
A PARALLEL IMAGE SEGMENTATION ALGORITHM ON GPUS

P. N. Happ a,*, R. Q. Feitosa a, C. Bentes b, R. Farias c

a
Department of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro

Rua Marquês de São Vicente 225, Gávea, CEP 22451-900, Rio de Janeiro, RJ, Brazil

{patrick, raul}@ele.puc-rio.br
b
 Dept. of Computer and Systems, Rio de Janeiro State University

Rua São Francisco Xavier 524, Maracanã, CEP 20550-900, Rio de Janeiro, RJ, Brazil

cris@eng.uerj.br
c
 Federal University of Rio de Janeiro

P.O. Box: 6851, CEP 21945-970, Rio de Janeiro, RJ, Brazil

rfarias@cos.ufrj.br

KEY WORDS: Image Segmentation, Parallel Processing, GPU

ABSTRACT:

Image segmentation is a computationally expensive task that continuously presents performance challenges due to the increasing

volume of available high resolution remote sensing images. Nowadays, Graphics Processing Units (GPUs) are emerging as an

attractive computing platform for general purpose computations due to their extremely high floating-point processing performance

and their comparatively low cost. In the image analysis context, the use of GPUs can accelerate the segmentation process. This work

presents a parallel implementation of a region growing algorithm for GPUs. The parallel algorithm is based on processing each pixel

as a different thread so as to take advantage of the fine-grain parallel capability of the GPU. In addition to the parallel algorithm, the

paper also suggests a modification to the heterogeneity computation that improves the segmentation performance. The experiments

results demonstrate that the parallel algorithm achieve significant performance gains, running up to 6.8 times faster than the

sequential approach.

* Corresponding author.

 INTRODUCTION

Image segmentation has been the subject of extensive research

in the areas of digital image processing and computational

vision. The segmentation process plays a key role in the image

analysis process (Blaschke and Strobl, 2001), and many

segmentation methods have been proposed in the literature

(Riseman and Arbib, 1977; Fu and Mui, 1981; Haralick and

Shapiro, 1985; Pal and Pal, 1993; Deb, 2008) together with

metrics for quality assessment (Zhang, 1996; Correa and

Pereira, 2000; Cardoso and Corte-Real, 2005; Zhang et al.,

2008). Among the image segmentation methods, the region

growing algorithm is one of the best known and the most widely

used in the remote sensing area (Tilton and Lawrence, 2000).

 Region growing algorithms group pixels or sub-regions in

larger regions on an iterative way. The process starts with a set

of initial points, called seeds, that grows by merging adjacent

regions that contains similar properties such texture or color.

However, this segmentation technique is computationally

expensive when large images are considered (Wassenberg et al.,

2009). In addition, region growing usually has some parameters

that must be adjusted for each type of application, which

implies in a number of executions until the optimal parameter

values are found. Thus, the execution time of the segmentation

is decisive for its operational use in automatic image

interpretation systems. For this reason, computational

acceleration is highly required.

Recent advances in the hardware architecture and

programmability of Graphics Processing Units (GPUs) have

turned them into an attractive platform for accelerating general

purpose floating-point computations. They offer promising

speedups, are available off-the-shelf, and it is likely that most

computers will be equipped with such devices in the future.

Modern GPUs can achieve performance of at least one order of

magnitude higher compared to that of the traditional CPUs.

However, the problem is how to program these devices

efficiently. Parallelizing the algorithm to fit the highly parallel

architecture of the GPU can be a challenging task.

Several GPU implementations of image segmentation methods

have been proposed in the literature. Some of them were built

on the facility of implementing the evaluation of partial

differential equations in a stream processing model (Sherbondy

et al., 2003; Lefohn et al., 2003). There are also some research

efforts in the area of medical imaging (Ruiz et al., 2008; Erdt et

al., 2008; Ahn et al., 2005; Unger et al., 2008; Pan et al., 2008).

The particular case of satellites images has to be pointed out.

Sun et al. (2009) implemented a parallel segmentation method

in GPU for remote sensing images based on the clustering Mean

Shift algorithm. Their approach starts from selected seeds and

clusters the pixels near the seeds. The center of each cluster is

computed and the regions grow from these centers. This two

step method implies in a pixel independent parallel

implementation that provided a speedup around 20 for

IKONOS and Quickbird images. Nevertheless, as far as we

know, there is no GPU implementation of unseed region

growing algorithm.

Proceedings of the 4th GEOBIA, May 7-9, 2012 - Rio de Janeiro - Brazil. p.580

580

Algorithms that consider every pixel as a seed pose an extra

difficulty to the parallel implementation due to the large number

of processes/threads and the synchronization required among

them. In (Happ et al., 2010), we suggest a parallel strategy for

multicore architectures that deals with unseeded region growing

using a tile image division approach. In this paper, we propose a

different parallelization scheme that takes benefit of the highly

parallel architecture of the GPU. Instead of dividing the image

into tiles, each pixel is processed by a different thread. Also,

two new attributes for calculating spatial heterogeneity are

presented in order to maximize computational efficiency. The

algorithm is implemented using the programming languages C

and CUDA and the computational performance is evaluated for

a given set of remote sensing images.

The organization of this paper is as follows. In Section 2, the

GPU architecture is briefly described. In Section 3, the

sequential region growing is depicted. In Section 4, the parallel

algorithm is exposed. In Section 5, comparisons between the

serial and parallel algorithms are presented. In the last section,

the conclusions are presented.

 GPU ARCHITECTURE

Modern GPUs are massively parallel processors that support a

great number of fine-grain threads. They are especially well-

suited to explore computations on many data elements that have

high arithmetic intensity. The GPU architecture is composed of

a scalable array of so-called streaming multiprocessors. One

such multiprocessor contains amongst others a number of scalar

processor cores, a multi-threaded instruction unit, a number of

registers and a shared memory. The number of multiprocessors

and processor cores depends of the architecture and model of

the GPU.

CUDA (NVidia, 2010) is the NVidia C-based development

environment for GPUs, that includes a parallel programming

model and an instruction set architecture. CUDA allows the

programmer to define special C functions, called kernels, which

are executed in parallel by different CUDA threads. The

programmer organizes these threads into a hierarchy of grids of

thread blocks. A thread block is a set of concurrent threads that

can cooperate among themselves through barrier

synchronization and shared accesses. During execution, the

threads can access data at different levels of hierarchy: registers,

shared memory and global memory. The global memory is

accessible by all threads, but its access time is about 500 times

slower than the access time to shared memory and registers.

Thread processing is not independent on the GPU. Threads are

executed in groups called warps. Within a warp, all the threads

execute the same instruction. If one thread diverges from the

others, there is performance degradation, since this thread starts

to operate singly while the remaining are disabled.

 REGION GROWING ALGORITHM

As we focus in remote sensing applications, we choose a

popular region growing algorithm, proposed originally by Baatz

and Schäpe (2000), as the basis of our parallel implementation.

This method was considered as one of the most effective

segmentation algorithms (Neubert and Meinel, 2003).

Furthermore, variants of this algorithm are available as

operators on the InterIMAGE platform (InterIMAGE, 2012)

and on the Definiens system (Definiens, 2008).

This algorithm consists of an iterative method that seeks to

minimize the average heterogeneity of the image objects. All

image pixels are first considered as seeds or initial segments

and, at each step, the heterogeneity increase is calculated as a

result from merging two adjacent segments. This value is given

by a fusion cost that must be below a given threshold to enable

merging both segments into a single one. The process is

repeated until no merge is possible.

The fusion cost (f) represented by Equation 1, is defined by a

weighted sum between a component related to spectral

heterogeneity (hcolor) and another referred to spatial

heterogeneity (hshape). The importance of these components is

defined by a relative weight between color and shape (wcolor)

and for both heterogeneity components the formula is based on

the difference between the merged object (obj3) and the sum of

the separated objects (obj1 and obj2) as it can be seen in

Equation 2.

shapecolorcolorcolor hwhwf).1(.  (1)

)(213 objobjobjx hhhh  (2)

Spectral heterogeneity (hcolor) is given by the standard deviation

of each pixel value, considering each color band separately and

given a different weight for each band. On the other hand,

spatial heterogeneity (hshape) is composed by two different shape

components: one related to compactness and another related to

smoothness. Compactness (Cmp), formulated in Equation 3, is

given by the ratio between the edge length (l) and the square

root of the object area (n). Smoothness (Smt), as seen in

Equation 4, refers to the ratio between the object edge length (l)

and the edge length of its bounding box (b) It is worth to note

that there is also a weight to manage the importance between

compactness and smoothness on the composition of the spatial

heterogeneity.

n

l
Cmp  (3)

b

l
Smt  (4)

The algorithm has, therefore, an adjustable heterogeneity

criterion. Parameters such as the relevance of each spectral

band and the relative importance of shape and color and

between compactness and smoothness can be tuned in order to

achieve a better segmentation result. A final parameter called

scale, which defines the maximum admissible fusion cost

directly influences the size of the generated objects.

 PARALLEL ALGORITHM

The fundamental characteristic of the GPU architecture is that it

has a highly parallel architecture that supports a great number of

581

fine-grain threads. In this way, the proposed parallel algorithm

assigns the processing of each pixel of the image to each thread.

This parallelization scheme exploits the massive computational

capacity of the GPU and also provides a good load balancing,

since each thread deals with the same amount of computation.

Another advantage of this parallelization scheme is the ability to

process every image segment directly, without dividing the

image into tiles and having to deal with bordering issues.

A data structure is created on the GPU global memory for each

image pixel to store information about the pixel and the

segment it belongs to, as shown in Figure 1. This structure is

organized in a vector whose indexes represent the pixel

identifiers (pixel Id). The structure holds the following

information: a) the segment identifier (segment Id) the pixel

belongs to; b) if the pixel is part of the segment border; c) the

previous and next pixel of that segment; d) segment area; e)

segment spectral and spatial attributes; f) the Id of its best

neighbor segment, as will be later explained; and g) the fusion

cost. The pixel called hereafter segment maker is the one, whose

Id coincides with the Id of its segment. The information from d)

to g) is only relevant for segment makers.

Figure 1. Data structure

The parallel algorithm consists of six kernels to be executed by

the GPU (see Figure 2) described below:

Figure 2. Diagram of the parallel segmentation algorithm

Initialize Seeds

The function Initialize Seeds marks each image pixel as a seed,

which will represent an initial segment. Then, the attributes of

these pixels are computed and stored in a specific data structure

(see Figure 1).

Evaluate Neighbors

The function Evaluate Neighbors first detects the pixels over

segment borders. The fusion cost of the adjacent segments to

each of those pixels is then calculated. That one representing

the lowest cost for a pixel is denoted as its best neighbor in the

shared memory. As the processing is pixel based and a segment

can have lots of border pixels, there must be a comparison

between the local result (by pixel) and the global result (by

segment). This task is executed inside a critical section to

update the Id of the best neighbor and the fusion cost at the

segment former structure on GPU global memory.

Process Fusions

If any of the segment makers has the fusion cost lower than the

maximum fusion cost (a given threshold), it is selected to grow.

A critical section should then be created to avoid information

overlapping like two threads attempting to merge its segment

with the same adjacent segment. The fusion itself then occurs,

updating the attributes of the segment chosen to grow by

merging it with its best neighbor. Consequently, the adjacent

segment is no longer considered as a valid segment and its

representing pixel (segment maker) is included in the merged

segment. It should be noted that in order to avoid performance

loss, we created a mechanism to perform control over the

waiting threads on the critical section. Therefore, when a thread

is waiting, its pixel is marked as "unprocessed" and the thread is

aborted. To ensure the execution of every pixel, the function

Process Fusions is called repeatedly until there are no pixels

marked as "unprocessed".

Redefine Segments

 This function is responsible for updating the pixels belonging

to segments that were merged with their new segment identifier

- the one from the segment which have encompassed them. This

function should be performed only if a fusion has occurred in

the previous function.

Recalculate Borders

This function aims at excluding from processing those pixels no

longer lying on any segment border. Thus, for each border pixel

it is checked whether at least one of its adjacent pixels belongs

to a different segment. Otherwise, the pixels are no more part of

the edge.

Write Image Result

When no more merging is possible, the algorithm is finished by

the Write Image Result function. Each pixel is processed in

parallel writing the average of each spectral band of every

segment on a resulting image. It is worth to mention that the

segments borders are printed with a particular given color.

Spatial Attributes

The features defined in equations (3) and (4) must be

recalculated whenever two segments are merged. It requires the

calculation of the border length of the new segment. This can be

performed by adding the border lengths of both segments being

merged and then subtracting the pixels on the common border.

The execution time of this operation increases as segments

grow, and may become computationally expensive. Since this

operation must visit each border pixel, it may involve a large

number of accesses to the structure of the segments stored in the

high latency GPU global memory. In addition, this operation

leads to load imbalance as the involved processing effort is

proportional to the border length of each segment.

In order to circumvent this problem, we propose the

replacement of these features by other ones, which do not

involve the border length computation and are semantically

582

equivalent, in the sense they reach their minimum for similar

shapes. Inspired by the discussion of Russ (1998) on shape

features, we propose a new definition for compactness (Comp)

and a new feature called solidity (Sol) to describe shape in the

region growing algorithm described in section 3. The former, as

the feature in equation (3), diminishes as the object becomes

more compact. It is defined in Equation 5, where n is the object

area and dmax is the diameter of the adjusted ellipse around the

object. The latter, like the smoothness, varies according to

object´s convexity and involves only the object area n and the

area of its bounding box nbox as defined in Equation 6.

max

4

d

n

Comp



(5)

nbox

n
Sol  (6)

 EXPERIMENTAL ANALYSIS

5.1 Impact of the new shape features on the segmentation

outcome

The goal of these experiments was to test if the segmentation

results obtained by formulating heterogeneity in terms of the

features proposed in equations (5) and (6) may be similar to the

outcome obtained with the original formulation by a proper

adjustment of the segmentation parameters.

Using a crop of a QuickBird image we first delineated manually

three sets of segments to represent three distinct reference

segmentation outcomes. Next, applying the approach proposed

in (Costa et al., 2008) a genetic algorithm searched the

parameter space for the set of values that optimized the level of

agreement between the reference and the segmentation

outcome. This experiment was performed for each set of

references and for both variants of the segmentation algorithm.

Table 1 shows the dissimilarity between references and

outcomes as measured by the RBSB function (Reference

Bounded Segments Booster) (Costa et al., 2008) in each

experiment. The values in the same column, which correspond

to the same set of segment references, did not differ

substantially between both heterogeneity formulations.

Attributes

Disparity values according to references

Homogeneous Heterogeneous Mixed

Cmp & Svd 0.14 0.56 0.46

Comp & Sol 0.16 0.57 0.40

Table 1. Disparity values according to references

Fig. 3 provides a visual perception of the segmentation

differences in each case for both pairs of shape features. Figures

(a) to (c) refer to the use of the original features, while Figures

(d) to (f) are related to the use of the proposed features.

Experiments have shown that these differences are comparable

to what is observed when two slightly displaced crops of the

same image are used for testing. This changes the order the

region growing procedure visits each pixel, so that the

segmentation outcomes differ quite in the same amount as can

be seen in each column in Figure 3.

This evidences, that both proposed shape features are nearly

equivalent to the original ones as far as the segmentation result

is concerned, provided that the segmentation parameters are

properly tuned.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Segmentation result using Cmp and Svd for

homogeneous (a), heterogeneous (b) and mixed (c) objects and

using Comp and Sol for homogeneous (d), heterogeneous (e)

and mixed (f) objects.

5.2 Speedup of the parallel version

A second sequence of experiments had the objective to assess

the performance gains in terms of execution time. The

experiments were performed in two different environments

using two GPUs, different processors (CPU), and operating

systems (OS):

GT_9600

GPU: NVidia GeForce 9600 GT with 64 cores and

1GB of memory

CPU: Intel Core 2 6300 processor @ 1.86 GHz and

3.25GB of RAM.

OS: Windows XP.

Tesla:

GPU: NVidia Tesla C1060 with 240 cores and 4GB

of memory

CPU: Intel Xeon @ 2.5GHz and 7.8 GB of RAM,

OS: GNU/Linux.

For the experiments, we used six clippings from an aerial image

of Jardim Tropical in Resende, Brazil to generate images of

different sizes as shown in Table 2.

Label Rows Cols Pixels

Resende_500 500 500 250000

Resende _1000 1000 1000 1000000

Resende_1500 1500 1500 2250000

Resende_2000 2000 2000 4000000

Resende _2500 2500 2500 6250000

Resende_2800 2800 2800 7840000

Table 2. Image clippings and their respective sizes.

583

Figures 4 and 5 shows the speedups obtained for all the images

running respectively on the environments GT_9600 and Tesla.

The speedup of a parallel algorithm refers to how much it is

faster than the corresponding sequential algorithm. The

speedups reported here are computed as the sequential

execution time divided by the parallel execution time.

Figure 4. Speedup for Win_9600 environment

Figure 5. Speedup for Lnx_Tesla environment

Figure 4 shows that the speedups obtained by the GT_9600

execution were always above 4, reaching almost 5 in some

cases. Although the images are different in terms of the number

of pixels to process, the speedup obtained present small

variations when the size of the image increases. In this

environment, the GPU used is quite limited and has only 64

cores, which is underestimated for the images sizes. So the

amount of parallelism obtained for all the images are almost the

same. The difference in the performance results comes from the

difference in the regions found in each image.

Figure 5 shows that when a more powerful GPU is used, it is

possible to observe the benefits of the parallelization when the

image size grows. The speedup obtained for Resende_500 and

Resende_1000 were relatively low. This occurs because of the

underutilization of the GPU, since the relative cost of data

transfer from CPU to GPU and the GPU memory accesses are

considered relevant when comparing to the processing time.

From Resende_1500 on, the speedups are greater than 5

reaching 6.86 for Resende_2500.

It is worth noting that despite achieving speedups up to 6.86

times compared to the sequential version, these results were

well below to the number of cores present in the GPUs used.

This occurs due to the characteristics of the original

segmentation algorithm that implies in a strong dependency

among the threads and the need to constant access to GPU

global memory.

 CONCLUSION

The main objective of this work was to propose and to evaluate

the performance of a parallel region growing segmentation

algorithm that takes benefit of the highly parallel architecture of

the GPU. The parallel algorithm essentially assigns a particular

thread to each image pixel so as to exploit the GPU support of

fine-grain threads and the large number of processing elements

available. The heterogeneity criterion that controls the region

growing is formulated in terms of both spectral and spatial

features of the segments. Two different shape features were

proposed to replace the ones introduced in the original

sequential algorithm in order to provide a more efficient use of

the GPU architecture.

Experiments have demonstrated that the proposed shape

features do not imply in a significant change of the

segmentation results, as long as the algorithm’s parameters are

properly adjusted. Moreover, experiments for performance

evaluation indicated the potential of using GPUs to accelerate

this kind of application. For a simple hardware (GeForce 9600

GT), the parallel algorithm reached a maximum speedup of 4.97

and with a more powerful GPU (Tesla C1060) an acceleration

of 6.86 was achieved. Considering that segmentation is

responsible for a significant portion of the execution time in

many image analysis applications, especially in object-oriented

analysis of remote sensing images, the experimentally observed

acceleration values are significant. It should also be noted that

these performance gains can be obtained with low investment in

hardware, as GPUs with increasing processing power are

currently available on the market at declining prices.

ACKNOWLEDGEMENTS

This study is part of the MSc-Thesis from the first author. He

acknowledges the support given by the Pontifical Catholic

University of Rio de Janeiro (PUC-Rio, Brazil) and the

National Council for Scientific and Technological Development

(CNPq, Brazil) for supplying his Masters scholarship.

REFERENCES

Ahn, I., Lehr, M. and Turner, P., 2005. Image processing on the

gpu. Technical report, University of Pennsylvania, February

2005.

Blaschke, T. and Strobl, J., 2001. What is wrong with pixels?

Some recent developments interfacing remote sensing and GIS,

GIS - Zeitschrift für Geoinformationssysteme, n. 6, pp. 12-17.

Baatz, M. and Schäpe, A., 2000. Multiresolution segmentation:

an optimization approach for high quality multi-scale image

segmentation. In: XII Angewandte Geographische

Informationsverarbeitung, Wichmann-Verlag, Heidelberg.

Cardoso, J. S. and Corte-Real, L., 2005. Toward a generic

evaluation of image segmentation, Image Processing, IEEE

Transactions on, vol. 14 (11), pp. 1773-1782.

Correia, P. and Pereira, F., 2000. Objective evaluation of

relative segmentation quality, Image Processing, Proceedings.

2000 International Conference on, vol.1, no., pp.308-311.

584

https://www.google.com.br/search?hl=pt-BR&sa=X&ei=qRhiT6G6E4G0gwegs8jbAg&ved=0CBwQvwUoAA&q=Angewandte+Geographische+Informationsverarbeitung&spell=1
https://www.google.com.br/search?hl=pt-BR&sa=X&ei=qRhiT6G6E4G0gwegs8jbAg&ved=0CBwQvwUoAA&q=Angewandte+Geographische+Informationsverarbeitung&spell=1

Costa, G. A. O. P., Feitosa, R. Q., Cazes, T. B. and Feijó, B.,

2008. Genetic Adaptation of Segmentation Parameters. In:

Blaschke, T., Lang, S. and Hay, G. (Eds.). Object-Based Image

Analysis: Spatial concepts for knowledge-driven remote sensing

applications. Heidelberg: Springer, 2008. pp. 679-695.

Deb, S., 2008. Overview of image segmentation techniques and

searching for future directions of research in content-based

image retrieval, Ubi-Media Computing, 2008 First IEEE

International Conference on , vol., no., pp.184-189.

Definiens, 2008. Image Analysis Software for Earth Sciences,

http://www.definiens.com/imageanalysis-for-

earthsciences_45_7_9.html (acessed nov. 2008).

Erdt, M., Raspe, M. and Suehling, M., 2008. Automatic hepatic

vessel segmentation using graphics hardware. In MIAR ’08:

Proceedings of the 4th international workshop on Medical

Imaging and Augmented Reality, pages 403–412.

Fu, K. S. and Mui, J. K., 1981. A survey on image

segmentation, Pattern Recognition, vol. 13, Issue 1, pp. 3–16.

Happ, P. N., Ferreira, R. S., Bentes, C., Costa, G. A. O. P, and

Feitosa, R. Q., 2010. Multiresolution Segmentation: a Parallel

Approach for High Resolution Image Segmentation in

Multicore Architectures, In: 3rd International Conference on

Geographic Object-Based Image Analysis, 2010, Ghent, The

International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences. Enshede: ITC, 2010.

v.XXXVII.

Haralick, R. M. and Shapiro, L. G., 1985. Image Segmentation

Techniques, Computer Vision Graphics, and Image Processing,

vol. 29, Issue 1, pp. 100–132.

InterIMAGE, 2010. An open source knowledge based

framework for automatic image interpretation,

http://www.lvc.ele.puc-rio.br/projects/interimage/index.html

(acessed jan. 2012).

Lefohn, A., Cates, J. and Whitaker, R., 2003. Interactive, gpu-

based level sets for 3d brain tumor segmentation. In Medical

Image Computing and Computer Assisted Intervention, pages

564–572.

Neubert, M. and Meinel, G., 2003. Evaluation of segmentation

programs for high resolution remote sensing applications. In:

Schroeder, M., Jacobsen, K., Heipke, C. (Eds.). Proceedings

Joint ISPRS/EARSeL Workshop “High Resolution Mapping

from Space 2003”, Hannover, Germany, October 6-8.

NVidia, 2010. NVIDIA CUDA C ProgrammingGuide,v3.2,

http://developer.download.nvidia.com/compute/cuda/3_2_prod/

toolkit/docs/CUDA_C_Programming_Guide.pdf (accessed jan.

2012).

Pal, N. R. and Pal, S. K. A., 1993. A review of image

segmentation techniques, Pattern Recognition, vol. 26, Issue 9,

pp. 1277-1294.

Pan, L., Gu, L. and Xu, J., 2008. Implementation of medical

image segmentation in CUDA, Information Technology and

Applications in Biomedicine, ITAB 2008. International

Conference on , vol., no., pp.82-85.

Riseman, E. M. and Arbib, M. A., 1977. Computational

Techniques in the Visual Segmentation of Static Scenes,

Computer Graphics and Image Processing, vol. 6, Issue 3, pp.

221–276.

Ruiz, A., Kong, J., Ujaldon, M., Boyer, K. L., Saltz, J. H.

and Gurcan, M. N., 2008. Pathological image segmentation for

neuroblastoma using the gpu. In ISBI, pages 296–299.

Russ, J. C., 1998. The image processing handbook - 3rd ed.

Materials Science and Engineering Department North Carolina

State University Raleigh - North Carolina, 1998.

Sherbondy, A., Houston, M. and Napel, S., 2003. Fast volume

segmentation with simultaneous visualization using

programmable graphics hardware. In IEEE Visualization, pp.

171–176.

Sun Xiao-gu, Li Man-chun, Liu Yong-xue, Liu Wei, and Tan

Lu, 2009. Accelerated segmentation approach with cuda for

high spatial resolution remotely sensed imagery based on

improved mean shift. In Urban Remote Sensing Joint Event,

pages 1–6.

Tiltonand, J. C. and Lawrence, W. T., 2000. Interactive analysis

of hierarchical image segmentation, Geoscience and Remote

Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE

2000 International, vol.2, no., pp.733-735.

Unger, M., Pock, T. and Bischof, H., 2008. Continuous globally

optimal image segmentation with local constraints.

Intelligence 2008, pages 1-8.

Wassenberg, J., Middelmannand, W. and Sanders, P., 2009. An

efficient parallel algorithm for graph-based image segmentation.

In CAIP '09: Proceedings of the 13th International Conference

on Computer Analysis of Images and Patterns, pp. 1003-1010,

Berlin, Heidelberg. Springer-Verlag.

Zhang, H., Fritts, J. E. and Goldman, S. A., 2008. Image

segmentation evaluation: A survey of unsupervised methods,

Computer Vision and Image Understanding, vol. 110, Issue 2,

pp. 260-280.

Zhang, Y. J., 1996. A survey on evaluation methods for image

segmentation, Pattern Recognition, vol. 29, Issue 8, pp. 1335-

1346.

585

http://www.definiens.com/imageanalysis-for-earthsciences_45_7_9.html
http://www.definiens.com/imageanalysis-for-earthsciences_45_7_9.html
http://www.lvc.ele.puc-rio.br/projects/interimage/index.html
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

