtained by formulating heterogeneity in terms of the 

features proposed in equations (5) and (6) may be similar to the 

outcome obtained with the original formulation by a proper 

adjustment of the segmentation parameters. 

 

Using a crop of a QuickBird image we first delineated manually 

three sets of segments to represent three distinct reference 

segmentation outcomes. Next, applying the approach proposed 

in (Costa et al., 2008) a genetic algorithm searched the 

parameter space for the set of values that optimized the level of 

agreement between the reference and the segmentation 

outcome. This experiment was performed for each set of 

references and for both variants of the segmentation algorithm. 

 

Table 1 shows the dissimilarity between references and 

outcomes as measured by the RBSB function (Reference 

Bounded Segments Booster) (Costa et al., 2008) in each 

experiment. The values in the same column, which correspond 

to the same set of segment references, did not differ 

substantially between both heterogeneity formulations. 

 

 

Attributes 

Disparity values according to references 

Homogeneous Heterogeneous Mixed 

Cmp & Svd 0.14 0.56 0.46 

Comp & Sol 0.16 0.57 0.40 

Table 1. Disparity values according to references 

 

Fig. 3 provides a visual perception of the segmentation 

differences in each case for both pairs of shape features. Figures 

(a) to (c) refer to the use of the original features, while Figures 

(d) to (f) are related to the use of the proposed features. 

Experiments have shown that these differences are comparable 

to what is observed when two slightly displaced crops of the 

same image are used for testing. This changes the order the 

region growing procedure visits each pixel, so that the 

segmentation outcomes differ quite in the same amount as can 

be seen in each column in Figure 3.  

This evidences, that both proposed shape features are nearly 

equivalent to the original ones as far as the segmentation result 

is concerned, provided that the segmentation parameters are 

properly tuned. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3. Segmentation result using Cmp and Svd for 

homogeneous (a), heterogeneous (b) and mixed (c) objects and 

using Comp and Sol for homogeneous (d), heterogeneous (e) 

and mixed (f) objects. 

 

5.2 Speedup of the parallel version 

A second sequence of experiments had the objective to assess 

the performance gains in terms of execution time. The 

experiments were performed in two different environments 

using two GPUs, different processors (CPU), and operating 

systems (OS): 

GT_9600 

GPU: NVidia GeForce 9600 GT with 64 cores and 

1GB of memory  

CPU: Intel Core 2 6300 processor @ 1.86 GHz and 

3.25GB of RAM.  

OS:  Windows XP.  

Tesla:  

GPU: NVidia Tesla C1060 with 240 cores and 4GB 

of memory 

CPU: Intel Xeon @ 2.5GHz and 7.8 GB of RAM, 

OS: GNU/Linux. 

 

For the experiments, we used six clippings from an aerial image 

of Jardim Tropical in Resende, Brazil to generate images of 

different sizes as shown in Table 2.  

 

Label Rows Cols Pixels 

Resende_500 500 500 250000 

Resende _1000 1000 1000 1000000 

Resende_1500 1500 1500 2250000 

Resende_2000 2000 2000 4000000 

Resende _2500 2500 2500 6250000 

Resende_2800 2800 2800 7840000 

Table 2. Image clippings and their respective sizes. 
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Figures 4 and 5 shows the speedups obtained for all the images 

running respectively on the environments GT_9600 and Tesla. 

The speedup of a parallel algorithm refers to how much it is 

faster than the corresponding sequential algorithm. The 

speedups reported here are computed as the sequential 

execution time divided by the parallel execution time. 

 

 
Figure 4. Speedup for Win_9600 environment 

 

 
Figure 5. Speedup for Lnx_Tesla environment 

 

Figure 4 shows that the speedups obtained by the GT_9600 

execution were always above 4, reaching almost 5 in some 

cases. Although the images are different in terms of the number 

of pixels to process, the speedup obtained present small 

variations when the size of the image increases. In this 

environment, the GPU used is quite limited and has only 64 

cores, which is underestimated for the images sizes. So the 

amount of parallelism obtained for all the images are almost the 

same. The difference in the performance results comes from the 

difference in the regions found in each image. 

 

Figure 5 shows that when a more powerful GPU is used, it is 

possible to observe the benefits of the parallelization when the 

image size grows. The speedup obtained for Resende_500 and 

Resende_1000 were relatively low. This occurs because of the 

underutilization of the GPU, since the relative cost of data 

transfer from CPU to GPU and the GPU memory accesses are 

considered relevant when comparing to the processing time. 

From Resende_1500 on, the speedups are greater than 5 

reaching 6.86 for Resende_2500.  

 

It is worth noting that despite achieving speedups up to 6.86 

times compared to the sequential version, these results were 

well below to the number of cores present in the GPUs used. 

This occurs due to the characteristics of the original 

segmentation algorithm that implies in a strong dependency 

among the threads and the need to constant access to GPU 

global memory. 

 CONCLUSION 

The main objective of this work was to propose and to evaluate 

the performance of a parallel region growing segmentation 

algorithm that takes benefit of the highly parallel architecture of 

the GPU. The parallel algorithm essentially assigns a particular 

thread to each image pixel so as to exploit the GPU support of 

fine-grain threads and the large number of processing elements 

available. The heterogeneity criterion that controls the region 

growing is formulated in terms of both spectral and spatial 

features of the segments. Two different shape features were 

proposed to replace the ones introduced in the original 

sequential algorithm in order to provide a more efficient use of 

the GPU architecture. 

 

Experiments have demonstrated that the proposed shape 

features do not imply in a significant change of the 

segmentation results, as long as the algorithm’s parameters are 

properly adjusted. Moreover, experiments for performance 

evaluation indicated the potential of using GPUs to accelerate 

this kind of application. For a simple hardware (GeForce 9600 

GT), the parallel algorithm reached a maximum speedup of 4.97 

and with a more powerful GPU (Tesla C1060) an acceleration 

of 6.86 was achieved. Considering that segmentation is 

responsible for a significant portion of the execution time in 

many image analysis applications, especially in object-oriented 

analysis of remote sensing images, the experimentally observed 

acceleration values are significant. It should also be noted that 

these performance gains can be obtained with low investment in 

hardware, as GPUs with increasing processing power are 

currently available on the market at declining prices. 
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