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ABSTRACT

Global climate models (GCMs) are inherently unable to present local subgrid-scale

features and dynamics and consequently, outputs from these models cannot be directly

applied on impact studies. Several studies have been devoted on dynamics and

statistical downscaling for both climate variability and change in the recent years. This

paper introduces a methodology of downscaling applied to GCMs model output using

an Artificial Neural Network (ANN) approach and linear regression. The method is

proposed for downscaling daily precipitation series for a Amazon Region over the

South America Continent. The performance of the temporal neural network

downscaling model is compared to a regression-based statistical downscaling model

with emphasis on their ability in reproducing the observed climate variability and

tendency for the period 1970-2000. Furthermore, the different model test results

indicate that the Neural Network Model significantly outperforms the statistical models

for the downscaling of daily precipitation variability.
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1. INTRODUCTION

Numerical models (General Circulation Models or GCMs), representing physical

processes in the atmosphere, ocean, cryosphere and land surface, are the most advanced

tools currently available for simulating the response of the global climate system to

increasing greenhouse gas concentrations.  A complete review of GCMs used in climate

variability an change can be found in Meehl et al. (2007).

GCM simulations of local climate at individual grid points are often poor especially in

areas nearby mountains or coastal lines.  The notion that the increase of anthropogenic

greenhouse gases will lead to significant global climate changes over the next century is

the accepted consensus of the scientific community and human activities have been

pointed out to have a significant contribution to the observed warming in the last 50

years and in the projections of climate unto the end of the Century XXI (IPCC AR4-

2007). In this context, an assessment of possible future changes of precipitation and

temperature over the continents is highly relevant, considering the possible impacts on

those changes and the vulnerability issue that led to adaptation measures..

However, in most climate change impact studies, such as hydrological impacts of

climate change, impact models are usually required to simulate sub-grid scale

phenomenon and therefore require input data (such as precipitation and temperature) at

similar sub-grid scale. The methods used to convert GCM outputs into local

meteorological variables required for reliable hydrological modeling are usually

referred to as “downscaling” techniques. In recent years, a number of paper within the

climatological community have adopted artificial neural networks as a tool to

downscaling from the large-scale atmospheric circulation to local or regional climate

variables (Cavazos, 1997).
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There are various downscaling techniques available to convert GCM outputs into daily

meteorological variables. Widmann et al., (2003) developed method to downscale

precipitation, referred to as the “local scaling”. The method used three statistical

downscaling methods are investigated; local rescaling of the simulated precipitation;

downscaling using singular value decomposition (SVD) with simulated precipitation as

the predictor, and local rescaling with a dynamical correction.

There are several different methods, which can be used to derive the relationship

between local and large-scale climates. There is no standard method used for spatial

downscaling, though mostly multiple linear regression, principle component analysis,

and artificial  neural  networks  are  used,  however  the  selection  procedure  mainly

depends  on  the paper objective. Dynamical downscaling generates regional-scale

information by developing and using Regional Climate Models (RCMs) with the coarse

GCMs data used as boundary conditions. The RCMs represent an effective method of

adding fine-scale detail to simulated patterns of climate variability and change as they

resolve better the local land-surface properties such as orography, coasts and vegetation

and the internal regional climate variability through their better resolution of

atmospheric dynamics and processes.

Artificial Neural Networks (ANNs) denote a set of connectionist models inspired in the

behavior of the human brain. In particular, the Multilayer Perceptron (MLP) is the most

popular ANN architecture, where neurons are grouped in layers and only forward

connections exist. This provides a powerful base learner, with advantages such as

nonlinear mapping and noise tolerance, increasingly used in the Data Mining (DM) and

Machine Learning (ML) fields due to its good behavior in terms of predictive

knowledge (e.g. Rumelhart et al., 1995). The simplest form of ANN (e.g. Multilayer
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Perceptron) is reported to give similar results compared to multiple regression

downscaling methods.

The objective of this study is to identify temporal neural networks that can capture the

complex relationship between selected large-scale predictors and locally observed

meteorological variables (predictands).

The specifically focus of this paper on the time lagged feed-forward neural networks

(NEURAL NETWORK) which have temporal processing capability without resorting

to complex and costly training methods. In addition, emphasis is given to evaluating and

comparing the optimal (NEURAL NETWORK) method with the most commonly used

regression based downscaling method and the best models are applied to downscale the

outputs of model (CGCM3.1, CSIRO-MK3.5, ECHAM5-MPI, GFDL-CM2.1, and

MIROC3.2-MEDRES) Intergovernmental Panel on Climate Change (IPCC) AR4.

2. AN OVERVIEW OF DOWNSCALING METHODS

Two major downscaling approaches, namely, dynamical downscaling and statistical

downscaling, are commonly used for climate scenario development at higher resolution.

Dynamic downscaling generates regional scale using RCMs with coarse GCMs data.

Statistical downscaling (SD) methods, on the other hand, involve developing methods;

on the other hand, involve developing quantitative relationships between large-scale

atmospheric variables, the predictors, and local surface variables, the predictands.

Therefore a statistical procedure is employed to estimate possible shifts in local climate

parameters as a function of the large-scale climatic changes simulated by a given GCM

simulation (Spatial downscaling).

Spatial  downscaling   is  a  technique  by  which  finer  resolution  climate  information

is  derived  from  coarser  resolution  GCM  output.  The  basic  assumption  of  spatial

downscaling   is  that  it  is  possible  to  derive  significant  relationships  between  local
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and  large-scale climates. Since the spatial resolution of current GCMs is between 250

and 600  km and as the forcing  that affects regional climate occurs generally at a very

finer spatial  scale  when  compared  to  GCMs,  it  may  lead  to  a  significantly

different  regional  climate  conditions  compared  to  larger  spatial  scales.  Spatial

downscaling techniques can be divided mainly into empirical/statistical methods and

statistical/dynamical methods (Salathe, 2003) (Weichert and Burger, 1998).

These techniques refer to a method in which sub-rid scale changes in climate are

calculated as a function of large scale climate. Statistical relationships are calculated

between large area and site-specific surface climate, or between large scale upper air

data and local surface climate. Stochastic weather generators may also be conditioned

on the large-scale state in order to derive site-specific weather.

The fundamental assumption behind all these methods is that the statistical

relationships, which are calculated using observed data, will remain valid under future

climate conditions.

There are several different methods, which can be used to derive the relationship

between local and large-scale climates. There  is  no  standard  method  used  for  spatial

downscaling , thou h mostly multiple linear regression, principle component analysis,

and artificial  neural  networks  are  used.

Spatial downscaling  techniques provide more realistic scenarios of climate change at

individual  sites  than  the  straight  application  of  GCM-derived  scenarios  to  an

observed climate data set. These techniques are much computationally demanding   than

the physical downscaling using numerical models (von Storch et al., 2000).

Large  amounts  of  observed  data  may  be  required  to  establish  statistical

relationships for the current climate. Specialist knowledge may be required to apply the
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techniques correctly. It may not be possible to derive significant relationships for some

variables.

The used of downscaling in Europe and North America, quantify better regional climate

change and provide regional climate scenarios for assessing climate change impacts and

vulnerability. This projects include the UK Climate Impacts Programme (Hulme et al.,

2002), the PRUDENCE (European Projects) (Christensen et al., 2007b; Gao et al.,

2006; Giorgi et al., 2004), and the North American Project NARCCAP (Mearns, 2004).

These have all followed a standard experimental design of using one or more GCMs to

drive various regional models from meteorological services and research institutions in

the regions to provide dynamically downscaled regional climate projections.

A similar initiative has been recently implemented in South America, CREAS

(Regional Climate Change Scenarios for South America – Marengo and Ambrizzi 2006,

Marengo et al., 2007).

3.   DATA AND STUDY AREA

The study area considered in this paper is the Amazon Basin Region (Fig. 1). Forty

years of daily total precipitation as well as daily precipitation records representing the

current climate (1970-2000) were prepared for the downscaling experiments.

At the same time, observed daily data of large-scale predictor variables representing the

current climate condition of the region is derived from the observation station over

Amazon Basin (33 stations)  The data used in this study were from rain gauges located

within the Brazilian Amazon basin, which are part of the Brazilian National

Hydrometeorological network. They were provided by the National Water and Electric

Energy Agency of Brazil (ANEEL), whose sources include the ANEEL network.

Climate variables corresponding to the climate change scenario for the study area are

extracted from the IPCC models (CGCM3.1, CSIRO-MK3.5, ECHAM5-MPI, GFDL-
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CM2.1, and MIROC3.2-MEDRES). As planning for the IPCC Fourth Assessment

Report (AR4) commenced in 2003, the climate modeling community, as represented at

the international level by Working Group on Coupled Model (WGCM), recognized that

this process had to be better organized and carefully coordinated. The modeling group

proceeded to complete as many of the experiments as they could manage during 2004.

By early 2005, a total of 16 modeling groups from 11 countries participated with 23

models (Meehl et al., 2007).

4. NEURAL NETWORK METHOD

The most widely used neural classifier today is Multilayer Perceptron (MLP) network

which has also been extensively analyzed and for which many learning algorithms have

been developed. The MLP belongs to the class of supervised neural networks.

MLP networks are general-purpose, flexible, nonlinear models consisting of a number

of units organized into multiple layers. The complexity of the MLP network can be

changed by varying the number of layers and the number of units in each layer. Given

enough hidden units and enough data, it has been shown that MLPs can approximate

virtually any function to any desired accuracy. In other words, MLPs are universal

approximates. MLPs are valuable tools in problems when one has little or no knowledge

about the form of the relationship between input vectors and their corresponding outputs

(Smith, 1993).

The multi-layer feed-forward neural network is trained by supervised learning using the

iterative back-propagation algorithm. In the learning phase a set of input patterns, called

the training set, are presented at the input layer as feature vectors, together with their

corresponding desired output pattern which usually represents the classification for the

input pattern (e.g. Rumelhart et al., 1995).
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          Network Design: Downscaling Experiment

The neural network models in this study are developed using the Neuro-Solutions

software. First Neural Network with different lag time (time delay) is trained with all

(the twenty two) predictor variables as input to the networks and the best performing

network is selected. Then, the most relevant input variables (predictors) are identified

by performing sensitivity analysis on the selected Neural Network. Sensitivity analysis

provides a measure of the relative importance among the predictors (inputs of the neural

network) by calculating how the model output varies in response to variation of an

input.

The results provide a measure of the relative importance of each input (predictor) in the

particular input-output transformation. Several training experiments are conducted with

different combinations of time lags and number of neurons in the hidden layer till the

optimum network is identified. For the case of downscaling of precipitation with Neural

Network, a time lag of five (days) and 15 neurons in the hidden layer gave the best

performing network.

5.  DOWNSCALING RESULTS

From the forty years of observed data representing the current climate, the first 21 years

(1970-1990) are considered for calibrating the downscaling models while the remaining

ten years of data (1991-2000) are used to validate those models. The different

parameters of each model are adjusted during calibration to get the best statistical

agreement between observed and simulated meteorological variables.

The accuracy of the downscaling models, the downscaling model validation statistics

are presented in Table 2 in terms of seasonal model biases.

 These validation results indicate different bias between models, principally in June,

July and August (JJA). In January, February, and Mach (JFM) the models super-
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estimate precipitation over Amazon Basin, the accepting GFDL-CM2.1. In JJA, the

patterns are relatively symmetric respective to JFM, excepting CSIRO-MK3.5.

Once the downscaling models have been calibrated and validated, the next step is to use

these models to downscale the control scenario simulated by the GCM. In this case,

instead of the precipitation data observation used as input to each of the downscaling

models earlier, the large-scale predictor variables are taken from IPCC models

simulation output covering the four distinct periods corresponding to “business” as

usual scenario explained earlier.

The Figure 3, show normal histogram for JFM, showed that on the Amazon region

model GFDL presents a large dispersion that others models. This result is similar to the

verified in table 2, where the GFDL is what it show positive bias.

In relation Figure 4 (JJA), show different conditions in relation Figure 3, principally in

relation between CSIRO model, neural network simulation and observation data. The

CSIRO model show large frequency concentration between 4 and 6 mm day-1,

differentiating the others models and neural network simulation.

The table 3 summarizes the downscaling results by presenting the simulated increase or

decrease in seasonal values of average precipitation between the current (1970-1990)

and the 1990s (1991-2000) time periods for each of the downscaling methods. The

results show that both Neural Network and Linear Regression predicted a relative

increase in precipitation. However, while neural network predicted a seasonal variation

in precipitation increase (with around 1.00 mm day-1 for CGCM3, ECHAM5, CSIRO

and MIROC increase in JFM, excepted GFDL with increase around 3.0 mm day-1). In

JJA, the precipitation increase around 0.75 mm day-1 for CGCM3, ECHAM5, GFDL,

and MIROC. CSIRO increase around of 2.20 mm day-1.
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The linear regression resulted in a smaller difference in relation neural network

predicted, principally in relation of the extreme, GFDL in JFM and CSIRO in JJA.

6.  CONCLUSION

This paper investigates the applicability of temporal neural network a downscaling

method using Artificial Neural Network for the generation of daily precipitation over

the Amazon Basin (Fig. 1). The study results show that the time lagged feed-forward

network (Neural Network) can be an effective method for downscaling daily

precipitation data as compared to the commonly used method (linear regression).

 The main advantage of this downscaling method is its ability to incorporate not only

the concurrent, but also several antecedent predictor values as input and its temporal

processing ability without any additional effort.

The results show different values from models in relation of neural network, linear

regression and observation data. The models show super-estimate precipitation in

comparison with observation data. In JFM the GFDL model, increase precipitation

around 3.10 mm day-1, for JJA the CSIRO model increase precipitation around 2.20 mm

day-1, this results so much for neural network as linear regression.

However, one should also remember that all the downscaling in this study use the

outputs from only one various general circulation models. Previous studies showed that

data taken from different GCMs could produce significantly different downscaling

outputs.
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FROM PCMDI. COLUMN 1 IS THE ACRONYM USED IN THE TEXT. COLUMN 2

IS THE NAME OF THE MODEL USED IN THE PCMDI ARCHIVE, COLUMNS 3

DENOTE HOW MANY REALIZATIONS FROM EACH MODEL COULD BE

USED, AND COLUMN 4 IS THE SOURCE OF THE MODEL.

Acronym Model prp Source

CGCM3 cccma_cgcm3_1_t63 0 Canadian Centre for Climate Modeling

and Analysis

CSIRO csiro_mk3_0 3 Australian Commonwealth Scientific

Industrial and Research Organization

ECHAM mpi_echam5 1 Max-Planck-Institut für Meteorologie

GFDL2.1 gfdl_cm2_1 1 Geophysical Fluid Dynamics Laboratory

MIROC-m miroc3_2_medres 3 Centre for Climate System Research,
University of Tokyo; National Institute

for Environmental Studies; Frontier

Research Centre for Global Change

TABLE 2 – BIAS FOR THE SEASONS AND MODELS.
Biases

Models JFM JJA
CGCM3.1 -1.875 0.520

CSIRO-MK3.5 -2.125 -0.031
ECHAM5-MPI -0.833 2.930
GFDL-CM2.1 1.010 2.590

MIROC3.2-MEDRES -0.666 1.583
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Neural Linear Regr.
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CGCM3.1 1.06 1.00 1.12 0.98
CSIRO-MK3.5 0.69 0.67 0.87 0.55
ECHAM5-MPI 0.85 2.24 0.95 1.11
GFDL-CM2.1 3.13 0.37 2.65 2.01

MIROC3.2-MEDRES 1.25 0.99 1.21 1.12
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Figure 2 - Architecture of multi-layer perceptron.
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Figure 3 – Normal histogram for the models, observation data and neural network
precipitation in JFM
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Figure 4 – Same as Fig. 3 but for the JJA season.
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