

Interesting Results with an Optimizing Compiler when Refactoring
Embedded Code

Márcio Afonso Arimura Fialho

DEA - Divisão de Eletrônica Aeroespacial,
INPE - Instituto Nacional de Pesquisas Espaciais

 São José dos Campos, SP, Brazil
maaf@dea.inpe.br

Abstract

This paper presents interesting results obtained

when refactoring a piece of code compiled with an
optimizing compiler. Some of the results were
surprising, and at a first glance, contradictory. Most
of these results can be explained by the optimizations
performed by the compiler. This article concludes with
lessons learned about compiler optimizations and
some recommendations useful to achieve better code
optimization.

1. Introduction

In embedded systems, especially in those with
limited memory and computational power, consid-
erations about performance issues and code efficiency
cannot be forgotten during the development process.
However excessive preoccupation with code efficiency
can lead to code that is hard to understand and
maintain, and may become unreliable.

This paper presents results obtained during
refactoring a piece of embedded code, some of which
were surprising, proving that some common
assumptions made by developers during code
implementation are not always true. The main
motivation for refactoring was to improve code clarity
and maintainability.

2. Background

In an effort to develop a Brazilian autonomous star
sensor, a PC based software for testing algorithms for
this star sensor was created [1]. In this software, named
PTASE, many versions of two base star identification
algorithms were implemented [2]. After various tests
were performed and considering the target hardware

characteristics, one of the best implementations of
these two star identification algorithms was ported
from the desktop PC environment to the target
hardware, which is an embedded system.

A star sensor is an instrument normally used aboard
a spacecraft to gather spacecraft attitude information.
In spacecraft terminology, attitude means spatial
orientation, and instruments used to gather attitude or
information that can be used to calculate the spacecraft
attitude are collectively known as attitude sensors. Star
sensors are fine attitude sensors, capable of returning
very accurate attitude measurements, with uncertainties
usually in the order of few arcseconds (micro-radians)
or less. Basically a star sensor takes a picture of the sky
or space, extracts a list of observed stars from this
image, and by comparing this list of observed stars
with an internal database of stars (star catalog) is able
to derive the relation between the star sensor reference
frame to an inertial reference frame. This relation is the
star sensor attitude, which can be very easily converted
to the spacecraft attitude, since the relation between
these two reference frames are known from the
spacecraft assembly and alignment processes.

At the heart of the process of computing the star
sensor’s attitude lies the star identification algorithm
(star ID algorithm, for short). This algorithm matches
stars from the list of observed stars with stars in the star
catalog. When a sufficient number of stars have been
matched (identified), the star sensor attitude can be
calculated.

The chosen star ID algorithm implementation,
ported to the embedded system, had a very large main
function, followed by few small helper functions in the
same module. This module was ported from PTASE,
which was written in C++ to the embedded
environment, in plain C language. Since both lan-
guages are very similar, this migration was relatively
straightforward, with the exception of some modi-

fications required due to naming conventions adopted
in the embedded code and for some debugging features
present in PTASE but not in the embedded hardware.

For embedded code running in spacecraft hardware,
code quality is very important, due to difficulties in
performing spacecraft maintenance after launch and
associated high costs with a space mission. This
prompted a greater care during development of the
embedded code to keep the code clean.

Before refactoring, the main function of the star ID
module had 628 physical lines of code (including
comments and blank lines) and 247 statements. That
huge size prompted splitting this function into many
smaller functions during a code review, so the code
would become easier to understand and maintain. This
function’s large size can be explained in part by lack of
time for better organization during its development,
and also by an attempt to prematurely optimize code in
order to reduce function call overhead.

Since the overall structure of the algorithm was
preserved during the code refactoring, it was expected
that after refactoring (mainly “extract function”
refactoring), some loss in executable code size and
performance would occur, due to the expected increase
in function call overhead. To check for losses and gains
obtained after every refactoring step the code was
instrumented to allow measurement of time spent by
the code and the executable code size was closely
monitored.

3. Method

Before attempting to refactor the embedded code, a
copy of the corresponding star ID module in PTASE
was refactored, in order to check if refactoring would
be feasible, and also to provide a guideline that could
be used when refactoring the embedded code itself.
Refactoring was done mainly through the “extract
function” technique.

The tests were performed in an embedded system
using the ERC-32 single chip processor[3], a processor
based on the SPARC-V7 specification, running at 12
MHz. The system had 4 MB of RAM, being accessed
by the processor with zero waitstates. The code was
compiled with GCC version 4.3.2 cross-compiler for
sparc-rtems 4.9 [4], with optimization level -O2.

To measure the time spent by the star ID algorithm,
a call to the rtems_clock_get function immediately
before calling the star ID algorithm main function
(GiIdentifyStars) and another immediately after, were
made [5] (see Figure 1). The time difference between
these two calls to rtems_clock_get was saved in a
debug telemetry created to check the operation of the
embedded code.

Figure 1. Instrumenting code to measure execution time by
the star ID algorithm. GlngGetTime is a wrapper for the

RTEMS function rtems_clock_get.

To get comparable measurements every time the
test was run after a modification, the star ID algorithm
was presented always with the same list of observed
stars. During the tests, no piece of code outside the star
ID module was modified.

4. Results

Before refactoring, the star ID module (StarIdent.c)
had 1051 physical lines of code (LOC) and 5 functions.
The largest was GiIdentifyStars with 628 LOC
(including comments, blank lines, etc) and 247 C
language statements. Table 1 (below) and Table 2
show many useful software metrics gathered during
module refactoring:

Table 1 – Code size and execution time during

refactoring

step
file

LOC

number
of

functions

largest
function

LOC

executable
size (bytes)

execution
time*

0** 1051 5 628 143,652
1250
ms

A 1125 8 514 143,508
1233
ms

B 1206 11 253 143,556
1158
ms

B’ 1220 12 232 143,556
1158
ms

C 1269 14 160 143,620
1158
ms

D 1349 16 147 143,748
1158
ms

* measured with an 8.333 ms resolution.
** step 0 = code before refactoring.

In the first column of Table 1 there is a label for

each step that allows these steps to be further
referenced in the text. Step 0 refers to the code before
refactoring, while step D refers to the code after
refactoring is completed. The second column presents
the total number of lines in the module StarIdent.c after
each refactoring step. The third column lists the
number of functions in the module. The fourth shows
the count of physical lines for the largest function
(including blank and comment lines). The executable

start_time = GlngGetTime();

LiRetCode = GiIdentifyStars(.....);

end_time = GlngGetTime();

size presented in the fifth column is the size for the
whole application software layer binary image. This
layer is composed of 24 modules, including
StarIdent.c, and by the RTEMS operating system.
From these 143 kilobytes, StarIdent.c accounts for only
about 5 kilobytes. The last column lists the time spent
in GiIdentifyStars and its subroutines when processing
a standard list of observed stars. These time
measurements were made with an 8.3333 ms
resolution.

Table 2 complements Table 1 with additional
software metrics, including the number of C statements
inside functions and counts of McCabe's cyclomatic
complexity.

Table 2 – Software metrics during refactoring

step

max
state-

ments in
function

state-
ments
inside

functions

largest
function
MVG

module
MVG

source
code file

size
(bytes)

0** 247 309 46 75 48,241
A 205 310 33 80 50,856
B 111 322 14 87 50,369
B’ 100 323 14 87 51,018
C 64 338 14 89 53,586
D 55 351 12 91 55,944
* measured with an 8.333 ms resolution.
** step 0 = code before refactoring.

The second column of table 2 presents the number

of C language statements inside the function with the
largest number of statements. The third column
presents the summation of statements inside every
function in the module. The fourth column shows the
highest contribution from a single function to the
overall module McCabe's cyclomatic complexity. The
fifth column shows the overall module cyclomatic
complexity.

 The number of C language statements inside a
function is a much more meaningful metric than the
number of physical lines or even the number of lines of
code in a function, since the number of lines of code
can vary significantly due to coding style, while the
number of statements is practically insensitive to the
coding style used. However we also show the number
of lines of code in Table 1 for completeness. Values
presented in the second and third columns of Table 2
do not count empty statements, those consisting of a
single semicolon.

The McCabe's cyclomatic complexity was
measured with "CCCC - C and C++ Code Counter"
version 3.1.4, a free software for measurement of
source code related metrics [9].

4.1. Use of the static keyword

Much after this refactoring was performed, it was
noticed that the developer had forgotten to declare two
functions in this module, that doesn’t require external
linkage, with the ‘static’ keyword. In C, when used
with a variable/function declared at file scope, the
‘static’ keyword tells the compiler that this variable or
function doesn’t need to have external linkage, which
means that it will be visible only inside the module
where it was declared. This allows further optimi-
zations by the compiler, that would be impossible if
these functions/variables had to be visible outside the
module in which they were declared. But how much
gain can be obtained? Table 3 (below) gives some
answers:

Table 3 – Improvement with the use of the static

keyword

SVN
revision

use of the static
keyword in file
(module) scope

executable
size (bytes)

execution
time*

150
missing in two

‘internal’
functions

142,148 1.16 s

151
present in

every ‘internal’
functions

141,572 1.16 s

* Measured with a 10 ms resolution.

In table 3, the column ‘SVN revision’ refers to the

revision number when committing changes made in the
software in the revision control system. The difference
between revisions 150 and 151 is just the addition of
the ‘static’ keywords to these two functions where it
was missing, an addition of only two words to the code.
However this simple modification reduced the code
size in 576 bytes, in a module whose total code size
(after compilation) was just around 5 kilobytes. This is
a huge improvement!

5. Discussion

Looking at the second column from table 1 (column
‘file LOC’) and the third column from table 2 (column
‘max statements in function’) it can be seen that as the
refactoring progressed the overall source code number
of lines and statements increased as the large
GiIdentifyStar function was split into smaller functions,
and even though the size of individual functions on
average decreased, the total number of functions
increased. At first glance, this might suggest that we
have simply traded off complexity inside this large
function for complexity outside functions and in the

function call hierarchy, without too much gain.
However this is not the case. As that large function was
split into many smaller functions, each important
segment of that function became a function with clear
interface. In a sense, the code became more self
documenting. Added to that, comments explaining
every parameter passed to these new functions were
written, as required by the automatic documentation
system. These comments were responsible for much of
the line count increase while the file was being
refactored.

As explained in the section II, one of the reasons
the star ID algorithm was implemented with a very
large function was to avoid function call overhead,
which can be very costly in some platforms. However
looking at the fifth column of table 1 we see that the
executable code size fluctuates around the size it had
before refactoring, sometimes increasing a bit, but at
other times decreasing a little. Also, contrary to
expectations, we can see in the last column, that
the processing time has actually decreased after
refactoring. These results suggests that somehow the
compiler is avoiding these function call overheads,
probably by merging functions with internal linkage,
that are small or are called only once, into the caller
function. This suggestion is confirmed when we look
more carefully at what happened between step B and
step B’ during code refactoring.

The only difference between those two versions, is
that when going from step B to step B’ a function was
extracted from the largest function in B, which had 253
lines and 111 statements. The extracted function,
having 25 lines and 12 statements overall, is used by
the caller function to compute an attitude estimate that
is used to identify the remaining stars selected
for identification. Performing a binary comparison
between the executable code generated from step B
with the code generated from step B’, no difference
was detected, which means that the object code
generated by these two versions were identical. This
has happened despite the fact that the extracted
function had 12 statements, a function call and a local
variable, and is crucial for the stellar identification
algorithm.

When going from step A to step B, it was seen a big
improvement in the processing time. The algorithm
became around 6.5% faster. Between those two steps
the code inside two nested loops was extracted as a
new function. It happens that is precisely in those two
nested loops that the algorithm spends most of it’s
time. When the code inside these loops was extracted,
some variables that had scope greater than these loops,
but were used only inside this loop have been moved to
the new extracted function, effectively changing their
scope to a smaller scope that does not involve these

loops. Probably this is what allowed the compiler to
perform a better code optimization. A similar gain was
observed in PTASE, when the same refactoring was
done in PTASE, using another compiler.

On the other hand, one should not take this
refactoring technique to extremes. Having too many
small functions with only one or two statements also
reduces code clarity. From our experience, it seems
that good code clarity is better achieved when functions
have between 5 to 200 lines of code and the number of
functions per module is between 5 and 20, excluding
special cases.

5.1. The static keyword case

The huge improvement seen in section 4.1 can be
explained by the fact that the two functions are very
similar. One of them increments an index, while the
other decrements the same index, however their
structure is practically the same, to the point that the
object code in one function may be essentially
duplicated in the other. Thus, it seems that during the
optimization allowed by the addition of the static
keyword, the compiler noticed the strong similarity
between those two functions, finding a better
implementation where a single code could perform the
function of both functions, provided that some
variables where set up correctly at the beginning,
depending on the case. With this optimization, we
believe that roughly the code of one of these functions
could be removed from object code. To prove this
explanation, an analysis of the generated assembly
code would be required. This will be left for the future.

Regarding execution time, there was no noticeable
difference before and after the addition of the static
keyword. This is due to the fact that the affected code
is not in a critical section, so that any timing
differences, if any, are smaller than the sensibility of
our experiment.

In face of the reduced risk of name clashes that the
addition of the static keyword brings to variables and
functions declared at file scope that don’t need external
linkage, it’s use is mandated or strongly recommended
by most of the coding standards used in the aerospace
and high reliability industries [6] [7].

5.2. The compiler documentation

After discovering that the code produced from step
B and step B' where identical, we decided to check in
the compiler documentation [10] what compiler optimi-
zation switch was responsible for merging the extracted
function in B’ with its caller. This extracted function is

called only in one place, and was declared with internal
linkage.

The command line -O2 optimization switch acts as
a master switch that enables many optimization
switches in GCC. One of these, in GCC 4.3, is the
-funit-at-a-time switch which in turn turns the
-finline-functions-called-once. This last
switch considers for inlining every function with
internal linkage that is called only once. If the call to
that function is inlined by the compiler, no separate
code is generated for that function.

The compiler documentation [10] warns that some
optimizations may introduce compatibility issues with
code that relies in assumptions that may become
invalid after optimization (such as a particular ordering
of variables, etc). Hence it is strongly advisable that the
developer read carefully the chapter about compiler
optimizations in the compiler manual if he/she is
compiling code with optimizations turned on.

6. Conclusion

Compiler technology and compiler optimization
techniques have improved significantly in the last
decades, to the point that in many situations it has
become hard to surpass code generated by a good
optimizing compiler with handwritten assembly code
[8].

This experiment showed some remarkable results,
from where some lessons could be learned:

• The optimizing compiler used is capable of
performing many intra and interprocedural
optimizations, including the ability to merge
functions in order to avoid function call
overheads.

• These and many other optimizations performed
by the compiler allow a very high performance
to be achieved without the need to hand
optimize code.

• Many optimizations are only possible when
variables and functions are declared with the
‘static’ keyword. Hence, every function or
variable (declared at file scope) that doesn’t
need external linkage should be declared with
the ‘static’ keyword.

These results provides another argument to the
recommendation that programmers should avoid
optimizing code prematurely when implementing code,
since this may reduce code clarity, and many
optimizations that the programmer tries to perform by
hand can be better performed by a good optimizing
compiler. However, this doesn’t mean that the
programmer should completely forget about code

efficiency, only that code efficiency and performance
should be set as secondary goals, with safety and
clarity set as primary goals [7]. Another important
conclusion is that the programmer should never forget
the ‘static’ keyword, as this oversight may significantly
impair optimization, aside from increasing the risk of
name clashing in the linking process.

When implementing a system where performance is
critical, it’s advisable first to check if the compiler is
indeed able to perform these optimizations before
relying on them. We have used GCC 4.3.2 which is
fairly recent. Older versions of GCC and older
compilers might not be so good in code optimization.
Also, when compiler optimizations are being used, it is
strongly recommended that the development team
reads the compiler manual carefully, in order to know
the implications of the optimizations performed by the
compiler. This is specially true for projects with some
safety criticality aspect, as ours.

In some very safety critical applications compiler
optimizations are severely restricted or even
completely forbidden by requirements. The results and
conclusions of this study do not apply to these cases.

This work has led to many new ideas that could be
better explored in future works. For example, one
interesting test would be to perform the same
comparison done here, but with optimizations turned
off to see how the employed refactorings would affect
code efficiency in this case.

As additional suggestions for future works, this
experiment could be repeated with more precise time
measurements (using resolution of microseconds or
better), and using additional software metrics besides
those we have used.

7. Acknowledgments

First, we would like to thank Omnisys Engenharia
Ltda. and Wisersoft Informática companies, who have
written a significant portion of the star sensor
embedded software, which has served as the basis for
this work.

We are also grateful for the OAR Corporation for
freely making a great open source real time operating
system such as RTEMS available for download, and for
RTEMS contributors, for their efforts in improving
RTEMS quality and reliability.

Many thanks to FINEP, who has sponsored the
development of the aforementioned star sensor and also
of a significant fraction of the embedded software.

We would like also to thank for everyone who in a
manner or in another contributed to this work.

8. References

[1] FIALHO, Márcio Afonso Arimura. “Ambiente de
simulações e testes de algoritmos para sensores de
estrelas autônomos”. 2003. 120p. Undergraduate Thesis
- Instituto Tecnológico de Aeronáutica, São José dos
Campos.

[2] FIALHO, Márcio Afonso Arimura. “Estudo
comparativo entre dois algoritmos de identificação de
estrelas para um sensor de estrelas autônomo de campo
largo”. 2007. 237p. Master Thesis – Instituto
Tecnológico de Aeronáutica, São José dos Campos.

[3] ATMEL Corporation. “Low-voltage rad-hard 32-bit
SPARC embedded processor TSC695FL”. product
datasheet. May 2005. (Doc. Rev. 4204C–AERO–05/05).
Available online at:
<http://www.atmel.com/dyn/products/product_card.asp?
part_id=3187>.

[4] OAR Corporation. GCC Cross compiler system for the
SPARC-RTEMS target. Available at:
<http://www.rtems.com/ftp/pub/rtems/linux/4.9/fedora/9
/i386/> retrieved in December 2009.

[5] OAR Corporation. “RTEMS C User’s Guide” Edition
4.9.0, September 2008. Available at:
<http://www.rtems.org/onlinedocs/releases/rtemsdocs-
4.9.0/share/rtems/html/> retrieved in February 2011.

[6] MIRA Limited. "MISRA-C: 2004 Guidelines for the use
of the C language in critical systems." Edition 2.
Warwickshire, UK: MIRA Limited, July 2008 (ISBN
978-0-9524156-4-0)

[7] Lockheed Martin Corporation. “Joint Strike Fighter Air
Vehicle C++ coding standards for the system
development and demonstration program.” Document
Number 2RDU00001 Rev D. June 2007

[8] Byte Craft Limited. “Proof that C can match or beat
assembly.” 2006.
<http://www.phaedsys.com/principals/bytecraft/bytecraf
tdata/bcCversusAssemblyProof.pdf> retrieved on
February 16th 2011.

[9] Littlefair, T. et al. “CCCC - C and C++ Code Counter.
A free software tool for measurement of source code
related metrics by Tim Littlefair.” 2006.
<http://cccc.sourceforge.net/> and
<http://sourceforge.net/projects/cccc/>
retrieved on February 14th, 2011.

[10] Free Software Foundation, Inc., ‘Options That Control
Optimizations’ in “Using the GNU Compiler Collection.
For GCC version 4.3.5”, GNU Press, Boston, 2010. pp.
77-113. Available online at:
<http://gcc.gnu.org/onlinedocs/gcc-4.3.5/gcc.pdf>
retrieved on April 2nd, 2011.

