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Abstract
In this paper we perform gradient pattern analysis (GPA)
of convection diffusion given by the solution of 2D
Burgers’ equation. GPA leads to characterize initial
condition coherence and spatio-temporal pattern
equilibrium through the local/global averaging by using
two different matrix computational operators: the
Asymmetric Amplitude Fragmentation (AAF) and the
Complex Entropic Form (CEF). The transport
phenomenon is discussed in terms of its dependence to the
initial condition distribution. The initial condition
variability is given by a set composed by Gaussian and
non-Gaussian distributions. The results have shown that
the GPA is able to characterize different spatio-temporal
nonlinear diffusion regimes.
Key words: gradient pattern analysis, Burgers’ equation,
anomalous diffusion.

1. Introduction

The gradient pattern analysis [1-4] is a geometrical
approach to characterize formation and evolution of
two-dimensional spatio-temporal patterns in extended
nonlinear systems. Usually pattern formation in
continuous extended systems is described by means of
nonlinear interaction of plane waves. However, another
approach to the problem of pattern formation is to identify
robust structural properties for a single spatio-temporal
wave. It has been shown in numerical simulations that the
dynamical pattern of a single non-linear wave transport, in
the physical space, carries a memory of its initial condition
[4].

In nonlinear waves, competition occurs between two
opposing processes: steeping, due to nonlinearity, and
damping due to viscosity. The most fundamental equation
to describe this dynamics is the so-called Burgers’
equation for 1D, introduced by J. M. Burgers in 1940:

Ut + UUx  = εUxx,

where Ut and x are amplitudes in the correspondent phase
space, with U = f(x, t), and ε is the coefficient of viscosity.
A remarkable feature of Burgers equation is the existence
of an exact solution, found by Cole in 1951. The exact
solution reveals that there is a overturning instant t0 when
ε = 0. If ε ≠ 0, for t < t0 the steepness of the front
increases, and so, does the derivative U(x, t). As a result of
this, even for small viscosities, the term εUxx on the right-
hand side of the equation becomes large and matches the
convective term UUx. The central difference
approximation for the Burgers’ equation in two-
dimensions is [12]:
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where (i, j) and n are, respectively, the indices for space
(x,y) and time and
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2. Scenario

In the context of GPA, such transport phenomena can
be visualized in terms of a continuous symmetry breaking
during the convection diffusion evolution.

The generic scenario we assume in this paper is a
hybrid diffusion process (HDP) composed by three
sequential, and time dependent, phenomenological
regimes (R1, R2 and R3):

R1: we consider a stochastic process measured by
means of the U(x, y, τ) where τ is a Birkhoff characteristic
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time scale (i.e., U(x, y, τ) = U(x, y) when τ → ∞). In this
regime the mean-squared energy variation of the system is
given by: 〈U(τ)〉2 = Dqτα, where Dq is the generalized
diffusion coefficient and α is the anomalous exponent.
Such distribution can characterize, by means of the value
of the statistical index α = f(q), if the diffusion is normal
or anomalous [6]. Thus, in this first regime of the process
the generation of 2D-cumulative energy distributions
occurs, and we can use the following notation to
characterize these distributions Uq(x, y).

R2: After the fully development of the first regime, we
consider that a possible intrinsic global nonlinear
instability occurs and a transition to transport dynamics of
the envelope Uq(x, y) takes place in a time scale t « τ.

R3: Due to the instability in R2, a very fast convection
diffusion of the envelope Uq(x, y) develops according to
the 2D Burgers’ equation. Note that the 2D cumulative
energy distribution Uq(x, y) is the initial condition to this
last regime, so that we use, for this last regime, the
notation Uq(x, y, t).

Our principal aim, in this work, is to analyze the
spatial-temporal R3 regime described above for different
initial conditions distributions. For this, we have
performed solutions for Burgers’ equation in two spatial
dimension obtained by means of the 4th. order Runge-Kutta
scheme. The boundary conditions for all cases were
chosen as U(0,y,t) = U(x,0,t) = U(50, y, t) = U(x,50, t) = 0.
To be consistent with the first regime (R1), the initial
conditions were given by Gaussian and non-Gaussian
distributions obtained from the generalized
thermostatistics formalism [5]. For physical purposes
(mainly, long-range correlations), from [6], the
generalized distribution is given by:
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where Zq , for 1 < q < 3, is the normalization factor
given by:
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The parameter β is a Lagrange parameter associated
with the temperature [6]. Many distributions, U(Si,j) β1/2

versus Si,j β1/2, for typical values of q, can be obtained
from Equation 1. In Figure 1, some examples of the
probability distribution derived from Tsallis statistics, for
some values of the exponent q, are shown. When q = 1, it
corresponds to a Gaussian distribution and it’s important
to note the long-tailed power-law distributions for q > 5/3.

 Figure 1. Some profile of 1D probability distribution
derived from Tsallis statistics.

Figure 2 shows an envelope evolution for the initial
condition q = 1.

Figure 2. Four envelopes for q = 1 corresponding to:
(a) frame 1; (b) frame 5; (c) frame 15; (d) frame 50.

3. Space Parameterization

The energy U, in our approach, is distributed in an
arbitrary an nonlinear space, Sx,y, according to a
probability density function. And as described in R3, of
our scenario, this energy envelope U starts to diffusing in
this space. As an example, when the space Sx,y is
parameterized according to the real physical space x, y in a
Cartesian coordinates, this scenario is close to the
geophysical energy dissipation accumulated in a 2D
tectonic plate during a earthquake.

In order to show the response of the system to the initial
condition variability the parameter q was varied.
Regarding anomalous diffusion, as the main process
during the first regime R1, the case q < 1 is irrelevant [5].
Therefore, the focus is on the case 1 < q < 2. For the two
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dimensional case one finds the following sub-regimes: (a)
the interval 1 < q < 1.5 corresponds to a transition to a
superdiffusive process, and (b) the interval 1.5 ≤ q < 2 an
anomalous superdiffusion is obtained [6].

In Figure 3, we show the temporal evolution of
spatially extended pattern Uq(x, y) visualized as
normalized intensity contours: U1(x, y) (R1 as a gaussian
normal diffusion), U1.3(x, y) (R1 as a non-gaussian normal
diffusion), U1.5(x, y) (R1 as a quasi-superdiffusive regime)
and U1.9(x, y) (R1 as a fully superdiffusive regime).

Figure 3. Pattern evolution varying q: the top sequence of
three frames is for q = 1.0 (Gaussian); the second

sequence from the top  shows the pattern evolution for
q  = 1.3; the third sequence from the top  is for  q = 1.5 and

the bottom sequence is for  q = 1.9.

4. Gradient pattern analysis

The GPA formalism performs numerical investigation
of spatio-temporal complex patterns by using
computational operators such as AAF (Asymmetric
Amplitude Fragmentation) [4] and CEF (Complex
Entropic Form) [6]. Usually, the classical measures of
complex variability doesn’t take into account the
directional information contained in a vector field. On the
other hand, characterization of symmetry breaking in the
gradient field of a given dynamical matrix has been shown
to be a useful tool to understand complex regimes as
intermittence and localized turbulence [7].

The spatially extended pattern Uq(x, y, t) in two
dimensions (x, y) is represented by the matrix amplitude
distribution PM = LNxN {U(x, y) | i, j ∈ ℜ} ≡ U, essentially
a square matrix of amplitudes if the two dimensions are
discretized into N values each. The local fluctuation of the

spatial pattern is characterized by its gradient vector at
each mesh-point in the two-dimensional space. The
gradient field specifies quantitatively the variations at a
given point and it is the proper quantitative indicator of the
changes in the distribution of the snapshots, i.e., an
indicator of the variability pattern. In other words, in this
approach, the relative values of the amplitude in the matrix
are dynamically relevant, rather than their absolute values.

In Figure 4, we show a set of possible profiles of local
snapshot fluctuation. For a given snapshot Ui we
characterize the amplitude fluctuation by means of
U+ = |Ui - Ui+1| and U– = |Ui – Ui-1| We call symmetric
fluctuations when U+ = U– (examples 4a, 4b and 4c)
asymmetric fluctuations otherwise (examples 4d, 4e and
4f) [9].

Figure 4. Symmetric and asymmetric possible profiles
of local snapshot fluctuation.

Gradient Asymmetric Field: Removing every pair of
symmetric vectors from the ∇U field, we will be
generating a field with L vectors (surviving to this
operation), all of them vectorially asymmetric, represented
by the set AL(E) = {Li + Lj ≠ 0 for all i ≠ j}ε.

The two operators used to characterize both the
amplitude patterns of the system allow to quantify
symmetry breaking (AAF) and phase disorder (CEF) in the
gradient field. The Asymmetric Amplitude Fragmentation
(AAF) operator verifies the distribution of vectors in the
gradient field and eliminates those with the same
magnitude, within a small error, and vectorial symmetry
(those with opposite orientations). The total number of the
asymmetric vectors is denoted by L and connecting the
middle points of the L vectors with I straight lines, we
obtained a triangulation field T(I, L). The difference I – L
normalized by L is a measure of the asymmetry, called
Asymmetric Amplitude Fragmentation, also given by:

)0(, φLI
L

LIFa ≥
−

≡       (3)
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The Complex Entropic Form (CEF) operator is
obtained from a generalization of the concept of
degeneracy, given by the multinomial coefficient formula,
and normally used to deduce the expression of Shannon’s
entropy of positive scalar fields. Considering the gradient
matrix of the amplitude envelope, the CEF is given by [2]:
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Clearly, SZ is a complex number that can be read as
SZ = |SZ| eiφs, where |SZ| is the module and φS is the phase.
The CEF operator displays interesting properties, several
of which it shares with Shannon’s entropy. In particular, it
is possible to verify that SZ is invariant under rotation and
scaling of the vector field. Besides of being a measure of
regularity, this operator permits to quantify the degree of
phase disorder associated with a given gradient field. The
phase φS plays an important role in the analysis of pattern
changing frequency in the amplitude domain.

A new tool to characterize the 2D-pattern dynamics
obtained from spatio-temporal non-linear systems is
plotting patterns signature in the space Asymmetric
Fragmentation x Phase.

Figure 5 shows the signature of four different initial
conditions (q = 1.0 (Gaussian), q = 1.3, q = 1.5, q = 1.9).
It's possible to verify that different patterns occurs for
these different initial conditions. In the case of q = 1, the
pattern evolution occurs in a spread way (Figure 5.a). For
the q = 1.3 (Figure 5.b), we can observe a kind of cluster
on the evolution pattern, which becomes more intensive on
the supperdiffusive regimes. On these initial conditions
(Figures 5.c and 5.d), there is no more the spread observed
in the others regimes.

Figure 5. Phase diagram (Fa versus φS) for q = 1 (a),
for q = 1.3 (b), q = 1.5 (c), and q = 1.9 (d).

The spread that occurs on the pattern evolution varying
q is given by:

( ) 2
1

)(*)( SVarFaVarD φ=      (5)
In Figure 6, this measure is plotted varying the initial

condition from q = 1 to q = 1.9. One can see the
transposition between the Gaussian initial condition to a
transition to supperdiffusive regime and to superdiffusive
regime.

Figure 6. Pattern evolution signatures (Fa versus φS)
dispersion for q varying from 1.0 to 1.9.

5 Concluding Remarks

The analytical approach introduced in this paper will be
useful for characterization of spatio-temporal regimes in
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extended systems where there is no information about the
initial conditions. The methodology, using the gradient
pattern analysis, is to characterize the processes R1, R2 and
R3 using only few frames observed during the process R3.

In particular, the HDP proposed here can play a
fundamental role in the energy diffusion mechanism of a
wide class of systems: impulsive bursts in plasmas [8];
transport in heterogeneous media, such as Lagrangian
drifters in the ocean flow [9], nonuniform distribution of
strengths over a fault plane that generates earthquakes [10]
and the asset price change after a bubble financial rupture
[11].
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