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Abstract. For the construction of digital terrain models based on surface interpolation, it is defined a bivariate
function

�������	��

that interpolates a finite set of � sample points, ���� ��� � �	� � ��� � 
 , such that,

����� � ��� � 
 � � � . In this
work, it is presented a strategy for the generation of interpolation surfaces through the use of basis functions. This
methodology is based on a work by Chaturvedi and Piegl, where improvements related to the construction of the
basis functions were made. The proposed strategy allows a larger expansion of the basis function’s support region,
represented by the interior of a trajectory curve, composed of quadratic rational Bézier segments and reduces the
approximation error between the reference surface and the interpolation surface.

1 Introduction

In Digital Terrain Modeling, the concept of height fields is
mathematically represented by an elevation function ��������������

, defined on the domain D of a reference
plane. Usually, the elevation values are known only at a
finite set of sample points.

The use of irregularly distributed sample points avoids
the over sampling problem that is common to Data Eleva-
tion Models [1], where the sample points are distributed
over a regular grid.

Regardless of the type of sample point distribution used,
a way of computing the elevation at any point  of the do-
main is needed. For that purpose, several surface interpo-
lation strategies can be found in the literature, which guar-
antee that the Digital Terrain Model has: Shape Fidelity,
Domain Independence, Locality and Editability [1]-[7].

In this work, it is presented a strategy for the genera-
tion of interpolation surfaces through the use of basis func-
tions. This methodology is based on a work of Chaturvedi
and Piegl [5], where improvements related to the construc-
tion of the basis functions were made. This methodology
allows a larger expansion of the basis function’s support re-
gion, represented by the interior of a trajectory curve, com-
posed of quadratic rational Bézier segments. Moreover, it
promotes a better agreement between the interpolating sur-
face and a reference terrain.

The surface is defined procedurally, based on a trian-
gulation of the projections, !#"$%� ��� $ �	� $ 
 , of the sample
points, ! $ � ��� $ �	� $ ��� $ 
 , &('*)+',� , on a reference
plane

�-�
. The interpolation surface is constructed by a suit-

able combination of � specially defined basis functions,
corresponding to the sample points.

Each basis function is defined on a local domain in
the neighborhood of the corresponding projection !."$ . This
domain includes only ! " $ and its adjacent points in the tri-

Figure 1: Two possible basis functions.

angulation. The illustration in Figure 1 shows two distinct
basis functions associated with the sample point ! " $ : one,
corresponding to a piecewise linear interpolation; and the
other, constructed over an expanded domain and utilizing a
smooth profile curve.

The smoothness of the profile curve and the extension
of the domain are controlled by local parameters / and 0�12 3 � &54 , respectively, which influences the overall shape of the
basis function.

The remainder of the paper is organized as follows. In
Section 2, it is presented an overview of the surface recon-
struction problem, using basis functions. In Section 3, it is
discussed the aspects of construction and control of basis
functions. In Section 4, the proposed method is contrasted
against other methods. Finally, some conclusions are drawn
in Section 5.

2 Interpolation Surface

The surface reconstruction problem of a terrain, for which
a set of sample points ! $ � ��� $ �	� $ �6� $ 
 1 �87

, )9�



& �6:��<;=;>;=� � is known, consists in determining a bivariate func-
tion ? ���@���A
 , such that ? ��� $ ��� $ 
 � � $ for each point !B"$#1�C�D�8�

. The points !B"$ are the orthogonal projections of
points ! $ on the reference plane

�-�
.

Equation (1) determines the interpolation surface ? ���@���A

by a weighted sum of � basis functions E $ �����	��
 . Thus,

? �����	��
 � FG$5H � � $ E $ ���@�	��
5; (1)

In digital terrain modeling:

1.
� $ are the weights;

2. E $ ���@���A
JI 3 , K ���@�	��
 1 � (non-negativity);

3. L F $MH � E $ �����	��
 �D& , K �����	��
 1 � (partition of unity);

4. E $ ���ANO���PNQ
 �SR $ N , where R $ N � 3 if )UT�WV and R $ N �& otherwise;

5. E $ ���@���A
 � 3 , K �����	��
YX1 � $ , where
� $ is the support

domain of E $ .
As pointed out in [5], requirements 2-5 are easily sat-

isfied if rational basis functions of the form

E $ ���@����
 � ��Z $ �����	��
	
6XA� FGN H � Z N ���@�	��
�
 (2)

are used. It is also pointed out, in the same work, that these
basis functions are analogous to the tensor product B-spline
basis functions in that: 1) they can be defined over arbitrary
domains (concave or convex); 2) they are identically zero
outside their support domains; 3) they are positive within
their support domains and attain a single maximum; and 4)
they do not possess local maxima or minima.

The methods for constructing the interpolation surface? ���@����
 based on Equation (1) are distinguishable, both, by
the way the basis functions E $ ���@����
 are defined, and by the
way the basis functions’ support domains are delimited. For
example, the basis functions of the polyhedral interpolation
are swung surfaces defined by rotating a linear profile curve
around a local z-axis and scaling the profile by the boundary
polygon of the support region. This region is identified by
the triangulation of the points !B"$ (Figure 1(a)).

In summary, given an arbitrary point
�\[�@�A[��


, to obtain[� �]? �Q[���^[�^
 it is necessary: 1) to find all the basis functions
that do not vanish at

�\[�_�`[�A

; 2) to evaluate each non-zero

contribution of these basis functions by, first, computingZ $ �Q[���A[��
 and, then, substituting into Equation (2); and 3)
to blend the basis functions values with the corresponding
sample points, using Equation (1).

3 Basis Functions

In this section, it is discussed a two-step process for the
construction of basis functions. First, a trajectory curve that
delimits the support domain of the basis function is deter-
mined. Then, a profile curve is defined to generate a swung
surface as it is scaled by the trajectory curve during its rev-
olution around the corresponding sample point projector.
The main improvements over the process proposed in [5]
are made in the construction of the trajectory curves.

3.1 Trajectory Curve

In order to determine the trajectory curve that delimits the
support domain of the basis function associated with a sam-
ple point ! $ , one starts by obtaining a triangulation of the
projections, !Y"N � ���ANO���PNQ


, of the � sample points on the
reference plane. Next, using all the triangles that share the
vertex !Y"$ , a polygon is defined by connecting the sides op-
posite to that vertex. Finally, it is constructed a sequence
of NURBS (Non-Uniform Rational B-Splines)[9] relative to
each side of the polygon just defined such that they main-
tain a � continuity at the connecting points.

The resulting trajectory curve can be either open, when-
ever !Y"$ is at the border of the terrain’s domain

�
; or closed,

when it is an interior point of
�

(See Figure 2). In synthe-
sis, the trajectory curve must: 1) interpolate all the vertices
of the polygon used to define the support region; 2) possess,
at least, a � continuity ; 3) define a region in which !#"$ is
the only sample point projection strictly inside it; and, 4) be
intersected at most once by any straight-line segment with
origin at point !B"$ .

Conditions 1) and 2) are trivially satisfied, if NURBS
segments are chosen to connect each two consecutive ver-
tices of the polygon. Condition 3) implies that points !#"N
which are not part of the boundary polygon impose limits
on the expansion of the trajectory curve, since none of them
can lie inside the support region. Condition 4) imposes a
special strategy for the construction of the trajectory curve,
as discussed next.

The NURBS segments chosen are quadratic rational
Bézier segments defined by

b ��c^
 � Zed<f_dPg#�d ��c^
�h�Z � f � g#�� ��cA
@h�Z � f � g#�� ��cA
Z d g �d ��c^
�h�Z � g �� ��cA
@h�Z � g �� ��cA
 �
(3)

where
f_d

,
f � , and

f � are the control points;
Z � is the

i-th weight and
g.�� ��c^
 is the i-th second degree Bernstein’s

polynomial.
The curve

b ��cA

interpolates the points

fid
and

f � , and,
at these points, it is tangent to the vectors

f �.j f�d andf � j f � , respectively. For the purposes of implementation,
one can set

Z d � Z � �D& and vary
Z � (denoted by

Z
in the

following). As
Z

increases, the curve approaches point
f � .
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Figure 2: Types of trajectory curves. (a) and (b) closed
trajectory curves; (c) and (d) open trajectory curves.
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Suppose that mnl � � l � �\;>;=;=� l�oqp is the set of vertices

of the polygon around point !B"$ determined by the triangu-
lation (see Figure 2), where lros�tl � when the curve is
closed. Between each pair of vertices

� lr� � l��=u � 
 , one tries
to define a connecting quadratic rational Bézier segment.
However, that is not always possible, requiring that more
than one segment be used.

In order to determine the connecting NURBS segments,
it is necessary to find the tangent vectors k � to the trajec-
tory curve at the vertices l � . A simple way to estimate
these tangent vectors is to use the central difference scheme
represented by the equation

kB�_� � l��=u �vj l���w � 
6XA�6x ly�>u �ej ly��w � x 
M� (4)

where k#� is an unit vector with the same orientation as vec-
tor l��=u �vj l���w � (Figure 3).

Equation (4) adequately defines the tangent at all the
points l�� whenever the trajectory curve is closed. How-
ever, when that curve is open, it is necessary to define an-
other way of computing the tangent vectors at the extremi-
ties l � and l o . Hence:

1. If zS� :
, k � and k � are defined as the unit vectors

that form {`|O} angles with the vector l � j l � (Figure
4(a));

2. If z I�~ , k � is defined as the unit vector tangent to
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Figure 4: Tangent at the ends of the trajectory curve.
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Figure 5: Configurations of the trajectory curves.

the parabola passing through the vertices ��� , ��� and��� at vertex ��� ; and �B� , as the unit vector tangent to
the parabola passing through the vertices � �A��� , � �^���
and � � at vertex � � . However, in order to guarantee
that all straight-line segments with origin at �#�� do not
intersect the trajectory curve more than once, one com-
putes the angles �n� between the vectors ��������� ���@��� � � ��� �� �and � � ( �Y������� ), measured clockwise (Figure 4(b))
and, in case �Q �¡`¢�£(� � £¥¤^¦P¡`¢ , � � �D§¨� � or, in case� �i© ¤`¦ª¡O¢ , � � �«� � .
Therefore, the problem of computing the trajectory curve

passing through the vertices � � �5� � �\¬>¬=¬=�M� � , is restricted to
determining the control points of each Bézier segment con-
necting � � to � �=_� , since the tangent at these vertices are
known.

If the tangents were "well behaved", as shown in Fig-
ure 5(b), one would simply choose the intersection point of
the parameterized straight-lines ���¯®8°Q�B� and ���=_�Q®²±¯�B�=_�
as the middle control point, ³´� . However, due to the variety
of shapes that the trajectory curve may assume, not always
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Figure 6: Geometrical interpretation of µ � and ¶ � .
it can be represented by a single quadratic Bézier segment.
For example, this is the case of the curve segment � � � �=_�
in Figure 5(d), since a quadratic rational Bézier curve can-
not present the inflections shown in that figure.

Now, consider � �� and � �� the angles that the tangent
vectors � � and � �>_� , respectively, form with the vector� �>i� §S� � . Also, consider ° � � and ° �� the signs of these
angles, i.e., ° � � �·� if ¸ � �>i� §(� �º¹J» � �´© ¡ , ° � � �·§Y� if¸ ���=_�n§8��� ¹n» �B��£W¡ , and ° � � �W¡ if ¸ ���>i�P§8��� ¹�» �B�i�¥¡ .° �� is defined, analogously, by examining the sign of the
vector product ¸ �y�>_�J§(��� ¹¨» �#�>_� . The strategy for de-
termining the control points is defined by analyzing the five
cases depicted in Figure 5 and described as follows.

Case 1 ( ° � � �¼° �� �½¡ ) (Figure 5 (a)): The Bézier
segment consists of a straight-line segment. One chooses³_¾8�]� � , ³ � � ¸ � � ®(� �=_�5¹À¿ ¤ and ³ � �]� �=_� .

Case 2 ( ° � � ° �� �9§Y� and ÁÁ � �� ÁÁ ® ÁÁ � �� ÁÁ £Â�\ O¡O¢ ) (Figure
5(b)): One chooses ³i¾Ã�Ä� � , ³ � as the intersection of the
parameterized straight-lines � � ®W°Q� � and � �=_� ®Å±¯� �=_�
and ³ � �S� �=_� .

In the next three cases, two Bézier segments are used
to interpolate the curve segment �y�¯���=_� . Therefore, it is
necessary, first, to include a new point �y�� and only then to
interpolate the curve segments �y�Æ���� e ���� ���>_� . Point ����
is defined by

� �� �S���Ç® µ �ºÈ���® ¶ �ºÈ�É� � (5)

where µ ��� � ���=_�´§s��� � ¿ ¤ , È�� is the unit vector in the
direction of vector ���=_�Ê§«��� , È É� is the unit vector per-
pendicular to È�� and ¶ � is the distance from point �y�� to the
chord � � � �=_� (Figure 6). Moreover, for each case, differ-
ent ¶ � and �B�� (tangent vector at �y�� ) are computed.

Case 3 ( ° � � ° �� �9§Y� and ÁÁ � �� ÁÁ ®·ÁÁ � �� ÁÁ © �\ O¡ ¢ ) (Figure
5(c)): One computes ¶ � = min( Ë � � Ë`Ì ), where Ë � is the dis-
tance from the closest non-neighbor point �.�� to the chord� � � �>i� and Ë^Ì is a chosen fraction of this chord segment,
i.e. , Ë^Ì �tÍ � � �>i� §Î� � � . The tangent �#�� at ���� is the
vector parallel to the chord � � � �>_� .

Case 4 ( ° � � ° �� �Ï� ) (Figure 5(d)): Taking ¶ � = 0, one de-
termines the point �y�� on the chord segment �y�Æ���>_� . The
tangent at � �� is then defined as

� �� �WÐ5Ñn° ¸ � �� ¹ È���®s°<�Ò� ¸ � �� ¹ È É� � (6)

where

� �� �Ï§yÓÔ�° � � min ¸ min ¸<ÁÁ � � � ÁÁ �	ÕÖ§ ÁÁ � � � ÁÁ ¹ �
min ¸ ÁÁ � �� ÁÁ ��Õ�§SÁÁ � �� ÁÁ ¹	¹ ¬ (7)

In this case, one of the Bézier segments relative to the
segments � � ���� and ���� � �>_� is located in the same semi-
plane as �B�� relative to the chord segment � � � �=_� and,
therefore, it is necessary a correction strategy, as shown in
Figure 4(b).

Case 5 ( ° � � ° �� �×¡ and ÁÁ ° � � ÁÁ ®+ÁÁ ° �� ÁÁ © ¡ ) (Figure 5(e)):
One computes the scalar ¶ � by

¶ �_� �¤ ¸ ° � � §�° �� ¹ min ¸�ËnØ � Ë Ì �q¤ � Ù ��§ µ � � ±¯Ú`� ¸ � � �� � ¹	¹ � (8)

where

ËnØ �ÜÛ Ë � � if ¸ ° � � §�° �� ¹ £W¡Ë � � if ¸ ° � � §�° �� ¹v© ¡ � (9)

Ë � is the distance from point �B�� to the chord segment���Ò���>_� , Ù � � Û �Ý � � �=_� §Å� � � � if ÁÁ ° � � ÁÁ �¥¡�Ý � � �=_� §Å� � � � if ÁÁ ° � � ÁÁ �D� (10)

and

� �� �Ï§ ÓÔ@Í ¸ ° � � §�° �� ¹ min ¸ max ¸ ÁÁ � � � ÁÁ ��ÁÁ � �� ÁÁ ¹ �Õ�§ max ¸ ÁÁ � �� ÁÁ � ÁÁ � �� ÁÁ ¹	¹ ¬ (11)

At this point, the trajectory curve most probably has
a new set of vertices, � � , � � , ..., � ���Þ , where ß is the
number of new points � �� that were created. After deter-
mining the tangents at all the vertices, the trajectory curve is
completely defined, and all the component curve segments� � � �>_� are quadratic Bézier segments.

3.2 Profile Curve

Once determined the trajectory curve, it is necessary to de-
fine the profile curve that is used to compose the basis func-
tion. The chosen profile curve has to ensure that the basis
function is positive within its support domain, attains a sin-
gle maximum, and does not possess local maxima or min-
ima (see Section 2). A cubic Hermitian function guarantees
all these properties and is used herein, although, other func-
tions with similar properties could also be used.
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Figure 7: Configurations of Trajectory and Profile curves.

The cubic Hermitian profile curve is defined paramet-
rically on a local coordinate system à á , where the á axis
coincides with the direction of the projector â#ãäªâ ä , by

åÊæ�çÇèêé+ë ì í�æ�çÇè5î�ì ïAæ�çÇèÆðÇé+ëòñJóUç�î�ç�ô�æ¯óÊõªç.ös÷OèÆðøîù�ú ç ú ñ�û
(12)

Notice that the parameterization is such that the curve
is swept from

å²æ ù èêé×ë>ñ�î ù ð
to
åÊæ¯ñPèüéÏë ù î\ñ5ð

.

3.3 Composition of Blending Function

As mentioned at the beginning of Section 3, the blend-
ing function associated with the sample point â ä is gener-
ated as a swung surface by the revolution of a profile curve
around the projector âBãäªâ ä (its local á axis) while the pro-
file curve is scaled by the trajectory curve during revolution
(see Figure 8).

Considering, in the composition process, that the tra-
jectory curve is defined on the plane àqá as

ý æ�þAèüéÏë ÿ í æ�þ^è5î6ÿ ï æ�þAèÒðÒî ù�ú þ��Å÷�� ù�� î
(13)

and that, at the beginning of revolution, the profile
curve is in the plane à�� (Figure 7); the resulting blending
function is expressed by

��æ�ç_î	þAèêé×ë ì í�æ�çÇè�ÿ í æ�þAèMî�ì í�æ�çÇè�ÿ ï æ�þAèMî-ì ï^æ�ç èÒðÒû
(14)

Notice that, when
çÖé ù

,
��æ ù î	þAèüé ý æ�þ^è

.
The component � of the blending functions obtained,

by the process just described, for the points â ä are the func-
tions � ä æ à î á è used in Equation (2) to obtain the normalized
basis functions 	 ä æ à î á è .
3.4 Basis Function Contribution

The contribution of each basis function, 	 ä æ à î á è , to the
computation of the coordinate � , given the coordinates

æ à î á è
of a point on the terrain’s domain, is apparent in Equation
(1). Therefore, considering 
 é�� � ä æ à î á è5î��éDñ�î\û>û=û=î���� ,

z

C(v)

y

x

(x,y)
(xk,yk)

(xc,yc)

Lz(u)

Figure 8: Contribution of basis function at the point
æ à î á è .

where � ä æ à î á è is the non-normalized basis function rel-
ative to the sample point â ä , the contribution is accom-
plished as follows:

1. Given a point
æ à î á è������ , determine the set 
�� í�� ï���� 


defined as 
 � í!� ï�� é"� �$# æ à î á è$% 
'&(�$# æ à î á è*) ù � ;
2. For each basis function �+# æ à î á è,% 
-� í�� ï�� , compute

the intersection
æ à/. î á�. è of the straight-line from âBã#

through point
æ à î á è with the trajectory curve corre-

sponding to â ã# . Scale the profile curve, i.e., compute:ç�éÏñJó æ à ó à # è5æ à . ó à # è@ö«æ á ó á # è<æ á . ó á # èæ à0. ó à1# è ô ö«æ á�. ó á�# è ô î
(15)

obtaining �$# æ à î á è´é¥ì ï æ�çÇè (Figure 8);

3. After all �$# æ à î á è are computed, use Equation (2) to
obtain the normalized basis functions 	2# æ à î á è , and
compute 
 æ à î á è , e.g.


 æ à î á èêé 3
405 � í!� ï���6�7!8:9<; =?> 	@# æ à î á è �A# û (16)

3.5 Shape Control

For each chord segment BDCEB�CGF-H , the definition of the cor-
responding part of the trajectory curve involves a parameterI that determines a fraction of that chord segment, and can
be used effectively for local and global shape control. In
Equation (18), the choice of � determines the expansion
that a Bézier segment of the trajectory curve will have rel-
ative to the corresponding chord. That expansion is limited
by the requirement that the trajectory curve do not enclose
points outside the triangles sharing vertex â#ãä (see Section
3.1).

A possible way to solve this problem, if J1H is the dis-
tance from the control point K�H to the chord B�C�B�CGFLH ; J�C is
the distance, to this chord, from the closest non-neighboring
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point, !Y"� , in the region between the chord’s support line
and the parallel through point

f � ; and MON is a fraction of
that chord, given as

M N �«0 x ly�>u �ej ly� xM� (17)

is given by Z � min
� & �\� MOP 
6XA� M �vj MOP 
	
5� (18)

where MOPy� min
� M`� � M N 
 , if the curve is convex and MQP��

min
� M $ � M N 
 , otherwise [5]. The value of

Z
calculated by

Equation (18) forces the Bézier segment to touch the line,
parallel to the chord ly�øly�>u � , located at a distance MQP from
it [10] (see Figure 9).

One of the important properties of Bézier curves is that
their expansion is limited by their convex hulls. Hence,
one can conclude that, if a point ! "� is outside the trianglef d f � f � , it should not impose any restriction on the expan-
sion of the Bézier segment (see Figure 9). Said in a differ-
ent way, it is not possible for a Bézier segment to include
a point !B"� outside its convex hull. Thus, no expansion of
the Bézier curve shown in Figure 9 will be able to enclose
a point !Y"� outside the triangle

f_dQf � f � . Also, it can be ver-
ified in the illustration shown in Figure 10 that, even when! "� is in the interior of the convex hull

fid\f � f � , the condi-
tion that the Bézier can expand at most up to touching the
straight line, parallel to the chord lr�Òl��=u � , passing through!Y"� is too restrictive.

To overcome these deficiencies and to allow a more ef-
ficient expansion of the Bézier segments, a better approach
is based on the following strategy for determining

Z
:

1. Find all the sample points ! "� that are inside the convex

hull
f_d\f � f � of the Bézier segment to be expanded;

2. For each point ! "� found in Step 1 and using its bari-
centric coordinates

� ��R d � �!R � � ��R � 
 relative to the trian-
gular convex hull, determine

Z � byZ �_� � � R � 
6XA�ø:TS � R d � R � 
5� (19)

such that the expansion of the Bézier segment passes
through the point !B"� [11];

3. Define
Z

as the smallest of all
Z � determined in Step

2;

4. Determine M N according to Equation (17) and compute
the final

Z
asZ � min

� & �\� M N 
�X�� M �vj M N 
M� Z�
M; (20)

This choice of
Z

takes into account just the points, not
neighbors of !Y"$ , that are inside the convex hull

fid<f � f � , in
case they exist, and represents the largest expansion of the
curve satisfying the imposed conditions. This gives more
flexibility of shape control, both locally and globally, pro-
viding a more adequate fit of the interpolated terrain.

Besides the proposed shape control of the trajectory
curve that allows an expansion of the basis function’s sup-
port region, it can be introduced another parameter, / , that
controls the shape of the profile curve U �WV 
 (Equation (12)).
Thus, the modification

U X �WV_� / 
 �¥/�Y V � � j :ZV.hs~O
�[üh � & j / 
(V_� (21)

in the component U X �\VÇ
 of the function ] �\VÇ
 provides a
whole range of possibilities for the profile curve. Notice
that, this biased profile curve assumes any configuration be-
tween the Cubic Hermitian ( /·� & ) (see Equation (12));
and a linear function ( /W� 3 ). The tangents at

V � 3 andV � & are both equal to ( & j / ). Therefore, at the sam-
ple points, unless /��·& , the digital terrain model does not
have to show a plateau shape. In Figure 11, some examples
of the same basis function with different 0 and / are shown.

4 Comparison of Results

In this section, two reference models were chosen to show
the comparison tests. Each reference model is compared
to three interpolated ones generated by: polyhedral inter-
polation, the interpolation method proposed in [5], and the
interpolation method proposed in this work.

These three interpolated models were constructed as
follows: 1) a number of sample points was defined on the
domain; 2) a Delaunay triangulation of these points was
determined; 3) the elevations for these points were directly



Figure 11: Basis function with different 0 and / . (a) 0W�/s��& (b) 0Å�Ü& and /Î� 3 , (c) 0Å� 3 and /s�Ü& and (d)0 �W/ � 3 .
determined from the reference model; 4) the interpolated
surfaces corresponding to each method were computed.

With appropriate values of the parameters 0 and / (see
Section 3.5), particular cases of interpolation can be ob-
tained. For instance, the polyhedral interpolation is defined
with values of 0 and / equal to zero. Thus, for comparison
with the reference surface, interpolated surfaces were de-
termined by each of the three methods, using 0 and / equal
to
3 ; : | , 3 ; | 3 , 3 ;_^ | and & ; 3 . The fact that 0 in the proposed

method allows a larger expansion of the trajectory curves
gives more flexibility to model more complex surfaces.

The errors ` between the interpolated surfaces and the
reference one were calculated using the expression

a � b c �\d Nü� � ��� � �	�PNQ
 j ? ��� � �	�PNQ
�
 �S c �\d N � ��� � ��� N 
 � �
(22)

where
��� � ���PNQ
 are the points of the regular grid, � ��� � �	�PNQ


represents the elevation of the reference surface at
��� � ��� N 
 ,

and ? ��� � �	� N 
 represents the elevation of the interpolated
surface determined at

��� � �	� N 
 . The purpose of this study
is only to evaluate the potential of the proposed method,
in a simple way, without focusing on the magnitude of the
errors found. In other words, the idea is to show that smaller
errors can be found with the proposed method, which shows
a tendency that the method can generate better interpolated
surfaces in real applications. This is probably more true in
applications with steep regions and slopes, although further
investigation is necessary.

sinc function (200 points)
Polyhedral Chaturvedi Proposedegfihjflknm o<p 40.35 39.71 37.78egfihjflknm p<k 40.35 40.08 37.46egfihjflknm qrp 40.35 40.74 37.29egfihjf2s<m k<k 40.35 41.63 37.31

Table 1: Comparison of the percentage errors.

Figure 12: Comparison of the interpolation methods
� 0W�3 ; | and /]� 3 ; | ): (a) Polyhedral, (b) Chaturvedi (c) Pro-

posed. (200 sample points)

4.1 Case 1: Sinc function

In this example, the reference model was determined as the
Sinc function�����@�	��
 � � sin

� S � � hÎ� � 
�
�XA� S � � hÎ� � 
M�
(23)

defined on the domain
� � 2 j & :A� & : 4�t 2 j & :�� & : 4 
%� �Y�

.
The interpolated models were constructed as follows: 1): 3�3

random sample points were considered in the domain�
; 2) a Delaunay triangulation of these points was estab-

lished; 3) their elevations computed by
� �e� ����� � �	� � 
 ; 4)

the interpolated surfaces were determined.
The three interpolated surfaces are shown in Figure 12.

For each case, the approximation error was calculated by
Equation (22), as shown in Table 1.

4.2 Case 2: Real terrain

In this example, the reference model was defined on the
domain

�%� 2 j & :�� & : 4-t 2 j & :A� & : 4 
��×�8� . This model was
defined by & 3 ; 3�3O3 points, distributed as a regular grid of& 3�3 tW& 3�3 points over the entire domain

�
. This exam-

ple was chosen to illustrate the accuracy of the proposed



Real model (57 points)
Polyhedral Chaturvedi Proposedegfuhjfuknm o<p 19.98 18.67 18.27egfuhjfuknm p<k 19.98 18.40 17.40egfuhjfuknm qrp 19.98 18.44 16.83egfuhjf@s<m k<k 19.98 18.84 16.73

Table 2: Comparison of the percentage errors.

Figure 13: Comparison of interpolation methods ¸ Í�� Ù �� : (a) Polyhedral, (b) Chaturvedi and (c) Proposed.

technique applied to a real terrain. The digital terrain mod-
els (interpolated models) were constructed as follows: 1)v ¦ sample points were chosen from the set of points that
defined the reference model (part of the points was cho-
sen at random and some points were manually chosen on
steep regions); 2) a Delaunay triangulation of these points
was established; 3) their elevations were obtained from the
reference model; 4) the interpolated surfaces were deter-
mined. The number of sample points chosen was intention-
ally small in order to try to represent the real model with
the minimum computational effort possible, without losing
too much accuracy.

The three interpolated surfaces are shown in Figure 13.
For each case, the approximation error was calculated by
Equation (22), as shown in Table 2.

5 Conclusions

In this paper, it was proposed a methodology for generation
of interpolation surfaces by modifying the basis function
generation process presented by Chaturvedi and Piegl [5].
The proposed modification allows for a larger expansion
of the basis function’s support region, which is represented

by the interior of a trajectory curve composed of quadratic
rational Bézier segments. It also reduces the approximation
error between the reference and the interpolation surfaces.

It was observed that, in all examples, the proposed
method presented a smaller approximation error than both
the polyhedral method and that of Chaturvedi and Piegl.
Although further investigation needs to be conducted, this
fact seems to be very promising.
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