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ABSTRACT:

Clouds and cloud shadows often obscure parts of images acquired by optical space-borne sensors. The clouds and cloud shadows
need to be detected and labeled as missing data. This enables subsequent methods to make their own decisions about how the missing
data should be handled. Here we propose an automatic method to detect daytime cloud and cloud shadows in the context of tropical
forest monitoring. In particular, we focus on Landsat 5 TM and Landsat 7 ETM+ images. In addition to the original bands, we
investigate the use of additional spectral-derived features, based on pixel-wise differences, ratios, and maximum values derived for all
combinations of pairs of top-of-the atmosphere reflectance bands. The subset of features retained for classification, and the boundaries
of the classes in the feature space, were identified by optimizing the accuracy of the proposed method using samples collected from
spatially disjoint scenes, acquired in different time periods, in an attempt to increase the generalization capability of the proposed
approach when applied to unseen scenes. When a new image is to be classified, the idea is to first segment it locally using the Statistical
Region Merging algorithm (Nock and Nielsen, 2004). Cloud and cloud shadow masks are then obtained by classifying the averaged
pixel values, inside each segment, instead of individual pixels. Finally a simple cloud shape matching algorithm is used to reduce false
detection of cloud shadow areas. We found that the proposed object-based technique reduces the spatial noise of the final classified
map when compared to traditional single pixel classification. The accuracy of the proposed method appears to be comparable to two
alternative algorithms selected for benchmark purposes.

1 INTRODUCTION

For clouds, the top-of-atmosphere reflectance in the visible and
near-infra red bands tend to be brighter than the surrounding back-
ground surface. This difference is more pronounced when the
background land cover is vegetation. Clouds also tend to be
colder. The literature of cloud detection on optical imagery is
rich. Traditional cloud detection techniques classify the spec-
tral pixel values individually, without using contextual informa-
tion. Example of alternative strategies for cloud detection in-
clude the use of spectral clustering (Simpson and Gobat, 1996),
or modeling of spatial information using Markov Random fields
(Le Hégarat-Mascle and André, 2009), among many others.

Robust detection of cloud shadows is not trivial, but good esti-
mates may be obtained by using information about the viewing
geometry and the sun location (Le Hégarat-Mascle and André,
2009). Currently, the Norwegian Computing Center is develop-
ing methods for vegetation classification and change detection
from time-series of optical images with missing data, e.g., due
to cloud cover (Salberg, 2011a, Salberg and Trier, 2011). The
detection of cloud and cloud shadows in an important component
of the processing chain.

2 DATA AND METHODS

2.1 Landsat TM/ETM+ scenes

A set of 14 Landsat scenes acquired in Tanzania between 1987
and 2010 were used for developing and testing the method. The
data was collected in 11 different path/rows, with 10 scenes ac-
quired by Landsat 5 (TM) and 4 scenes by Landsat 7 (ETM+)
(Tab. 1). The scenes were split into three disjoint sets, used for
training, validation, and test purposes. The different geographic

locations (path/row), in addition to distinct acquisition dates, al-
low us to better access the generalization capability of the pro-
posed algorithm.

2.2 Protocol for labeling ground truth samples

Ground truth samples were manually selected by visual inspec-
tion of an RGB color composition of the Landsat scenes gener-
ated using the TOA reflectance bands {5,4,3}. Pixels correspond-
ing to clouds, cloud shadows, and background (mostly vegeta-
tion, soil, and water) were selected using the polyline functional-
ity available in region-of-interest tool in the ENVI software. In
this laborious activity, typically the resulting number of labeled
samples variates across the classes and scenes. In a final step, we
randomly subsample the manually labeled regions selecting 500
pixels of each class, for each scene. This was done to give the
same importance to all classes and scenes.

2.3 Development of the proposed algorithm: statistical clas-
sifiers and feature selection

The six visible and near-infrared bands of Landsat TM/ETM+
were first converted to top-of atmosphere reflectance (TOA). It is
often the case that secondary features, that can be derived from
the combination of the available bands, can also be useful for
classification purposes. In the context of analysis of vegetation,
a well know example that illustrates this idea is the use of the
Normalized Difference Vegetation Index (NDVI). The NDVI is
calculated as (NIR-VIS)/(NIR+VIS), where VIS and NIR stand
for the spectral reflectance measurements acquired in the visible
(red) and near-infrared bands.

In the case of cloud detection, ratios and/or differences of re-
flectance bands are sometimes employed (Irish et al., 2006).
Given the six reflectance bands available in Landsat, we test three
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Table 1: The Landsat images used in this study, and the estimated area of cloud and cloud shadow for the scenes [in %], according to
the different algorithms tested: LEDAPS, the proposed OB-C (object based classification), and the GMM (Gaussian mixture model)

# Landsat Path/Row Year-Month-Day Solar Zen.(Azi.) LEDAPS OB-C GMM ∩clouds OB-C GMM ∩shadows

Tr
ai

ni
ng

1 5 168 / 62 1987-02-25 41 (101) 3.4 2.4 2.8 1.6 3.3 4.0 2.0
2 5 172 / 63 2008-06-22 41 ( 46) 3.8 1.2 2.0 1.2 8.2 8.7 6.6
3 5 165 / 68 1995-03-30 45 ( 73) 38.5 25.6 33.8 24.5 13.4 6.8 6.1
4 7 167 / 65 2001-08-27 36 ( 61) 7.6 12.2 12.7 7.1 11.9 13.5 10.1

V
al

id
at

io
n 5 5 168 / 67 1994-10-10 36 ( 87) 45.8 20.0 37.7 19.1 1.6 3.1 1.0

6 5 170 / 65 2010-11-05 27 (110) 0.0 0.6 6.5 0.0 0.0 0.3 0.0
7 5 171 / 62 2010-01-28 36 (118) 32.7 2.1 9.4 1.9 9.2 6.5 2.9
8 5 171 / 63 2007-10-03 27 ( 90) 35.0 38.5 35.2 30.8 14.5 14.0 12.4

Te
st

9 7 167 / 63 2001-03-04 33 ( 95) 2.2 0.7 1.4 0.4 0.8 0.6 0.5
10 7 167 / 63 2001-05-07 36 ( 53) 13.3 11.2 12.6 9.8 12.9 11.4 10.2
11 7 167 / 63 2001-12-01 32 (126) 10.5 15.1 21.6 9.6 5.8 4.7 3.6
12 5 166 / 67 2009-07-17 45 ( 46) 17.5 16.8 18.3 14.8 11.4 12.2 10.0
13 5 166 / 67 2009-06-15 45 ( 42) 24.2 24.0 24.5 21.4 13.2 12.6 11.0
14 5 166 / 63 2009-11-06 28 (117) 12.9 11.8 11.2 7.6 48.1 8.6 7.2

typologies of features for possible use in the cloud and cloud
shadow detection problem. We compute simple features relat-
ing pairs of reflectance bands, specifically the ratio {r(i, j) =
band i/band j}, difference {∆(i, j) = band i − band j}, and
maximum {max(i, j) = max(band i, band j)}, of all the possi-
ble combinations of bands, where (i, j) are the reflectance bands
{1, 2, 3, 4, 5, 7}. The above features are computed in a pixel-wise
fashion, for all the 15 distinct pairs of bands that can be obtained.
In addition to this large set of derived features, we use the 7 bands
available, plus the NDVI, resulting in a set of 7+1+15×3 = 53
features available for discrimination purposes.

Not all these features are equally relevant for the classification
task. Obviously, the selection of a reduced subset would make
computations faster, and reduce computer memory requirements.
We would like the best subset of features to be (automatically)
identified. The selected features might depend on the statistical
classifier selected.

Feature selection was the approach adopted for feature reduction,
and it was implemented using the Sequential Forward Selection
algorithm (SFS) (Pudil et al., 1994). SFS relies on two key com-
ponents (a) an objective function, called criterion, which is to be
optimized, and (b) a search mechanism. Starting with an empty
set, the SFS algorithm tests and adds sequentially one feature at a
time to the candidate set until the addition of further features do
not improve the criterion. SFS is intrinsically a suboptimal search
algorithm, because an exhaustive search for all the possible com-
binations of features is computationally prohibitive. The average
classification accuracy, measured in the validation set (spatially
and temporally disjoint), is used as the criterion to guide the iter-
ative search procedure.

Six different classifiers were tested in this study. The selection
included both parametric and non-parametric approaches, which
are among the classics in the pattern recognition literature (Hastie
et al., 2009):

• Trees: decision tree classifier (CART algorithm)

• 1NN: the nearest neighbor approach using Euclidian dis-
tances in the feature space

• Naive Bayes: assume that features are independent of one
another within each class. Here each feature is modeled us-
ing a univariate normal distribution

• Mahalanobis: uses the Mahalanobis distance with covari-
ance estimates stratified by class

• LDA: linear discriminant analysis fits a multivariate normal
density to each class, with a pooled estimate of covariance
matrix

• QDA: quadratic discriminant analysis fits multivariate nor-
mal densities with covariance estimates stratified by class

The classifiers were trained with the training samples from the
three classes of interest: (1) clouds, (2) background, (3) cloud
shadows. During our computations, we assumed equal priors for
all classes.

Selection of the best subset of features in a spatially and tem-
porarily disjoint set is an attempt to increase the generalization of
the classification model.

The accuracies and features, as selected by SFS, are shown in
Tab. 2. Note that the statistical model used by each classifier is
distinct, and this has an impact on the predicted classification ac-
curacy and the ranked features. Results suggest that three features
capture most of the accuracy that can be obtained. It is often the
case that ratio and difference features were selected with higher
priority than the original bands. For our current training and val-
idation sets, the thermal band appears among the first 7 features
selected when the parametric models are selected. This was not
the case for the non-parametric classifiers tested.

The non-parametric nearest neighbor approach appears to per-
form slightly better than the other classifiers tested. This is not
surprising if one considers the multimodal distributions of the
training samples (Fig. 1), which are difficult to model with the
Naive Bayes, LDA and QDA which are all unimodal. The per-
formance of k-NN, for higher values of k is similar (not shown).
At the current stage, we had to discard the option of using the
nearest neighbor classifier due the lack of a fast implementation.
Instead, we selected the Naive Bayes classifier, that despite its
simplicity, gave better accuracies than its conceptually improved
Mahalanobis, LDA, and QDA counterparts. The tree classifier
would also be an option to consider.

2.4 Cloud and cloud shadow detection

For the purpose of this study, we focus on the Naive Bayes classi-
fier, running only on the first three reflectance features identified
in Tab. 2, namely band 5, band 1, and the difference between
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Table 2: Sequence of first seven features selected by the SFS algorithm, and the respective average accuracy measure in the validation
set used as the optimization criterion, for each of the classifiers trained using the training samples

Method 1 2 3 4 5 6 7

Trees 80.7 [r(2, 5)] 95.8 [B1] 96.2 [∆(1, 2)] 96.2 [r(3, 5)] 96.5 [r(4, 7)] 96.6 [B3] 96.6 [B7]
1NN 80.8 [B2] 96.1 [∆(1, 5)] 97.0 [∆(1, 3)] 97.2 [B1] 97.2 [B7] 97.2 [∆(2, 3)] 97.3 [∆(1, 2)]

NaiveBayes 81.7 [B5] 93.7 [B1] 96.1 [∆(3, 5)] 96.2 [∆(2, 5)] 96.4 [∆(2, 4)] 96.7 [B6] 96.5 [B2]
Mahalanobis 68.0 [r(2, 5)] 83.6 [B2] 86.3 [r(4, 5)] 91.9 [B4] 91.3 [∆(3, 5)] 88.5 [B6] 86.7 [r(2, 3)]

LDA 74.7 [B4] 82.3 [r(1, 2)] 85.1 [r(1, 5)] 89.6 [∆(2, 5)] 91.5 [NDV I] 92.5 [r(3, 5)] 93.1 [B6]
QDA 81.7 [B5] 95.9 [B1] 93.7 [B7] 94.3 [r(3, 5)] 94.4 [B6] 94.3 [B3] 94.8 [r(1, 3)]

Figure 1: Training and validation samples shown in the first two features selected by the SFS algorithm using the Naive Bayes (top
row) and 1–NN classifiers (bottom). The background class includes samples of soil, vegetation, water, among others. The training,
validation, and test samples are collected in spatially disjoint scenes (see Tab. 1), with distinct temporal acquisitions. Notice the problem
of shift of the class location in the feature space in the training and validation set, which is also the case for the test set (not shown),
which makes the design of a robust classification algorithm challenging.
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bands 3 and 5. The results in Tab. 2 suggest that this combination
of bands provide good discrimination results.

At one hand, the use of only three features is convenient for gen-
eration of an RGB image that can be segmented using standard
approaches that work with color images, like the Statistical Re-
gion Merging algorithm tested in this study (Nock and Nielsen,
2004). In our current proposal, this comes at the sacrifice of dis-
carding the thermal band (and other features) that would poten-
tially improve a bit the final classification. We hope to incorpo-
rate additional bands during the segmentation stage in future de-
velopments of the proposed methodology. By checking the typ-
ical range of reflectance values for the bands 5 and 1 (Fig. 1),
it appears that saturation thresholds could be used to generate a
RGB color composition without loss in the classification accu-
racy. We set the saturation thresholds at [0.0, 0.6], [0.0, 0.45],
and [−0.2, 0.2] for the first three selected features, respectively.
We map linearly the resulting reflectance-based image using 8
bits per color channel. The color image is then segmented using
the Statistical Region Merging (SRM) algorithm. SRM has an
internal parameter Q that controls the coarseness of the segmen-
tation. In our experiments we set Q = 256.

After the color image segmentation, for each segment, the av-
erage values for each spectral band are computed and used to
classify each segment as cloud, shadow, or background. Notice
that the classifier is trained with the original training samples, not
with the segmented image. Our conjecture is that segment-based
classification may be more robust than traditional pixel-wise clas-
sification if the averaged pixel values from the segments move
away from the proximity of the class boundaries, alleviating a bit
the problem of shift of the class location in the feature space in
the test set.

Next, a simple algorithm matches the shapes of the clouds and
the cloud shadows. This is done by translating the cloud mask
on top of the segments classified as shadow until the best spatial
shape match is found. Only the shadow segments that overlap
(at least partially) the cloud mask are retained. Despite simple,
this approach, that assumes approximately equal displacement of
shadows with respect to the corresponding clouds, eliminates a
lot of false cloud shadow detections, reducing substantially the
spatial noise and false detections of cloud shadows.

2.5 Alternative algorithms for benchmark

We compare the cloud and cloud shadow detection results with an
alternative approach based on a Gaussian mixture model (GMM)
(Salberg, 2011b). The main idea is that the distributions of the
test data can be obtained directly from each component of the
mixture distribution after the corresponding parameters have been
updated (from the distribution of the training data) using a low-
rank dataset shift modeling scheme. Two reflectance bands, and
the thermal band (which is resampled to 30m resolution) are used.
After the parameters of the class distributions have been adapted
to the test data, the image is classified using a Gaussian maxi-
mum likelihood classifier, regularized spatially by a Markov ran-
dom field in order to obtain smooth class boundaries. The cloud
shadow is identified by template matching in the sun azimuth di-
rection. The resulting cloud and cloud shadow masks are also
dilated to further remove any cloud/shadow remainings.

In addition, the proposed cloud algorithm is compared with the
cloud mask produced by LEDAPS (Masek et al., 2006)1. The
LEDAPS cloud mask include also a separate flag (QA). The miss-
ing values indicated in QA often appeared to be related to pixels
with a saturated reflectance values. 2

1the LEDAPS files labeled “lndcsm”
2We observed that this was likely to correspond to thick clouds. In

3 EXPERIMENTAL RESULTS

Table 3: Confusion matrix for the LEDAPS algorithm (in %). In
this case the shadow mask is not available for comparison

cloud background shadow

cloud 2859 (95.3) 141 (4.7) -
background 6 (0.1) 4994 (99.9) -
shadow 3 (0.1) 2997 (99.9) -

Table 4: Confusion matrix for the GMM algorithm

cloud background shadow

cloud 2941 (98.0) 59 (2.0) (0.0)
background 25 (0.5) 4680 (93.6) 295 (5.9)
shadow (0.0) 182 (6.1) 2818 (93.9)

Table 5: Confusion matrix for the OB-C algorithm (proposed)

cloud background shadow

cloud 2739 (91.3) 261 ( 8.7) ( 0.0)
background 9 ( 0.2) 4450 (89.0) 541 (10.8)
shadow ( 0.0) 76 ( 2.5) 2924 (97.5)

The accuracy for all the three cloud detection algorithms, mea-
sured in an independent test set, was found promising. The GMM
algorithm performed best (98.0%), followed by LEDAPS (95.3%),
and the proposed object-based method (91.3%) (Tabs. 3–5). In
Tabs. 3–5, the entry (i, j) represents the count of test samples
whose ground truth is the class i and whose predicted class is j.
3

Conversely, when it comes to detection of cloud shadows, the ac-
curacy of the proposed algorithm was found to be higher (97.5%)
than the benchmark GMM algorithm (93.9%) (Tab. 4–5).

The three methods tested appear to detect for thick clouds well.
Detection of haze remains very difficult, for all the algorithms
tested, and the variability of the solutions in such conditions is
typically very high (Fig. 2). The proposed OB-C appears to de-
tect too little haze (Fig. 2). GMM provided reasonable detection
of haze over distinct backgrounds (Fig. 2). We also found that
LEDAPS can provide cloud masks that are spatially very noisy,
especially on mountain regions. A careful inspection of the im-
ages revealed that the proposed algorithm confuses shadows with
water. This was particulary the case for a large portion of sea con-
fused with shadows (image #14 in Tab. 1). Confusion of shadow
with water is also unavoidable for the alternative GMM approach.

Summary statistics for cloud area, and cloud shadow area are in-
cluded in Tab. 1, with the respective agreements for all the scenes
analyzed. The current figures were computed excluding a 50
pixel buffer zone around the borders of the images. In general
the average values for each scene are in reasonable agreement,
but visual inspection revealed that local agreement can be low in
some of the scenes tested. It is important to stress that a careful

order to make the comparison of the cloud masks as fair as possible, we
checked each pixel with a missing value in QA. For those pixels, if both
the proposed methods agree as a cloud pixel, and LEDAPS had a flag
indicating an anomaly with the reflectance, then the LEDAPS cloud mask
was updated to cloud too. Visual inspection of the “updated” cloud mask
by LEDAPS suggested that our correction was realistic. A cloud shadow
mask for LEDAPS is currently not available for comparison.

3The number of test samples for both the cloud and cloud shadow
classes are 6 scenes x 500 = 3000 samples. In a similar way, 6 x 500 sam-
ples were collected for the background class. Additionally, water samples
were identified in 4 test images, adding 4 x 500 = 2000 samples to the
background class (5000 in total).
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(a) Landsat 7 - Path/row 167/63 - Acquisition date 2001-12-01

(b) Landsat 7 - Path/row 167/063 - Acquisition date 2001-03-04

Figure 2: (Left) RGB composite (bands 5,4,3) showing the cloud boundaries, for LEDAPS (red), the proposed OB-C method (yellow),
and the GMM approach (cyan). (Right) Map showing the agreement/disagreement of the cloud solution for these three methods. The
white areas correspond to regions were all the three methods agree as cloud. The color key for interpretation of the other colors on the
map is in Tab. 6.
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Landsat 7 - Path/row 167/63 - Acquisition date 2001-12-01

Figure 3: RGB composite (bands 5,4,3) showing the cloud
boundaries for LEDAPS (red) and the proposed OB-C method
(yellow), as well as the detected shadows for the proposed OB-C
method (cyan).

Table 6: Color key for the interpretation of the maps in Fig. 2
LEDAPS Proposed OB-C GMM Color

– – – gray
– – cloud blue
– cloud – green
– cloud cloud cyan

cloud – – red
cloud – cloud magenta
cloud cloud – yellow
cloud cloud cloud white

visual inspection of the cloud and cloud mask results easily reveal
several mistakes for all the methods tested. This suggests that ro-
bust cloud and cloud shadow classification is very challenging.

Our current, non-optimized, implementation of the proposed me-
thod takes about half an hour to run on a personal desktop (Intel
Core i7 CPU at 3.4 GHz, 16 GB of RAM, 64-bit operating sys-
tem). The color segmentation of the RGB derived Landsat scenes,
which are typically about 8000 × 7000 pixels in size, using the
Statistical Region Merging algorithm, is the most computation-
ally intensive component of proposed methodology.

Additional examples of the cloud and cloud shadow results ob-
tained using the proposed methodology are shown in Fig. 3. Some
cases of “not very dark” shadows were missed, this happened also
for the GMM method (not shown). In this particular case we ob-
serve that a large soil region was wrongly classified as cloud. The
use of the thermal band in addition to the current features used for
classification, or possibly the use of a non-parametric classifier,
might improve the results.

4 DISCUSSION AND CONCLUSIONS

We have evaluated different candidate features and classifiers for
for automatic cloud and cloud shadow detection with the ultimate
goal of monitoring tropical forests in Tanzania. Our experimental
results, focused on daytime Landsat TM/ETM+ scenes, revealed
differences between the proposed object-based algorithm and the
two alternative approaches tested, that can be used to further im-
prove the proposed algorithm.

It is important to keep in mind that the accuracy scores shown in
the confusion matrices are a simple attempt to rank the relative

performance of algorithms tested, rather than provide an accurate
estimate of the classification accuracy for all the scene. To obtain
an unbiased estimate of the cloud and cloud detection accuracies
when the proposed method would eventually become operational,
it would be desirable to measure it using a true random sampling
procedure for selection of test samples. Unfortunately this is not
feasible at the time of writing this article.

Detection of haze/thin clouds remains very challenging for all
the methods tested. The proposed object-based cloud and cloud
shadow detection method seems to be detecting thick clouds and
their associated cloud shadows well. However, the method needs
improvement to be able to detect thin clouds and haze. The in-
clusion of the thermal band appears desirable.

One option to try to reduce the confusion between water and
cloud shadows regions could be to model both classes separately,
instead of grouping water with the background class. In some
cases, maps with the location of the water bodies might be al-
ready available from other information sources, like a GIS layer.

Experiments using different path/row scenes would be desirable
in order to extrapolate the general observations made here to dif-
ferent areas of tropical forests.
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