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The anomaly correlation for area-averaged seasonal rainfall anomalies (JJA left, DJF right) in selected regions of the world for ECMWF System 
3 seasonal forecasts. The upper panels show the correlation between forecasts and observations - in some regions this is quite high, in others it 
is near zero. The lower panels show the model estimate of the predictability limit, in other words the correlation that would be obtained with a 
perfect model. In some places the level of potential predictability is much higher than the skill presently achieved.

From Molteni et al, page 7: ECMWF Seasonal Forecast System 3

Seasonal Prediction

CLIVAR is an international research programme dealing 
with climate variability and predictability on time-scales 
from months to centuries.  CLIVAR is a component of 
the World Climate Research Programme (WCRP). WCRP is 
sponsored by the World Meteorological Organization, the 
International Council for Science and the Intergovernmental 
Oceanographic Commission of UNESCO.

Thanks to Ben Kirtman and Anna Pirani for all their work in editing 
this edition of Exchanges.  Together with its key focus on Seasonal 
Prediction, this edition also announces the publication of Volume 
2 of the WOCE Atlas Series, outlines developments in planning of 
the Southern Ocean Observing System (SOOS) and summarises 
the outcomes of the 4th session of the CLIVAR Indian Ocean Panel 
(see pages 36-39).  The next edition (January 2008), focussing on 
the theme of “Furthering the Science of Ocean Climate Modelling” 
will include an account of the CLIVAR SSG meeting, which took 
place in Geneva from 11-14 September 2007.
Howard Cattle
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This article describes the motivation and outcomes of the First 
WCRP Seasonal Prediction Workshop, which was held June 
4-7 in Barcelona Spain, bringing together climate researchers, 
forecast providers and application experts. The main purposes 
were to describe the current status and main limitations 
regarding seasonal forecast skills and applications, and to make 
recommendations to improve both of these aspects. It is clear 
that there is substantial scope for improving skill by reducing 
model biases and including a wider range of climate processes, 
and improving benefits through better communication of more 
appropriate information.
Introduction
Our ability to predict the seasonal variations of the Earth’s 
tropical climate dramatically improved from the early 1980s to 
the late 1990s. This period was bracketed by two of the largest El 
Niño events on record: the 1982-83 event, whose existence was 
unrecognized until many months after its onset; and the 1997-
98 event, which was well monitored from the earliest stages, 
and predicted to a moderate degree by a number of models 
several months in advance. This improvement was due to the 
convergence of many factors including a concerted international 

The First WCRP Seasonal Prediction Workshop

Prepared by the Workshop Participants,  Coordinated by B. Kirtman and A. Pirani
Corresponding author: anna.pirani@noc.soton.ac.uk

effort to observe, understand and predict tropical climate 
variability, the application of theoretical understanding of 
coupled ocean-atmosphere dynamics, and the development and 
application of models that simulate the observed variability. 
After the late 1990s, our ability to predict tropical climate 
fluctuations reached a plateau with little subsequent 
improvement in quality. Was this a result of a fundamental 
change in the predictability of the climate system due to 
either natural or anthropogenic forcing, or the emergence 
of a critical failing in the models used to make predictions 
or merely a sampling effect? Have we accounted for all the 
critical interactions among all the elements of the climate 
system (ocean-atmosphere-biosphere-cryosphere)? Are the 
observations adequately blended with the models to make the 
best possible forecasts?
About a third of the world’s population live in countries 
influenced significantly by climate anomalies. Many of these 
countries are developing countries whose economies are 
largely dependent upon their agricultural and fishery sectors. 
The climate forecast successes of the 1980s and 1990s brought 

This special issue of Exchanges on seasonal prediction builds on 
the success of the 1st WCRP Workshop on Seasonal Prediction 
that brought together around 180 participants from 30 countries 
of the seasonal prediction, climate dynamics and seasonal 
forecast applications community in Barcelona, Spain on 4-7 
June 2007. The Workshop was a landmark in the ongoing 
seasonal prediction assessment being led by CLIVAR and the 
World Climate Research Programme (WCRP), and nearly all 
of the contributions to this issue are based on presentations 
made at the Workshop. In particular, the opening article gives a 
summary of the WCRP Position Paper on assessing the quality 
and value in seasonal prediction that is being prepared by the 
Workshop coordinators through an extensive consultation 
process with all the Workshop participants.
The articles presented here span the comprehensive range 
of topics that are being currently addressed by the seasonal 
forecast operational, research and applications community 
and contribute to the assessment of the regional skill and socio-
economic importance of forecasts. It is clear that increasing 
precipitation forecast skill is one of the major challenges facing 
the community, as illustrated by the front page image (Molteni 
et al., 2007, Exchanges, this issue) that shows the potential 
predictability of precipitation in different regions of the World. 
State-of-the-art dynamical and empirical forecast systems, the 
potential for improvement in skill from multi-model, combined 
dynamical-empirical and calibration techniques, are evaluated. 
The issue includes articles looking at the prediction of the 
onset of the monsoon and the impact of phenomena such as 
ENSO teleconnections and Indian Ocean SST anomalies on 
seasonal forecasts from South Africa to Australia and East 
Asia. Innovative applications of forecasts are presented with 
an example demonstrating downscaling precipitation to derive 
river flow forecasts and another with the use of multi-model 

Editorial

Kirtman, B.,1 and A. Pirani2

1University of Miami – Rosenstiel School for Marine and Atmospheric Science.  2International CLIVAR Project Office
Corresponding author:  anna.pirani@noc.soton.ac.uk

forecasts coupled to a process-based malaria model to assess 
the applicability of seasonal forecasts for Africa-wide epidemic 
malaria forecasts.
This issue of exchanges provides a synopsis of the Workshop 
and introduces the key elements of the WCRP seasonal 
prediction position paper, which is available at http://www.
clivar.org/organization/wgsip/spw/spw_position.php. This 
position paper is a living document in the sense that it will be 
refined and evolve over time as we develop better metrics for 
measuring seasonal prediction capabilities and better prediction 
methodologies. In addition, as we learn how to make better use 
of seasonal prediction information this too will be documented 
in the position paper.  
One of the overarching goals of the WCRP is to determine the 
predictability of the complete physical climate system on time 
scales of week to decades.  CLIVAR, through its leadership 
of the WCRP Task Force on Seasonal Prediction (TFSP) and 
the Working Group on Seasonal to Interannual Prediction 
(WGSIP) has been coordinating the assessment of current 
seasonal-to-interannual predictive capabilities, and defining 
the new frontier in climate prediction research by designing the 
experimental framework for sub-seasonal to decadal complete 
physical climate system prediction. By the complete physical 
climate system, we mean contributions from the atmosphere, 
oceans, land surface, cryosphere and atmospheric composition 
in producing regional and sub-seasonal to decadal climate 
anomalies. This experimental framework is described at 
the WGSIP web site (http://www.clivar.org/organization/
wgsip/wgsip.php). The TFSP and WGSIP believe that this 
experimental framework is a path to improve prediction quality 
and use for societal benefit.
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great promise for societal benefit in the use and application of 
seasonal forecast information. However this promise of societal 
benefit has not been fully realized, in part, because there have 
not been adequate interactions between the physical scientists 
involved in seasonal prediction research and production, 
applications scientists, decision makers and operational 
seasonal prediction providers. The issues and problems go 
beyond merely improving forecast quality and making forecasts 
readily available. The physical scientists need to actively 
facilitate and understand how the forecasts can be used in order 
to make useful improvements to forecast products.
One of the overarching objectives of the World Climate Research 
Programme (WCRP) is to facilitate analysis and prediction of 
Earth system variability and change for use in an increasing 
range of practical applications of direct relevance, benefit and 
value to society.  In order to, in part, meet this objective the 
WCRP commissioned the Task Force on Seasonal Prediction 
(TFSP) to assess current seasonal prediction capability and 
skill considering a wide range of practical applications, and 
to enable the development and implementation of numerical 
experimentation specifically designed to enhance seasonal 
prediction skill and the use of seasonal forecast products for 
societal benefit.
As part of the seasonal prediction capability assessment, the 
TFSP in collaboration with the core programs of the WCRP 
(CLIVAR, CliC, SPARC and GEWEX) and the World Climate 
Programme (WCP) organized the First WCRP Seasonal 
Prediction Workshop, which was held June 4-7 2007 in 
Barcelona Spain. This article summarises the key outcomes and 
recommendations of this workshop. This WCRP Position Paper 
on Seasonal Forecasting that is being prepared by the Workshop 
participants is intended to go beyond merely summarizing 
the workshop presentations; indeed we specifically avoid this 
sort of summary. The main purpose is to provide definitive 
statements regarding current skill in seasonal prediction 
with emphasis on surface temperature and rainfall and how 
the forecasts are currently being used for societal benefit. In 
addition, the report outlines a set of specific recommendations 
for improving seasonal prediction skill and enhancing use of 
seasonal prediction information for applications.
The Workshop focused on addressing two basic overarching 
questions:
(i) What factors are limiting our ability to improve seasonal 

predictions for societal benefit?
(ii) What factors are limiting our ability to use seasonal 

predictions for societal benefit?
In addition to addressing these questions, the workshop 
participants developed recommendations spanning both the 
physical and application sciences for how to overcome these 
limiting factors. The workshop brought together the diverse 
seasonal prediction community. This includes researchers of the 
physical climate system and forecast methodology, operational 
forecast providers and forecast applications experts. There 
were approximately 180 attendees that represented diverse 
international interests both in the physical and application 
fields. Approximately 30 countries or so from the WMO 
Regions I-IV (Africa, Asia, South America, North and Central 
America, Southwest Pacific and Europe) were represented. 
Representatives from all the major operational seasonal 
prediction centers and funding agencies were in attendance. 
This summary of the workshop is organized as follows: 
(1) We present some critical common language regarding the 

assessment of seasonal prediction. Developing a common 
language for assessing seasonal prediction is critical to 

successful interaction among forecast providers, forecast 
users and forecast researchers, and the importance of this 
agreed upon language cannot be over stated.

(2) We enumerate the overarching consensus among the 
workshop participants regarding the current status and 
future prospects of seasonal prediction. These consensus 
statements required considerable discussion among the 
workshop participants and invited experts, and carry the 
full weight of the seasonal prediction community.

(3) The workshop identified a simple set of metrics for assessing 
seasonal prediction quality, which provide a key benchmark 
of evaluating future improvements. These metrics are 
presented here; however, the workshop participants 
recognized the importance of allowing these metrics to be 
refined over time. In fact, the workshop report is a “living” 
document that will be refined and updated in the future and 
made available online to the entire community.

A Common Language for Assessing Seasonal Prediction
The need for an authoritative statement on the skill of seasonal, 
and other extended-range, predictions has long been recognised.  
Several audiences for such a statement exist, including 
development scientists, forecast producers and distributors, 
managers, funders, and the wide range of individuals outside 
the climatological community who either process the forecast 
information to advise others or who take decisions based on 
that information and who will be referred to collectively below 
as ‘users’.  Each audience has its own specific requirements for 
such a statement, and the information processing necessary to 
produce the statement varies accordingly.  In order to simplify 
this current statement the target audience is assumed to be 
development scientists and users, although others will gain 
benefit.
The term ‘skill’ covers a complex array of issues; just two will 
be covered here, quality and value.
(i) Quality refers to the technical measurement of forecast 

performance; quality is of prime concern to scientists and 
is often queried by users.

(ii) Value relates to the practical benefits achieved through 
decision making based on forecast information, usually 
amongst other information, and while of fundamental 
concern to the user should also stimulate scientists.

Overarching Consensus Statements 
(1) The workshop participants unanimously agreed that the 

maximum predictability of the climate system has yet to 
be achieved in operational seasonal forecasting. 

This position is based on the recognition that: (i) model error 
continues to limit forecast quality and that (ii) the interactions 
among the elements of the climate system are not fully taken 
into account and may lead to improved forecast skill. The fact 
that model error continues to be problematic is evident from 
the need for and success of calibration efforts and the use of 
empirical techniques to improve dynamical model forecasts. 
Land-atmosphere interactions are, perhaps, the most obvious 
example of the need to improve the representation of climate 
system interactions and their potential to improve forecast 
quality.
(2) Multi-model methodologies are a useful and practical 

approach for quantifying forecast uncertainty due to 
model formulation. 

There are open questions related to the multi-model approach. 
For example, the approach is ad-hoc in the sense that choice 
of models has not been optimized. Nor has the community 
converged on a best strategy for combining the models. Multi-
model calibration activities continue to yield positive results, 
but much work needs to be done. These issues as well as others 
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require additional research. It is also important to note that the 
multi-model approach should not be used to obviate the need 
to improve models. 
(3) A common agreed upon baseline procedure for assessing 

seasonal prediction skill is critical for documenting future 
improvement. 

This includes best practices in forecasting and appropriate 
validation/verification techniques; and recognition of the non-
stationarity of the climate system. These best practices need to 
be developed for both global and regional prediction systems. 
The Position Paper and its future evolution in collaboration 
with WCRP and WCP is an effective process for developing and 
refining these best practices. The workshop participants argued 
that there is an immediate need for the international seasonal 
prediction community to come to a consensus on best practices. 
Some of these issues are touched upon in the Position Paper, 
but more work is needed. Recognizing the non-stationarity of 
climate variability is important in terms of assessing quality 
and enhancing value of season forecasts. As such seasonal 
forecasts, particularly retrospective forecasts, should be made 
with observed climate forcing as noted in the TFSP experimental 
design. Commonality of physical processes and of models is 
an explicit link across predictive time scales (e.g., seasonal to 
climate change). This makes seasonal forecasting a vital test 
bed to assess the reliability of longer-range predictions. This is 
particularly true when applications, such as those in agriculture 
and health are considered. 
(4) Model errors, particularly in the tropics, continue to 

hamper seasonal prediction skill. 
The importance of reducing model error cannot be over stated. 
There are a number of strategies for improving models including 
a better representation of the interactions among the elements 
of the climate system, inclusion of biogeochemical cycles, and 
substantial increases in spatial resolution. All of these strategies 
need to be vigorously pursued; however, international and 
nation coordination and commitment is seriously lacking.
(5) Forecast initialization is an area that requires active 

research. Ocean data assimilation has improved forecast 
quality; however, coupled data assimilation is an area of 
active research that is in need of enhanced support and 
perhaps international coordination. 

There is significant evidence that coupled ocean-atmosphere 
data assimilation is likely to improve forecast quality. 
Compatible land surface initialization strategies are actively 
being pursued in GEWEX and continued coordination with 
the seasonal prediction community is warranted.
(6) Observational requirements for seasonal prediction and 

the development of applications of seasonal predictions 
are not being adequately met. 

While defining the observational requirements for seasonal 
prediction was beyond the scope of this workshop, the 
participants agreed that this is an issue that requires 
attention.
(7) Verification should also be undertaken routinely using 

simplified but multivariate driven dynamical applications 
models. 

The relationship between forecast quality in applications models 
and meteorological models is often highly non-linear. Quality 
in the prediction of seasonal mean rainfall may not translate 
into quality in the prediction of crop yield, for example. Thus 
application models can provide additional metrics of forecast 
quality. Furthermore, these metrics usually have a specific user 
group in mind.
(8) Web based tools need to be developed to allow users of 

the prediction information to tailor the underlying climate 
information more easily to their needs (e.g. climate range/
thresholds, spatial scale(s)). 

Progress on this front is critical to improving the value of 
seasonal forecasts.
(9) Although there are many examples of seasonal forecast 

application (e.g., health, agriculture, water management), 
there is potential to do much more. 

More progress needs to be made in bringing seasonal prediction 
providers and seasonal prediction users together. More work 
is required to develop the production and understanding of 
probabilistic forecasts. Understanding of what is predictable and 
what is not predictable need to be enhanced. The importance of 
predicting ‘extremes’ (even top and bottom quintile categories 
are extreme for seasonal prediction, and probability forecasts 
are increasingly presented in these terms) was also noted.
(10) The research community has not adequately quantified 

what is and what is not predictable. 
Indeed, the Position Paper, as it evolves over time should 
include, where possible, unambiguous statements regarding 
what is predictable and what is not predictable.  
Assessing Seasonal Prediction Quality
The workshop participants made presentations on validating 
and assessing the state-of-the-art and quality in seasonal 
forecasts by bringing together retrospective forecast data 
issued from international research projects (i.e., SMIP2/HFP 
DEMETER, ENSEMBLES, and APCC) as well as data available 
from operational centers. Assessments were made in terms 
of scientific quality and factors limiting improvement. The 
presentations highlighted issues important for interfacing 
seasonal forecasts with applications including calibration, 
downscaling and validation, and determining whether there 
is an emerging consensus on approach and methodology. The 
workshop participants addressed seasonal prediction from a 
wide-ranging multi-disciplinary perspective looking at the 
role of cryospheric processes, stratospheric processes and air-
land interactions on seasonal prediction, as well as the role 
of ocean initialization, aiming to explore additional source of 
potential seasonal predictability. A number of the presentations 
emphasized the quality of seasonal prediction in the monsoon 
regions of Africa, Asia and South America.
Based on these presentations the workshop participants 
converged on two metrics for an overarching assessment 
of the quality of seasonal prediction. These are the multi-
model Brier Skill Score, described in more detail below, and 
the quality of the predicted SST in the Eastern Pacific (i.e. 
the Nino3.4 region).  It was clearly acknowledged that these 
metrics were not sufficient for use in applications or to improve 
the quality of the forecasts. Much more detailed information 
is required, but well beyond the scope of the Position Paper. 
These metrics, however, do provide a simple benchmark from 
which progress can be measured. It was also acknowledged that 
future refinements and enhancement may be required and the 
workshop participants urged that this assessment be viewed 
as an evolving or “living” document that will be periodically 
updated and reviewed. 
Multi-model Bier Skill Score (BSS)
This metric is a multi model Brier Skill Score for seasonal mean 
(DJF and JJA) 2m temperature and rainfall over 21 standard land 
regions (Giorgi and Francisco, 2000). This particular forecast 
quality metric is discussed in detail in a companion paper in 
this volume (see Palmer et al, 2007) and in the peer review 
literature (see Palmer et al.  2008). These regions, seasons and 
lead times are not necessarily the optimum for all users and 
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Table 1:  Forecast quality of the DEMETER multi-model seasonal 
re-forecasts in terms of Brier Skill Scores (BSS) for near-surface 
temperature and precipitation upper and lower tercile categories in 
JJA and DJF for 21 standard land regions (multiplied by 100). The 
scores for E±T,P(x) have been computed over the re-forecast period 
1980-2001 using seasonal means from 1-month lead ensembles started 
on the 1st of May/November. Bold underlined numbers indicate scores 
with a probability p≥0.9 that a random sample based on a 10,000 
bootstrap re-sampling procedure would yield BSS<0 (significantly 
negative) or BSS>0 (significantly positive).

forecast providers. Nevertheless, they do provide a reasonable 
overall measure of state-of-the-art quality. The one month lead 
seasonal mean multi-model BSS based on DEMETER data 
(Palmer et all., 2004) is summarized in Table 1. Here the BSS is 
calculated for binary events (i.e., precipitation exceeds the upper 
tercile, E+

P(x); precipitation exceeds the lower tercile, E-
P(x) and 

similarly for temperature: E+
T(x), E-

T(x)). Positive values indicate 
reliable forecasts and underlined values indicate greater than 
90% confidence in the reliability. Negative underlined values 
indicate that the multi-model ensemble reliably fails to predict 
the occurrence of the event. Whether the negative underlined 
values provide useful information is the subject of debate and 
research.
Overall it is clear that 2m temperature is more reliably predicted 
than precipitation regardless of season. Tropical regions 
generally show more temperature reliability (i.e., Central 
America, Amazon Basin, Western Africa), although there are 
sub-tropical regions of considerable forecast quality (i.e., Tibet). 
While some regions can be reliably predicted in both JJA and 
DJF, there is significant seasonality in 2m temperature forecast 
quality. 
In contrast to 2m temperature, the models have significant 
difficulty capturing the rainfall variability over these land 
regions. There is notable forecast reliability in the local summer 
seasons over the Amazon Basin and Southeast Asia. Elsewhere 
the precipitation forecast reliability is desultory.
In defining this metric, the workshop participants identified two 
points that highlight the importance of improving models: (i) 
calibration can improve the reliability and (ii) exploiting known 
dynamical and physical relationships (i.e., teleconnections) can 
also be used to improve the reliability. The fact that forecast 
quality can be improved using these techniques indicates that 
models and predictions can and should be improved. 
Conclusion
The workshop, the follow-on WCRP Position Paper on Seasonal 
Prediction, and the TFSP prediction experiments (http://
www.clivar.org/organization/wgsip/tfsp.php) represent the 
necessary steps in a comprehensive (quality and value) seasonal 
prediction assessment. The consensus statements that are part 
of the WCRP seasonal prediction Position Paper carry the 
full weight of the entire seasonal prediction community. The 

consensus statements were discussed and vetted in great detail 
at the workshop and have been made available for comment 
from scientists and researchers who were unable to attend 
the workshop. Indeed, the feedback from both the workshop 
participants and those unable to attend has lead to significant 
refinements.
As noted above, the workshop participants felt very strongly 
that the WCRP seasonal prediction Position Paper be a living 
document, not only to embellish upon the assessment metrics, 
but also to clearly document future seasonal prediction 
improvements. In particular, the TFSP experiments require 
a much more “comprehensive” view of seasonal prediction. 
By comprehensive, we mean that the TFSP is hypothesizing 
that there will be substantive improvements in seasonal 
prediction if and only if we include all the interactions among 
the components of the climate system. This WCRP seasonal 
prediction paper necessarily needs to document the results 
of the TFSP experiments that should become available in late 
2009.
References
Giorgi, F. and R. Francisco, 2000: Uncertainties in regional 

climate change prediction: a regional analysis of ensemble 
simulations with the HADCM2 coupled AOGCM. Clim. 
Dyn., 16, 169-182.

Palmer, T. N., A. Alessandri, U. Andersen, P. Cantelaube, M. 
Davey, P. Délécluse, M. Déqué, E. Díez, F. J. Doblas-Reyes, 
H. Feddersen, R. Graham, S. Gualdi, J.-F. Guérémy, R. 
Hagedorn, M. Hoshen, N. Keenlyside, M. Latif, A. Lazar, 
E. Maisonnave, V. Marletto, A. P. Morse, B. Orfila, P. Rogel, 
J.-M. Terres, M. C. Thomson, 2004: Development of a 
European multi-model ensemble system for seasonal to 
inter-annual prediction (DEMETER). Bull. Amer. Meteor. 
Soc, 85, 853-872.

Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. 
Rodwell, 2007: Seasonal Forecast Datasets – A resource for 
Calibrating Regional Climate Change Projections? CLIVAR 
Exchanges, 43, 6-7.

Palmer, T. N., F., J. Doblas-Reyes, A. Weisheimer, and M. J. 
Rodwell, 2008: Towards Seamless Prediction: Calibration 
of Climate Change Projections Using Seasonal Forecasts. 
Bull. Amer. Meteor. Soc., accepted.



CLIVAR Exchanges Volume 12  No.4  October  2007

6

Seasonal forecasts are of value for many different applications. 
Here we propose a potential new application - as a resource for 
calibrating probabilistic regional climate change projections in 
the light of model error. This paper is based on a more extensive 
paper submitted for publication in the peer-reviewed literature 
(Palmer et al., 2008).
Anthropogenic climate change (ACC) is currently top of the 
political agenda, and public awareness of the threat of climate 
change is very high. Since significant climate change now seems 
inevitable, government and society alike are asking about the 
sort of infrastructure investments required to adapt to climate 
change. Informed decisions on such investments will require 
reliable projections of not only regional temperature, but also of 
regional precipitation, e.g. towards wetter or drier winters. 
ACC is a major theme of CLIVAR as well as being a cross-cutting 
activity within WCRP. CLIVAR’s perspective on ACC arises 
from the project’s focus on natural modes of variability: how 
does ACC influence the evolution of these natural modes? This 
type of question is critical since regional precipitation is strongly 
linked to circulation patterns; hence changes in precipitation 
can arise from changes either in the frequency of occurrence, or 
in the structure, of the natural modes of climate variability. For 
example, the drought that affected Southern England between 
2004 and 2006 was directly associated with persistent blocking 
anticyclone activity, whilst the exceptionally wet summer of 
2007 was associated with a persistent trough over Northern 
Europe. Are these types of winter blocking anticyclone or 
summertime persistent trough likely to become more prevalent 
under ACC?
The IPCC Fourth Assessment Report (AR4) multi-model 
ensemble provides quantitative probabilistic estimates of 
these types of questions. As far as the UK is concerned, the 
AR4 ensemble does not indicate any increase in probability 
of blocking activity in winter, or persistent drought in 
summer. Indeed there is almost a consensus amongst the AR4 
integrations that winters over the UK will get wetter, and near 
consensus that summers will get drier.
At first sight, it might appear unlikely that seasonal forecast 
datasets could have much bearing whether or not these 
probabilistic ACC projections are reliable, since ACC is the 
consequence of radiative forcing perturbations, whilst seasonal 
forecasts exploit the potential predictability of, for example, 
coupled ocean-atmosphere modes. However, because of the 
nonlinearity of the climatic equations of motion, radiative 
forcing perturbations would rapidly excite the natural modes 
of climate variability. Indeed the notion that diagnosis of 
seasonal forecast datasets could have a bearing on the reliability 
of projections of ACC, is entirely consistent with the CLIVAR 
perspective on ACC. 
A well-studied multi-model ensemble seasonal forecast dataset 
was created as part of the DEMETER project (Palmer et al., 
2004). The seven component models of the DEMETER project 
are each IPCC-class global coupled ocean-atmosphere models. 
Probabilistic Brier skill scores for seasonal-mean precipitation 
have been estimated for all the Giorgi (Giorgi and Francisco, 
2000) regions. A summary of these results is given in an 
accompanying article in this issue (Kirtman et al., 2007). Results 
are quite mixed: some regions show positive levels of skill, 
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others are clearly negative. The first row of Figure 1 (page 19) 
shows reliability (also known as attribute) diagrams (Wilks, 
1995) for two of the Giorgi regions: one where the reliability 
is high (Western North America), the other where reliability is 
low (Southern Europe-Mediterranean).
What is the cause of seasonal-forecast unreliability? When a 
reliability line is flatter than the ideal 45° slope, this indicates 
that the ensemble is over-confident, i.e. forecast probabilities 
are higher (lower) than expected when the event occurs a high 
(low) number of times. This suggests that the ensemble is not 
properly capturing the sources of forecast uncertainty. These 
forecast uncertainties arise from errors in either the initial 
conditions, or the model formulation, or both. There is no 
obvious reason to suppose that uncertainty in initial conditions 
is being inadequately sampled in the DEMETER dataset. 
However, there is reason to suppose that errors in model 
formulation are not being fully sampled by the DEMETER 
models. For example, it has been established that each of the 
DEMETER models inadequately simulates persistent blocking 
anticyclones; indeed present-day climate models have difficulty 
simulating many types of persistent climate anomaly. As such, 
the types of seasonal-precipitation anomaly discussed above 
are associated with precisely the persistent regional circulation 
regimes that models have difficulty in simulating.
Putting these results together, it can now be seen how 
information concerning the reliability of seasonal precipitation 
anomalies is relevant to assessing the reliability of climate 
change projections of seasonal-mean precipitation. Of course, 
this does not imply that by assessing climate change models in 
seasonal forecast mode we have a necessary and sufficient test 
of the reliability of the climate change projections: for climate 
change there are clearly relevant processes which occur on 
longer timescales than can be assessed in seasonal forecast 
mode. Rather we view the assessment with seasonal forecasts 
as only providing a necessary test on the reliability of the 
climate-change projections.
In order to use the seasonal forecast data quantitatively, we 
propose the following methodology. First, for selected regions, 
the relevant reliability diagram is used to define a probability 
forecast calibration such as is used in probabilistic weather 
prediction (Toth et al., 2006). Such a calibration will discount 
probabilities (back towards climatological values) in regions of 
strong probability forecast unreliability. Secondly, a calibration 
is applied to the AR4 probabilities in the same region.
This two-part method is illustrated in Figure 1  where we study 
lower tercile precipitation for June-August in two land areas. 
The top-row panels show the DEMETER seasonal forecast 
reliability diagrams. A best fit regression line has been drawn 
through the points in the reliability diagram. The middle-row 
panels show the raw, i.e. uncalibrated ratio of probabilities 
of lower tercile precipitation based on the IPCC AR4 data 
for the last two decades of the 21st century and the end of 
the 20th Century. The probabilities are based on the multi-
model ensemble. The panels in the bottom row show the AR4 
probabilities, calibrated using the DEMETER regression line of 
the reliability diagrams.
Details of the calculation are given in Palmer et al. (2008); here 
we focus on the main results. For the Western North American 
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region, where the DEMETER seasonal forecasts were found 
to be reliable, the calibration procedure hardly alters the raw 
AR4 probabilities. Hence the basic AR4 prediction that there 
is a substantial increase in the probability of lower tercile 
rainfall due to climate change remains unaffected by seasonal 
forecast calibration for Western North America. However, 
the corresponding prediction for the Mediterranean region is 
substantially discounted by the calibration, and the change in 
probability compared with the 20th century value of one third 
is now much smaller.
In principle such calibrations could be of importance for 
relevant climate adaptation decisions. Broadly speaking, if 
infrastructure at cost C can be implemented to protect society 
against a particular climate change, and if the economic and 
social losses arising from unprotected climate change equal 
L, then the decision to invest in such infrastructure depends 
on whether the relevant climate change probability exceeds 
C/L.
These results illustrate the potential value of developing 
seamless forecast systems, i.e. systems that span weather and 
climate timescales. In such systems the validation of forecasts 
on timescales where validation data exists can be used to assess 
the reliability of the forecasts on timescales where validation 
data does not exist. The concept of a seamless prediction 
system is a focus in the recent strategic framework of the World 
Climate Research Programme, and is entirely consistent with 
the objectives of the CLIVAR project.
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1. Introduction
ECMWF has been running a seasonal forecast system since 1997, 
and in March 2007 a new forecast system, known as System 3 
(S3, Anderson et al, 2006) was introduced. The system consists 
of the atmospheric and oceanic components of the coupled 
model as well as the data assimilation scheme to create initial 
conditions for the ocean, the coupling interface linking the 
two components and the strategy for ensemble generation. 
For all ECMWF systems so far, there is no dynamic sea-ice 
model; the initial conditions are based on the observed sea-ice 
limit but thereafter the sea-ice evolves according to damped 
persistence.
New forecast systems are introduced only occasionally, both 
because of the work involved and the value of stability for 
users: System 1 (S1) became effectively operational in late 1997, 
System 2 (S2) started running in August 2001, and System 3 
started running in August 2006 and became the operational 
version in March 2007. The atmospheric model for S3 is cycle 
31r1 (Cy31r1) of the IFS. The horizontal resolution has been 
increased from TL95 to TL159 (with the corresponding grid 
mesh reduced from 1.875° to 1.125°), and the vertical resolution 
is increased from 40 levels to 62 levels, extending up to ~5 hPa. 
Major changes have taken place in the ocean analysis system 
for S3, though the HOPE ocean model is little changed from 
the version used in S2.
As in S2, the ocean initial conditions in S3 are provided not 
from a single ocean analysis but from a 5-member ensemble of 
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ocean analyses, created by adding perturbations to the wind 
forcing used in the analysis. The atmospheric initial conditions, 
including land conditions, come from ERA-40 for the period 
1981 to 2002 and from ECMWF operational analyses from 2003 
onwards.
The real-time ensemble set consists of 41 members in S3, and 
the calibration set consists of 11 members spanning the 25-
year period 1981–2005, so creating a calibration probability 
distribution function of 275 members. Each of these ensembles 
has a start date of the first of the month. The initial atmospheric 
conditions are perturbed with singular vectors and the 
ocean initial conditions are perturbed by adding sea surface 
temperature perturbations to the 5 member ensemble of ocean 
analyses. Stochastic physics (stochastic perturbation of physical 
tendencies with a six-hour decorrelation timescale) is active 
throughout the forecast period.
S3 seasonal integrations are 7 months long (S2 integrations were 
only 6 months). Additionally, once per quarter an 11 member 
ensemble runs to 13 months, specifically designed to give an 
“ENSO outlook”. Back integrations have also been made to this 
range, once per quarter, with a 5 member ensemble.
2. The ocean analysis
The ocean analysis for System 3 extends back to 1959 and 
provides initial conditions for both real-time seasonal forecasts 
and the calibrating hindcasts. Although only the ocean analyses 
from 1981 onwards are used directly in S3, the earlier ocean 
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analyses will be used for analysing climate variability, and by 
the ENSEMBLES project for seasonal and decadal forecasts.
As for S2, the ocean data assimilation system for S3 is based on 
HOPE-OI (i.e. the optimum interpolation scheme developed 
for the Hamburg Ocean Primitive Equation model), but major 
upgrades have been introduced. In addition to subsurface 
temperature, the optimum interpolation (OI) scheme now 
assimilates altimeter derived sea-level anomalies and salinity 
data. There is also a multivariate bias-correction algorithm 
consisting of a prescribed a priori correction to temperature, 
salinity and pressure gradient, as well as a time-dependent bias 
term estimated on-line. The on-line bias correction is adaptive 
and allows for flow-dependent errors. Because of the a priori 
bias-correction term, the subsurface relaxation to climatology 
has been weakened, from a time scale of 18 months in S2 to 10 
years in S3. Due to the large uncertainties in the fresh water 
flux, the relaxation to climatology is stronger for surface salinity 
(approximately 3-year time scale), but still weaker than in S2 
(approximately 6 months).
In order to obtain a first-guess as input to the OI analysis, it is 
necessary to force the ocean model with atmospheric fluxes. 
From January 1959 to June 2002 these are taken from ERA-40, 
and from the ECMWF operational NWP analysis thereafter. 
Experiments show that data assimilation gives significant 
improvements in the representation of the mean state and 
variability of the upper ocean heat content, when compared 
to a wind forced ocean model run. In the model’s Equatorial 
Pacific, assimilation steepens the thermocline and increases the 
amplitude of the interannual variability. In the Indian Ocean it 
sharpens the thermocline, making it shallower, and increases 
both the ENSO-related and Indian Dipole variability. In the 
Equatorial Atlantic assimilation makes the cold phase of the 
seasonal cycle more pronounced, and the amplitude of the 
interannual variability is increased.
The improvements that assimilation makes to the ocean initial 
conditions have a beneficial impact on the seasonal forecasts 
nearly everywhere, but especially in the west Pacific. A region 
where there is little impact is the equatorial Atlantic.
Additional experiments have shown that the Argo array has 
a large impact on the analysed salinity field on a global scale, 
and leads to improved seasonal forecast skill (Balmaseda et al, 
2007). A fuller description of the ocean analysis system can be 
found in Balmaseda et al. (2006).
3. Assessment of forecast skill
The starting point for a seasonal forecasting system is its 
skill in predicting sea surface temperature (SST). Comparing 
anomaly correlation and rms errors in forecasts of Nino 3, 
Nino 3.4 and Nino 4 SST from S3 with those from S1 and S2 
shows clear progress. For example, Figure 1 shows the rms 
error for the Nino 3.4 index in S3 compared to the earlier 
operational versions S1 and S2. Over the last decade there has 
been sustained improvement in the ENSO forecast skill of our 
operational systems, although estimates of the predictability 
limit (not shown) suggest that there is still considerable 
scope for improvement. Scatter diagrams indicate that the 
improvements in S3 over earlier systems are significant in all 
areas of the tropical Pacific. However, the strong improvement 
does not extend to all parts of the globe – outside the equatorial 
Pacific, changes in SST forecast skill are largely close to neutral, 
although there is a clear positive benefit in the north subtropical 
Atlantic.
The quantities that are most commonly wanted from seasonal 
forecast systems are predictions of near-surface temperature 

and rainfall. Model-derived forecasts are probabilistic, and 
should be verified as such. However, to assess which regions 
have significant predictable signals and how well the model 
handles them, simple measures such as anomaly correlation 
are just as effective. Figure 2 (cover page) shows the anomaly 
correlation for area-averaged seasonal rainfall anomalies in 
selected regions of the world. The upper panels show the 
correlation between forecasts and observations - in some regions 
this is quite high, in others it is near zero. The lower panels show 
the model estimate of the correlation that would be obtained 
with a perfect model. The level of potential predictability is in 
most places a lot higher than the skill presently achieved.
Another view of the adequacy of the model predictions is to 
look at the reliability diagrams (Figure 3). Here we look at sets 
of predictions of specific events (eg DJF 2m temperature at a 
gridpoint exceeding the upper tercile of the model climate), 
and compare the frequency of the observed outcome to the 
forecast probability.  What we would like to see is a set of points 
lying on the diagonal, which would indicate that the forecast 
probabilities are reliable (at least when averaged across the 
chosen set of events).  What we actually see is that temperature 
forecasts over land are only moderately reliable, and rainfall 
forecasts over land, while being better than climatology, 
typically have fairly low reliability. Figure 2 reminds us that 
this “average low” reliability is made up from quite a spatially 
diverse signal.
As well as assessing the skill of S3 seasonal forecasts, it is useful 
to know how the skill has evolved as we have “improved” our 
seasonal forecast systems. Such an analysis has been made 
using ROC area scores based on probabilistic forecasts of upper 
and lower terciles. The results (not shown) indicate that S3 is 
clearly improved in the tropics relative to S2. The situation 
in the mid-latitudes is less clear: NH scores over land appear 
to be slightly better in summer, but slightly worse in winter. 
Moreover, it seems that the strength of ENSO teleconnections 
to mid-latitudes is weaker in the model than in observations.
Overall, forecast skill of atmospheric parameters does not 
demonstrate the clear progress that has been seen in El Nino 
forecast skill over the last ten years.   Errors in the atmosphere 
models are still causing significant problems in our attempts to 
build reliable and capable seasonal forecasting systems. 

Figure 1: RMS errors for Nino 3.4 SST forecasts from System 1 
(dashed), System 2 (dotted) and System 3 (solid), for 192 forecasts in 
the common period 1987-2002. Results are for 5 member ensembles 
in each case. For reference, the upper dot-dash line shows the RMS 
error of persistence of anomalies.
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4. Forecast products
A set of real-time forecast products is released to the public on 
the ECMWF website at 12Z on the 22nd of each month - look 
for the “seasonal forecast” section under www.ecmwf.int/
products/forecasts. S3 now includes “tercile summary” plots 
which show, in a single plot, probabilities of the most likely 
tercile category if (a) it is one of the outer categories (above 
upper tercile or below lower tercile) and (b) the probability of 
the category exceeds 40%.  Wider sets of products are available 
to European and WMO Met Services, and these now include 
“climagrams”, which show in graphical form the predicted 
evolution of the pdf of area-averaged quantities on a month by 
month basis. A fuller description of the new seasonal forecast 
products is available in Molteni et al 2007.
5. Multi-model forecasts
S3 is part of the EUROSIP multi-model seasonal forecasting 
system. Currently, the participants in EUROSIP are ECMWF, the 
Met Office and Météo-France, but other members are expected 
to join in the future. A common operational schedule is followed, 
and data is held in a common archive at ECMWF, which 
facilitates production of multi-model forecast products. 
6. Summary 
Throughout the extensive development period of System 3 
various atmospheric model cycles were tested as they became 
available. Progress was not monotonic. Although each cycle 
improved or was at least neutral for the medium-range forecasts 
this was not so for the seasonal forecast range, where new cycles 
sometimes led to a significant drop in skill. However, the last 
few cycles have resulted in strong and significant gains in SST 
prediction skill, and the model version used in System 3 is the 
best yet seen when assessed by its ability to predict El Nino 
SST variations in the Pacific.
System 3 still has clear deficiencies, however. Blocking in the 
northern hemisphere is not well handled, and the Madden-
Julian Oscillation (MJO) is not well represented. Improvements 
in blocking and the MJO would be beneficial to 15 day and 
monthly forecasts as well as to the seasonal range. Since the 
coupled ocean-atmosphere model is now well integrated into 
the ECMWF research and operational systems, it is possible to 

Figure 3: Reliability diagrams for S3 seasonal forecasts, calculated globally for land points only. Reliability of DJF 2m temperature exceeding 
upper tercile (left) and of JJA precipitation below the lower tercile (right).  The size of the circles represents the number of occurrences in each 
bin, and the error bars are estimated via a bootstrap method. Figures calculated using 1981-2005 hindcasts started from 1 November and 1 
May respectively.

test model changes across a range of timescales at an early stage 
of the model development cycle. ECMWF strategy is to have a 
single model version which works well at all timescales from 
the data assimilation cycle (hours) to seasonal. 
Several other major features of System 3 should be highlighted. 
The ocean analysis/reanalysis is a major product in its own 
right. The increased ensemble size and the larger set of back 
integrations (25 years rather than 15 years) increase the accuracy 
of the forecast products. This is a big step forward for those 
wishing to process the model output themselves to create 
tailored seasonal forecast products. The new experimental 
ENSO outlook forecasts extending to 13 months give a 
longer-range outlook on one of the major factors that drives 
seasonal climate anomalies. There is still scope for substantial 
improvements in the future, but we hope that System 3 will 
be a useful step on the road to developing numerical systems 
that fully exploit the predictability that exists on seasonal 
timescales. 
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1. Introduction
Most empirical forecasting techniques suffer because of the 
relative  shortness of historical data on which prediction models 
are based and their predictive skill is evaluated. The problem 
is aggravated by the fact that historical records are used both 
for developing a statistical prediction model and for evaluating 
its performance. Ideally, the validation of the predictive skill of 
an empirical method should only be based on data that follow 
the “training datasets” used to develop the statistical model. 
No information from the validation stage should “leak” into 
the model development stage to avoid introduction of artificial 
skill. 
Given the relatively short historical record of climate data, it 
is often difficult to fulfill these requirements in practice. On 
the one hand, it is desirable to devise a prediction scheme that 
reliably captures fundamental relationships between predictors 
and response variables and minimizes extraneous information 
related to sampling variability and measurement errors. This 
demands that the datasets used are those that employ the 
longest training periods available. On the other hand, the 
validation period should be long enough to reliably evaluate 
the performance of the predictive model. 
Cross validation is a standard approach to accommodate the 
two conflicting requirements and to use available historical 
records more efficiently. The assumption is that cross validation 
will simulate actual forecast situations without relying on past 
coincidences that are unlikely to be repeated into the future. 
However, cross validation has a potential to exaggerate the 
true predictive skill of a statistical model when some of the 
assumptions of cross validating techniques are compromised. 
Elsner and Schmertmann (1994) outline some of the pitfalls of 
cross validation that must be avoided and various approaches 
to mitigate them. These include the avoidance of the forecast 
target data in the development of the prediction algorithm at 
all stages, and the omission of a single observation in the cross 
validation procedure. The latter may introduce bias into the 
estimation of forecast skill. In the presence of serial correlation 
in climate noise, the removal of a single observation should be 
replaced by the removal of blocks of observations. Michaelsen 
(1987) further outlines the method of cross validation, as 
well as the issues related to its successful implementation 
for a regression model. The main purpose of this study is to 
evaluate the possible artificial skill enhancement for seasonal 
temperature forecasts over Canada based on the Canonical 
Correlation Analysis (CCA) statistical forecasting model, which 
is described in more detail in section 2.1.
Given the limited historical record this objective can hardly be 
achieved using the observed data. Instead, we use model output 
from a multi-century control simulation with the coupled 
general circulation model (CGCM2) of the Canadian Climate 
Centre and Modelling Analysis (CCCma). The long simulation 
allows us to assess the reliability of the CCA statistical 
forecasting model. The caveat of a model-output based study 
is that due to model deficiencies the model-simulated coupled 
variability and relationships may not be an accurate reflection 
of the observed. In particular, CGCM2 is known for under 
simulating the amplitude of the El Niño-Southern Oscillation 
(ENSO) variability (Yu and Boer 2002) which is thought to be the 
main source of skill on seasonal to annual time scales in North 
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America (e.g. Higgins et al. 2000). Therefore, the overall skill 
level in the model simulation may not be an accurate indication 
of the true observed skill. Yet we expect that this approach will 
provide useful information about the reliability of the in-sample 
skill score estimates of the operational CCA seasonal forecasts 
as compared to the true out-of-sample predictive skill.
2. Experiment setup
2.1 The CCA
Utilizing a specific variation of the empirical orthogonal function 
(EOF) analysis (Barnett and Preisendorfer 1987), the empirical 
CCA technique models linear relationships between fields of 
the predictors and fields of predictands. The forecasts are made 
based on the co-variability between predictors and predictand 
during the training period. Specifically, CCA performs a 
multivariate linear regression so that patterns in predictand 
field are related to preceding four seasons’ patterns in predictor 
fields. One of the important predictors for the Canadian surface 
air temperature is the global sea surface temperature (SST) field 
(Shabbar and Barnston 1996). Further details concerning the 
CCA methodology is described in Barnston and Smith (1996). 
Presently, CCA constitutes a component of seasonal forecasting 
methodology at the forecasting centres in both Canada and the 
United States.
In the “in-sample” experiments, cross validation is used for skill 
assessment. All data for the prediction year are withheld, and 
the CCA model is developed based on the remaining sample.  
Calculations of all statistics, i.e., mean, standard deviation, 
EOF and CCA modes, are repeated for each of the withheld 
prediction year, and the process is repeated until predictions 
are made for each year in the sample. It is believed that the 
strong trend in the SSTs may produce inflated skill in a leave-
one-out cross validation scheme. In this work, therefore, we 
also perform cross validation by withholding three and five 
years from the training sample. Cross validated skill score 
estimates are compared with skill estimated from independent 
samples. 
2.2 CGCM2 and CCA experiment design
Both the predictor (global SSTs) and the predictand (surface 
temperature as 2 m temperatures over Canada) are from 
a multi-century climate simulation with CGCM2.  Briefly, 
CGCM2 consists of the CCCma second-generation atmospheric 
circulation model (McFarlane et al. 1992) coupled to a GFDL 
modular ocean model (MOM1). The atmospheric component is a 
global spectral model with T32L10 resolution. The ocean model 
has a resolution of 1.8 degree x 1.8 degree in horizontal and 29 
levels in vertical. Further details of the model are given in Flato 
et al. (2000). The control simulation is performed with constant 
atmospheric composition and external forcing. It is found that 
variability over land is well simulated; however, variability 
over tropical oceans is generally underestimated.  This very 
long and stable climate simulation provides an opportunity 
to assess reliability of the CCA forecast skill estimation using 
cross validation and on independent samples.   
A number of experiments are devised in order to compare 
cross-validated and out-of-sample skill score estimates. Cross-
validated skill scores are obtained for 14 non-overlapping 
50-year periods. In the following we will also refer to cross-
validated estimates as in-sample estimates to emphasize that 
they are based on the same training period and may be subject to 
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artificial skill inflation. Out-of-sample estimates are obtained for 
18 non-overlapping 50-year periods.  In these “out-of-sample” 
experiments, a CCA model is developed on a 50-year period 
and forecasts are constructed and evaluated on the following 
50-year period. Out-of-sample skill estimates provide a more 
fair assessment of the forecasting model performance. Forecasts 
are made for four standard climatological seasons (Dec-Feb, 
Mar-May, Jun-Aug, Sep-Nov), and for four leads (0, 3, 6 and 
9 months). Cross validation is performed by withholding 1, 3 
and 5 years in the CCA model development, and the forecast 
is verified on the first of the withheld years. 
The performance of deterministic CCA forecasts is evaluated 
using two skill measures, the percent correct score of the 
three equi-probable classes of above-normal, near-normal and 
below-normal, and the anomaly correlation coefficient. When 
evaluating out-of-sample skill, anomalies in the forecast 50 
year period are constructed using the time mean of the training 
period. Additionally, the definition of three classes for the 
percent correct is based on the training period data. Average 
skill and spread (variability) are highlighted for both in-sample 
cross-validated forecasts and out-of-sample forecasts.
3. Results
3.1 Percent correct
The percent correct score is a measure of deterministic 
categorical forecast skill. It is defined as the fraction of correctly 
predicted equi-probable categories to the total number of 
categorical forecasts. Percent correct of random forecasts is 
33.3%. Figure 1 shows box-plot summaries of percent correct 
scores averaged over Canada for zero-lead seasonal forecasts 

of Canadian surface air temperature based on 14 in-sample, 
18 out-of-sample 50-year models as well as for corresponding 
persistence forecasts. A box-plot indicates the smallest value, 
lower quartile, median, upper quartile, and largest value in a 
sample. Summaries of in-sample estimates obtained in cross 
validation by withholding 1, 3, and 5 years are indicated by IN1, 
IN3 and IN5 respectively. Skill scores that are based on cross-
validated forecast scores are consistently higher than those 
based on out-of-sample forecasts during the cold seasons (Figs. 
1a and 1b). The out-of-sample scores are significantly lower than 
in-sample scores and indistinguishable from zero-skill forecast 
score of 33.3%. Skill scores from persistence forecasts also show 
little skill. During Jun-Aug (Fig.1c) and Sep-Nov (Fig. 1d), the 
median scores from in-sample, out-of-sample and persistence 
forecasts show no skill. Additionally, variability within each 
sample is somewhat smaller.  
Skill scores of Dec-Feb forecasts for different time leads are 
shown in Figure 2. There is a degradation of in-sample average 
scores as the lead time is increased from zero to nine months. 
Average out-of-sample scores are no better than 33.3%, and 
persistence forecast scores are only slightly better than out-of-
sample scores. Somewhat surprising is the finding that cross-
validated skill scores do not decrease with withdrawing more 
years from the training period. Overall,  all in-sample cross 
validated skill score estimates are considerably higher than 
out-of-sample scores. 
3.2 Anomaly correlation
The anomaly correlation coefficient is a measure of deterministic 
specific value forecasts and is defined as:

 

where subscript f and o refer to the forecast and observed 
data respectively and the overbar refers to the time mean at 

Figure 1: Boxplot summaries (the smallest value, lower quartile, 
median, upper quartile, and largest value) of percent correct skill 
scores of zero-lead forecasts of Canadian surface air temperature 
for four seasons (a) December-February, (b) March-May, (c) June-
August, and (d) September-November. Cross-validated in-sample 
skill score estimates withholding 1, 3, and 5 years out of sample are 
denoted by IN1, IN3, and IN5, respectively. Out-of-sample skill score 
estimates are denoted by OUT. Skill scores of persistency forecasts 
are denoted by PERS.

Figure 2: The average percent correct skill score of December-
February Canadian surface air temperature forecasts for 0-, 3-, 6-, 
and 9-month leads. Cross-validated in-sample skill score estimates 
withholding 1, 3, and 5 years out of sample are denoted by IN1, 
IN3, and IN5, respectively. Out-of-sample skill score estimates are 
denoted by OUT.
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location i.  Anomaly correlation coefficients are calculated 
for each grid location in Canada and then spatially averaged. 
Figure 3 displays boxplot summaries of the averaged anomaly 
correlation scores of zero lead seasonal forecasts based on 14 
in-sample and 18 out-of-sample models. Similar to the percent 
correct scores (Fig.1), in-sample AC are considerably higher 
than out-of-sample AC in the cold seasons (Figs 3a and 3b). Both 
the scores and their variability remain the same in the in-sample 
group in the Dec-Feb season. Scores from persistence forecasts 
have a median value of near 0.15. During Mar-May, in-sample 
scores remain appreciably higher than out-of-sample and 
persistence forecast scores. The AC scores in Jun-Aug (Fig. 3c) 
and Sep-Nov (Fig. 3d) are markedly low in all four models. 
Figure 4 shows the Dec-Feb average anomaly correlation 
scores at various lead times. The in-sample skill scores are 
the highest for zero lead but of similar magnitude for other 
leads. Out-of sample skill scores of CCA forecasts, however, 
show a precipitous drop and become comparable to the skill 
of persistency forecasts (not shown). 
4. Concluding remarks
A 1000-year control simulation of CGCM2 is employed to assess 
the reliability of skill score estimates of CCA-based seasonal 
forecasts in Canada. This evaluation is done for the CCA model 
that uses global SSTs as predictor for Canadian surface air 
temperature. Cross-validated skill score estimates are obtained 
in cross validation with 1, 3 and 5 years out. These in-sample 
skill scores are compared to the out-of-sample skill estimates 
obtained on independent samples. The inter-comparison is 
performed for standard seasons and for a number of lead 
times. Since the overall skill level in the CGCM2 simulation 
may not be an accurate indication of the true observed skill 
due to deficiencies in simulating the ENSO variability, the 
absolute values of skill scores considered here may not reflect 
the true capability of the CCA model in practice. Nevertheless, 
the performed experiments are able to highlight the differences 
between skill score estimates obtained in cross-validation and 

Figure 3: The same as Figure 1 but for the anomaly correlation skill 
score.

based on independent samples.
Results of this study show that the skill estimates of CCA 
seasonal forecasts obtained through the cross-validation 
technique are severely inflated. The in-sample cross-validated 
skill estimates are consistently higher then out-of-sample skill 
estimates at all lead times. Moreover, the skill inflation does 
not decrease when more than one year are withdrawn in cross-
validation.  It is suggested that using cross validation techniques 
to assess performance of operational CCA seasonal forecasts 
may also overestimate the true level of skill.   
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Introduction
Seasonal climate forecasts for South America are currently 
produced using empirical (statistical) and dynamical (physical) 
models. Given the availability of these two modelling 
approaches one might question the feasibility of producing 
a single and well calibrated integrated forecast that gathers 
all available information at the time the forecast is issued. 
This study illustrates how empirical and dynamical coupled 
model seasonal forecasts of precipitation for South America 
are currently being integrated (i.e. combined and calibrated) in 
EUROBRISA (A EURO-BRazilian Initiative for improving South 
American seasonal forecasts, http://www.cptec.inpe.br/~caio/
EUROBRISA). The skill of one month lead austral winter (June-
July-August) forecasts is assessed and discussed.
Methodology
One of the simplest empirical approaches to produce one-
month lead austral winter (June-July-August) South America 
precipitation forecasts is to use, as predictor variable, Pacific 
and Atlantic sea surface temperatures observed in the previous 
April. This multivariate regression model (Coelho et al. 2006) 
is used here to produce empirical precipitation forecasts for 
South America. 
The dynamical systems used in this study to produce one-
month lead precipitation forecasts for June-July-August are 
the coupled ocean-atmosphere seasonal prediction models of 
ECMWF (Anderson et al. 2007), known as System 3, and the UK 
Met Office (UKMO; Graham et al. 2005), known as GloSea. The 
forecast output from these models is coordinated at ECMWF 
as part of the European Seasonal to Inter-annual Prediction 
project (EUROSIP).
To produce empirical-dynamical multi-model integrated 
probabilistic forecasts we apply a Bayesian procedure, known 
as forecast assimilation (Stephenson et al. 2005). This procedure 
allows the spatial calibration and combination of forecasts 
produced by each individual model. The skill of empirical, 
ECMWF, UKMO and integrated forecasts obtained with forecast 
assimilation is assessed and compared over the common 
hindcast period 1987-2001. All results were obtained using the 
cross-validation method (Wilks 1995). Forecast verification is 
performed using the version 2 Global Precipitation Climatology 
Project (GPCP) monthly precipitation analysis (Adler et al. 
2003).
Results and discussion
Figure 1a-d (page 19) shows correlation maps of ECMWF, 
UKMO, empirical and integrated precipitation anomaly 
forecasts for the period 1987–2001. Correlation maps show the 
correlation between observed and mean forecast anomalies at 
each grid point. Both ECMWF and UKMO forecasts are bias 
corrected because we are dealing with ensemble mean forecast 
anomalies with respect to each model climatology. The three 
individual models show high skill with correlation coefficients 
generally between 0.4 and 0.8 in tropical South America. 
ECMWF, UKMO and empirical forecasts are moderately skilful 
over the south of Brazil and southeast Argentina with correlation 
coefficients between 0.2 and 0.6. Empirical forecasts also show 
moderate skill over Bolivia with correlation coefficients between 
0.4 and 0.6. When the forecasts of the three individual models 
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were combined and calibrated to produce integrated forecasts, 
improved skill was obtained over tropical and southeast South 
America (Fig. 1d). 
Correlation is a deterministic measure of skill that indicates how 
well associated the forecast is with the corresponding observed 
anomaly. Correlation, however, only assesses the mean forecast 
value. In order to assess how well forecast uncertainty is 
estimated, one needs for example to examine probabilistic 
scores. Here we examine Gerrity (1992) score maps for tercile 
probability categories (Figs 1e-h, page 19). Tercile categories 
are defined as below normal, normal and above normal 
according to the climatological June-July-August precipitation 
distribution. Large values of Gerrity score indicate increasing 
correspondence between the category that was forecast as most 
likely and the category that was observed. In accordance with 
the correlation map (Fig 1d), integrated forecasts (Fig 1h) have 

Figure 2: One-month lead June-July-August 1987–2001 precipitation 
anomaly forecasts (mm/day) for a grid point in southeast South 
America (longitude 297.5o; latitude -37.5o) produced by a) ECMWF 
coupled model, b) UKMO coupled model, c) empirical model and 
d) integrated (combined and calibrated) with forecast assimilation. 
Observed values (dashed line), forecast (solid line), and the 95% 
prediction interval (grey shading). 
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improved (higher) skill in tropical and southeast South America 
when compared to the three individual forecasts (Figs. 1e-g). 
This result indicates that not only the estimate of the mean 
forecast value is improved by calibration and combination of 
empirical and coupled model forecasts. Uncertainty estimates 
are also improved by calibration and combination.
Figure 2 shows austral winter 1987–2001 precipitation 
anomaly forecasts for a grid point in southeast South America 
(longitude 297.5o; latitude -37.5o) produced by ECMWF, 
UKMO, empirical and integrated (combined and calibrated) 
with forecast assimilation. The 95% prediction interval (grey 
shading) is given by the mean forecast value plus or minus 1.96 
times the forecast standard deviation. ECMWF and UKMO 
forecast standard deviation (i.e. the spread) is computed as 
the standard deviation of the ensemble members of each 
model. Empirical and integrated forecast standard deviation is 
computed as described in Coelho et al. (2006) and Stephenson 
et al. (2005), respectively, and posteriorly re-scaled to match 
the mean forecast error. Figure 2 shows that all four forecasting 
approaches produce reliable forecast uncertainty estimates, with 
most observations falling inside the 95% prediction intervals. 
ECMWF and UKMO have larger 95% prediction intervals than 
empirical and integrated forecasts. Integrated forecasts are 
well calibrated showing the best agreement between the mean 
forecast value and the observed anomalies (Fig 2d). Integrated 
forecasts have the largest amount of interannual variability. This 
is also reflected in the highest correlation between integrated 
forecast and observed anomalies. The correlation coefficients 
between forecast and observed anomalies for ECMWF, UKMO, 
empirical and integrated forecasts are 0.42, 0.44, 0.56 and 0.65, 
respectively.   
Conclusions
This study has examined the skill of austral winter seasonal 
forecasts for South America produced by two coupled ocean-
atmosphere models, an empirical model and integrated (i.e. 
combined and calibrated) forecasts. The main findings can be 
summarised as follows:
• forecast skill can be improved by calibration and 

combination;
• the availability of forecasts produced by both empirical 

and coupled models provide the opportunity to produce 
objectively integrated, in other words, combined and well 
calibrated probabilistic forecasts that gather all available 
information at the time the forecast is issued;

• austral winter precipitation forecasts produced by the 
empirical-dynamical multi-model integrated system 
presented here are skilful in tropical and southeast South 
America. 

• integrated forecasts generally provide skill that is equal to 
or better than that of the best individual model
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The Seasonal Prediction Model Project (SMIP) provided the 
opportunity to verify the performance of seasonal simulations 
using several Atmospheric Global Circulation Models 
(AGCM’s) in several regions of the world, as well as to analyze 
results from a multi-model ensemble. Three month averaged 
South American rainfall and temperature have been predicted 
every month in centers like the IRI, CPTEC/INPE, ECMWF, 
UK Meteorological Office, using predicted or persisted SSTs in 
AGCMs or Coupled Atmosphere-Ocean Models. The IRI has 
applied the multi-model approach using AGCMs from several 
centers (Barnston et al. 2003). Previous simulations using the 
CPTEC/COLA AGCM were performed in long-range climate 
integrations and seasonal results were discussed in Cavalcanti 
et al. (2002) and Marengo et al. (2003). In SMIP simulations, 
initial conditions for each year and each season are considered, 
different from a long-range simulation, which has initial 
conditions only in the beginning of the integration. Therefore, it 
is important to investigate if the SMIP (i.e., initialized) approach 
has an impact on the seasonal results, and also how the other 
SMIP models simulate South America seasonal features. 
In this study, DJF austral summer season is analyzed in SMIP-2 
results, which are compared with surface observed precipitation 
and CMAP/CAMS estimated precipitation. The SMIP models 
used in the analysis are from CPTEC/INPE (Brazil), SCRIPPS 
(USA), IAP (China), KMA (Korea) and  MGO (Russia) obtained 
from http://ingrid.ldeo.Columbia/edu/SOURCES/.WRCP/.
SMIP-2/overview.html. CPTEC/COLA AGCM shows similar 
systematic errors to those noticed in previous long-range climate 
simulations with the same model. Overestimated precipitation 
occurs over eastern and northeastern Brazil, and underestimated 
precipitation over Amazonia and southern Brazil. In contrast to 
our  previous experience with long-range climate simulations 
we find relatively small spread in the seasonal forecast using 
initial conditions at each season. In the long-range simulation, 
results considering different initial conditions presented larger 
dispersion than in the seasonal simulation mode, probably due 
to the length of integration. The 1st and 2nd season potential 
predictabilities were evaluated and although the results were 
very similar for DJF, there was a slight improvement in the 1st 
season, when compared to the observed surface  precipitation 
(Figure 1 page 19). 
The other SMIP models were evaluated considering the 
ensemble mean of each model for DJF season. SCRIPPS, MGO 
and KMA show improvements over Amazonia, although 
SCRIPPS overestimates the rainfall over the whole continent. 
All the models except IAP show overestimation over the South 
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American Convergence Zone (SACZ), but the Atlantic Inter-
Tropical Convergence Zone (ITCZ) is not simulated in the IAP 
results. A multi-model analysis is performed taking five SMIP 
models (CPTEC, SCRIPPS, IAP, KMA, MGO) to assess the 
improvements over a single model. The multi-model ensemble 
shows a strong improvement reducing the errors noticed in 
CPTEC/COLA model (Figure 2 page 20). However, if CPTEC/
COLA AGCM is removed from the multi-model ensemble, the 
errors are larger. 
In addition, extreme cases of precipitation over Southeastern 
Brazil in DJF were analyzed in GPCP data and CPTEC model 
results for 5 members. The range of frequency of observed 
extreme cases was similar to that  simulated by all members, and 
there are some years when the number of cases were similar to 
observations (Figure 3). In particular, the frequency of observed 
cases during the period of 1993 to 1996 was well simulated by 
one specific member. 
Based on SMIP analysis, precipitation simulation over 
South America improves if a multi-model ensemble is used. 
Systematic errors considering CMAP/CAMS or surface 
observations indicated the same regions with overestimated or 
underestimated values, but, as the model has higher resolution 
than CMAP/CAMS, the ground observed data interpolated in 
the model grid shows more details of regional errors. Further 
analysis considering predicted SSTs in SMIP type simulations 
are planned in future studies. 
Acknowledgments: 
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Fig.3. Interannual mean DJF average precipitation (mm) over 
Southeastern Brazil from GPCP and 5 members of CPTEC/COLA 
AGCM SMIP data set.
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Previous observational studies (Grimm et al. 2007) have 
disclosed a link between peak summer monsoon rainfall in 
Central-East Brazil, comprising part of the South American 
monsoon core region, and antecedent conditions in spring. 
Rainfall in this region during part of spring shows significant 
inverse correlation with rainfall in peak summer, especially 
during ENSO years. The corresponding precipitation anomalies 
appear in the first modes of spring and summer variability for 
South America. A surface-atmosphere feedback hypothesis 
involving soil moisture in spring has been proposed to explain 
this relationship, and a crucial role of the mountains in Central-
East Brazil is suggested by modeling experiments (Grimm et al. 
2007). Low spring precipitation leads to low spring soil moisture 
and high late spring surface temperature in that region; this 
induces a topographically-enhanced low-level anomalous 
convergence and cyclonic circulation over Southeast Brazil 
that enhances the moisture flux from northern and central 
South America into Central-East Brazil, setting up favorable 
conditions for excess rainfall (Figure. 1a page 20). Antecedent 
wet conditions in spring lead to opposite anomalies. The 
temperature anomalies in the southern part of Central-East 
Brazil seem to be the most related to the precipitation over the 
entire region in peak summer.
There has not been any assessment of climate models’ ability in 
reproducing this relationship between early and peak summer 
monsoon rainfall in South America. Central-East Brazil is 
one of the regions of South America in which the seasonal 
forecasts for austral summer precipitation (DJF) have no skill, 
according to the average performance of 11 models (Cavalcanti 
et al., 2006). Such an assessment could shed some light on 
the reasons for this bad performance. Therefore, we analyze 
austral spring/summer seasonal forecasts with focus on the 
interannual variability and on the relationship between the 
spring conditions and the summer forecast. 
Output from the CPTEC/COLA AGCM seasonal simulations 
for the SMIP2 project are used in the analysis. This spectral 
atmospheric model was integrated with T62L28 resolution 
for the SMIP2 period (1979 to 2001), applying observed SST 
as boundary conditions. The model is run each year for four 
overlapping seasons, considering simulations of six months. In 
this study, the ensemble mean of five simulations for SONDJF 
will be analyzed.
The two first observed modes of spring (SON) precipitation 
both present anomalies over Central-East Brazil: in the first 
mode they are concentrated in the southern part of this region, 
while in the second mode they spread over the entire region 
(Figure. 1b page 20, upper left panels). In summer, there 
are also precipitation anomalies over Central-East Brazil in 
both first modes (Figure. 1b, bottom left panels). The spring 
and summer second modes are the most affected by ENSO. 
Significant correlation exists between the first spring and 
summer modes, as well as between the second modes (indicated 
by the blue arrows and numbers in the left panels of Figure. 1b). 
In agreement with the inverse relationship between spring and 
summer precipitation in Central-East Brazil, these correlations 
indicate that a precipitation anomaly in this region in spring 
tends to be followed by an opposite anomaly in summer. 
The first and second observed modes for spring (Figure. 1b, 
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upper left panels) are both significantly correlated with the 
first spring mode from the model (Figure. 1b, upper right 
panel; correlations are indicated by red arrows and numbers). 
Likewise, the first and second observed modes for summer 
(Figure. 1b, bottom left panels) are significantly correlated 
with the first summer mode produced by the model (Figure. 
1b, bottom right panel). Both for spring and summer, the 
correlation is strongest with the second observed mode, 
which is ENSO-related. The model is not able to reproduce 
the differences between the first and second observed modes, 
at least not through modes that explain comparable variance, 
and therefore its first mode explains a much higher fraction of 
the variance than the first observed mode, both for spring and 
summer. In spite of the exaggerated response of the model to 
ENSO, it does not represent certain important characteristics of 
the observed spatial distribution of the precipitation anomalies, 
which are important for the spring-summer relationship 
in Central-East Brazil. It shows a dipole-like structure with 
opposite anomalies in central-northern and southeastern South 
America, both in spring and summer, and does not reproduce 
the strong precipitation anomalies in Central-East Brazil in 
spring present in the observed mode. This might be ascribed to 
the incomplete simulation of ENSO teleconnections over South 
America, especially over Central-East Brazil. 
If the spring precipitation anomalies in Central-East Brazil are 
not well represented, then the relationship between spring and 
summer precipitation cannot be reproduced. The correlation 
between the first spring and summer modes from the model is 
negative (as indicated in Figure. 1b, right panels), which means 
that the model tends to produce anomalies of the same sign 
in spring and summer in most of this region. The tendency to 
changing sign prevails in the observed modes. 
It is not possible to say that the model does not reproduce 
the inverse relationship between precipitation in Central-East 
Brazil in spring and summer, as the precipitation in spring is 
not well simulated in this region, and therefore cannot trigger 
the processes that lead to reverse precipitation anomalies 
in peak summer. The analysis of one of the members of the 
ensemble (not shown) suggests that this relationship would 
be reproduced provided that the precipitation anomalies over 
Central-East Brazil in spring are correctly represented. 
References
Cavalcanti, I. F. A., L. Goddard, and B. Kirtman, 2006: The 

future of seasonal prediction in the Americas. VAMOS! 
Newsletter, 3, 3-7.

Grimm, A. M., J. Pal, and F. Giorgi, 2007: Connection between 
Spring Conditions and Peak Summer Monsoon Rainfall in 
South America: Role of Soil Moisture, Surface Temperature, 
and Topography in Eastern Brazil. J. Climate, In Press.



17

CLIVAR ExchangesVolume No. 3 September 2004Volume 9 No.3 September 2004 CLIVAR ExchangesCLIVAR ExchangesVolume 12 No.4 October 2007

Introduction
Prediction of seasonal-to-interannual climate variations and 
the associated uncertainties using multiple coupled models has 
become operational. However, how to determine the practical 
predictability of the tropical seasonal precipitation in coupled 
climate models remains an unresolved issue. We propose and 
compare two methods. The first relies on identification of the 
“predictable” leading modes of the interannual variations 
in observations and multi-model ensemble (MME) hindcast 
results. The predictability is quantified by the fractional variance 
accounted for by the “predictable” leading modes. The second 
approach is based on the signal to noise ratio, which extends 
the method used for assessing the predictability in atmospheric 
general circulation models for given lower boundary forcing 
(e.g., Kang and Shukla 2006). Here the signal is measured by 
the MME mean, while the noise is measured by the “spread” 
among individual model’s ensemble means. We demonstrate 
the conceptual consistency and differences between the two 
measures of predictability using 10 coupled climate prediction 
models. 
Data and analysis procedure
The models that are examined in this study are 10 fully coupled 
atmosphere-ocean-land seasonal prediction systems that come 
from the following two international projects: the Development 
of a European Multi-model Ensemble system for seasonal to 
inTERannual prediction (DEMETER) (Palmer et al. 2004) and 
the Asia-Pacific Economic Cooperation Climate Center/Climate 
Prediction and Its Application to Society (APCC/CliPAS) (Wang 
et al. 2007).
The selected models have retrospective forecasts (hindcasts) 
for the common 21-year period of 1981-2001 with 6- to 9-month 
integrations for 6 to 15 different initial conditions for four 
seasons. The hindcasts are initialized in February 1, May 1, 
August 1, and November 1. We use one-month lead seasonal 
forecasts of precipitation for four seasons. Suppose the forecast 
was initialized on February 1, the one-month lead seasonal 
prediction means the average of predicted March, April, and 
May means. The Climate Prediction Center Merged Analysis 
of Precipitation (CMAP) data set (Xie and Arkin 1997) is used 
as the verification dataset. 
Season-reliant Empirical Orthogonal Function (S-EOF) analysis 
(Wang and An 2005; Wang et al 2007) was applied to seasonal 
precipitation over the Tropics from 30oS to 30oN in order 
to identify the “predictable” leading modes of interannual 
variations of tropical precipitation. The purpose of the S-EOF 
is to depict seasonally evolving anomalies throughout a full 
monsoon calendar year. A covariance matrix was constructed 
using four consecutive seasonal mean anomalies for JJA(0), 
SON(0), DJF(0/1), and MAM(1) that were treated as a “yearly 
block”. Here Year 0 refers to the year in which the sequence of 
anomalies commences.    
Results
Figure 1 (page 20) shows the performance of the coupled MME 
system on one-month lead seasonal prediction in terms of 
temporal correlation skill over the entire Tropics for 21 years 
from 1981 to 2001. The correlation coefficients that are higher 
than 0.5 are generally observed over the tropical Pacific and 
Atlantic between 10°S and 20°N all year around. Prediction 
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in DJF, SON and MAM is evidently better than JJA due to the 
model’s capacity in capturing the ENSO teleconnections around 
the mature phases of ENSO. In JJA, while the skill increases 
over the North Pacific and North Atlantic due to northward 
migration of the thermal equator, the skill over the Indian Ocean 
and the continental summer monsoon regions are very low. 
The correlation skill in the Asian-Australian monsoon (A-AM) 
region remains moderate, varying from 0.3 to 0.5 depending 
on season. 
We found that the MME prediction skill of the seasonal tropical 
precipitation basically comes from the first four leading modes 
of S-EOF. The fractional variance is obtained from the ratio of 
the variance associated with a single S-EOF mode to the total 
variance (Wang and An 2005).  The first four leading modes 
of precipitation in observations account for about 60% of 
the total variances.  The first two S-EOF modes are very well 
predicted in terms of both the spatial structure and temporal 
evolution (Figure 2). The third and even the fourth modes are 
also reasonably well predicted. But all other higher modes are 
not predictable as shown by the insignificant correlation skills 
in the spatial structures (Figure 2). Thus, we consider the first 
four major modes as the predictable part of the interannual 
variations. 
Figure 3a and b (page 20) show the fractional variance explained 
by the predictable leading modes for all seasons in observations 
and MME prediction, respectively. In observations, the 
fractional variance exhibits large spatial variations. Those 
predictable modes are significantly related to ENSO variability 
with different lead-lag relationships, especially the 1st and 
2nd modes (not shown). The MME prediction exaggerates the 

Figure 2: The spatial pattern correlation (circle) of eigen vector and 
temporal correlation (filled square) of principal component time series 
between the observed and predicted S-EOF modes for precipitation 
over the globe [0-360E, 30S-40N]. The first four major modes of 
observed seasonal precipitation over the tropics capture total 60% 
of the variability. 
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fractional variance of predictable modes (Figure 3), suggesting 
that the MME does not capture the higher modes.  
How good is the prediction skill of the MME in terms of 
the predictable part? Figure 3d shows correlation skill for 
reconstructed precipitation by only using the four predictable 
modes. The similarity between Figures. 3c and 3d indicates 
that the MME prediction skill basically comes from the first 
four leading modes of seasonal precipitation. 
Conclusion
How to measure the predictability of the coupled climate 
system, where no atmospheric lower boundary forcing is given, 
is an open issue. We have shown that the prediction skill of the 
coupled model MME basically comes from the skill in prediction 
of the first four major modes of interannual variations in the 
global tropical precipitation (Figures 3c and d). The four modes 
together account for about 60% of the total interannual variance 
averaged over the Tropics in observations (Figure 2). This 
portion of the variation may be considered as the practically 
predictable part of the precipitation variability, because the 
MME can capture these four major modes reasonably well 
but cannot capture the rest of the higher modes (Figure 2). 
This result leads to a new approach to estimate the practical 
predictability of the tropical seasonal precipitation in coupled 
climate models; i.e., we can quantify the “predictability” by the 
fractional variance that is accounted for by the “predictable” 
leading modes in the observations (the left panels of Figure 
4,  page 21)). Such “predictable” modes can be determined by 
examining models’ hindcast results such as the performance 
shown in Figure 2.
The second possible approach is to extend the idea of signal-
to-noise ratio used for assessing the atmospheric predictability 
for a given lower boundary forcing. In coupled models, the 
signal may be measured by the interannual variation of the 
MME, while the noise is measured by the “spread” (variance) 

among individual model’s ensemble mean. In this measure 
the region in which the spreading exceeds the interannual 
variation of MME is considered as unpredictable. It is found that 
the signal-to-noise ratio defined as above may underestimate 
the models’ predictability over the Western North Pacific in 
JJA and SON and over Maritime Continent in DJF and MAM 
(right panel in Figure 4). While the models’ predictions have a 
large spread compared to the interannual variations in MME in 
the aforementioned regions, the hindcast results indicate that 
the MME does have practically useful skills there (Figure 1). 
In contrast, there is spatial consistency between the fractional 
variance of observed “predictable” modes and MME hindcast 
skill. The concept and approach proposed here is preliminary 
and more in-depth research is underway.
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1. Introduction
The Japan Meteorological Agency (JMA) has been running 
a forecast system for ENSO using a coupled atmosphere-
ocean model since 1999. The JMA also operates the TL95L40 
atmosphere general circulation model (AGCM) in a two-tiered 
mode for seasonal forecasts. The persistent SST anomalies 
at initial time are prescribed for one-month-lead 3-month 
forecasts. 
One reason for the use of the two-tiered forecast system is that 
the JMA one-month-lead forecast system shows relatively 
good skill over Japan after statistical downscaling is applied: 
correlations of 0.6 (0.47) in the boreal summer (winter) are 
obtained in hindcast mode. Good reliability is also found in 
the real time operational forecast (not shown here). The good 
forecast skill may be partially due to relatively high seasonal 
predictability over East Asia. 
The East Asian climate is influenced by western tropical Pacific 
convection activity through atmospheric teleconnections. 
For instance, Nitta (1987) showed the Pacific-Japan (PJ) 
teleconnection pattern propagating from active convection 
over the subtropical western Pacific near 20°N. The regions of 
convection over the western tropical Pacific were positively 
correlated with geopotential height at 500hPa around Japan in 
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boreal summer. The relationship in boreal winter between the 
geopotential height at 500 hPa around Japan and the western 
tropical Pacific convection is also pointed out e.g., in Ose, 
2000. Therefore, predictability of convective activity over the 
western tropical Pacific is the key for seasonal prediction over 
East Asia.
Although the two-tiered seasonal forecast system can give 
us useful seasonal forecast skill in practice, the real air-sea 
interaction in the western tropical Pacific is not simple. This 
suggests that atmosphere-ocean coupled models or one-
tiered seasonal forecast systems are necessary for predicting 
precipitation over the western tropical Pacific through 
physically correct model simulations (Kobayashi et al., 2005).
A new version of the ENSO and seasonal forecast system has 
been developed at JMA/MRI. Here we show the seasonal 
hindcast skill related to the western tropical Pacific precipitation 
and the Asian Monsoon in comparison with that of the 
operationally adapted two-tiered seasonal forecast system. 
2. Why is HINDCAST (persistent SST) better than SMIP 
(real SST)?
Two sets of simulations have been carried out with the JMA 
operational AGCM (JMA, 2002). One is the set of integrations 



19

CLIVAR ExchangesVolume No. 3 September 2004Volume 9 No.3 September 2004 CLIVAR ExchangesCLIVAR ExchangesVolume 12 No.4 October 2007

Figure 1: (Top row) Attribute diagrams for the DEMETER multi-
model seasonal forecasts initialized on the 1st of May for Western 
North America (left) and the Mediterranean (right) regions. The 
diagrams have been calculated over the forecast period 1980-2001 
for the event “summer anomalies below the lower tercile” using 1-
month lead ensembles. The area of the solid circles is proportional to 
the bin population. The horizontal and vertical solid lines indicate 
the climatological frequency of the event in the observations and 
mean forecast probability, respectively. The dashed line separates 
skilful from unskilful regions in the diagram: points with forecast 
probabilities smaller (larger) than the climatological frequency that fall 
below (above) this line, contribute to positive Brier skill score (BSS); 
otherwise they contribute negatively to the BSS. Shaded areas indicate 
the uncertainty of the regression line estimation based on a 10,000 
bootstrap re-sampling procedure. (Middle row) Ratio of the probability 
of dry summers (June-August) under ACC, estimated as the ratio of 
the probabilities of the AR4 multi-model multi-scenario ensemble near 
the end of the 21st Century (2081-2100) relative to the 1971-1990 
reference probability (by definition, one third). (Bottom row) Same as 
the middle row, but for the calibrated ratio of probabilities.
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From Palmer et al page  6: Seasonal Forecast Datasets - A Resource for Calibrating Regional Climate Change Projections?

From Coelho et al, page 13: Integrated seasonal climate forecasts for South America

Figure 1: Correlation maps 
(panels a-d) and Gerrity score 
maps (panels e-h) of ECMWF, 
UKMO, empirical and integrated 
one month lead June-July-
August precipitation forecasts 
for the period 1987–2001.

Fig.1 left: Mean DJF observed precipitation (mm); 
centre: Mean CPTEC/COLA AGCM precipitation; 
right: Difference AGCM-observation

From Cavalcanti et al page 19: Austral summer precipitation  over South America based on SMIP simulations
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From Cavalcanti et al page 15: Austral summer precipitation  over South America based on SMIP simulations

Figure 2. left: Mean DJF Multi-
model ensemble precipitation 
(1979-2001) (mm/day); centre: 
(CPTEC/COLA – CMAP/
CAMS);  right: Multi-Model 
ensemble- CMAP/CAMS. 

From Grimm et al. page 16: Do seasonal forecasts reproduce the link between early and peak monsoon rainfall in South America?

Fig. 1. (a) Schematic evolution from spring dry conditions to peak 
summer wet conditions in Central-East Brazil, through decreasing 
low-level pressure, convergence and cyclonic anomaly over Southeast 
Brazil (from Grimm et al. 2007). (b) First and second variability 
modes for observed spring and summer rainfall (left panels), and 
the first modes for the model simulated rainfall (right panels). The 
correlation coefficients between PCs of the observed and model modes 
are displayed in red, while the correlation coefficients between PCs 
for spring and summer are displayed in blue. All but one correlation 
coefficient are significant to levels better than 0.05 (for which r=0.37). 
Also shown are the fractions of variance explained by each mode. 

Figure 1: Spatial distribution of correlation coefficients between the 
predicted and the corresponding observed precipitation for the 21 
years of 1981-2001 in (a) spring, (b) summer, (c) fall, and (d) winter 
using 10 coupled models which participate in APCC/CliPAS and 
DEMETER project 

From Wang et al, page 17: Coupled Predictability of the Seasonal Tropical Precipitation

Figure 3: Fractional variance of predictable parts of S-EOF modes 
(upper panels) in observations and MME prediction. The temporal 
correlation coefficients between the observed and the predicted 
precipitation using all modes and predictable modes (lower panels). 
All seasons are used to obtain the results.
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Figure 4: The ratio of interannual variance of fractional variance of predictable parts of S-EOF modes ((left panels) and MME to intermodel 
ensemble variance (right panels) for four seasons.  

From Yasuda et al, page 18:  Asian Monsoon Predictability in JMA/MRI Seasonal Forecast System

Figure.3  Anomaly correlation maps of rainfall in June-August during 1984-2005 at a lead time of 4 months in JMA/MRI-CGCM (left panel) 
and the 2-tiered operational AGCM (GSM0703C: right panel).

From Wang et al, page 17: Coupled Predictability of the Seasonal Tropical Precipitation

From Moron et al, Page 25:  Seasonal Predictability of monsoon onset over the Philippines

Figure 3 : (a) Downscaled retrospective GCM forecasts of the SAI of onset date. (b)  The Ranked Probability Skill Score (RPSS). Key: station 
observation (black), ECHAM4.5-CA two-tier model (green), NCEP CFS (blue), and ECHAM4.5-MOM3 (red). The RPSS below – 100% are 
reset to –100%. (c) Correlations x 100  between the observed SAI of onset date and monthly sea surface temperatures in March. Contours are 
displayed at 30 intervals.
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From Landman, Page 26,  The influence of ENSO on operational rainfall forecast skill for South Africa

Figure 1. Observed versus multi-model forecast area-averaged values 
for DJF rainfall in mm over the 34-year test period. Nine multi-model 
systems are presented. The individual models considered in the various 
multi-models are ECHAM4.5 (E5), Météo-France (MF), UKMO 
(UO), SST-rainfall (ST) and ECMWF (EF). The best multi-model 
is indicated with an asterisk. The years on the x-axis refer to the 
December months of the DJF seasons. 

From Hendon et al, Page 28: Seasonal Prediction of the Leeuwin Current
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Fig. 1 Monthly time series of Fremantle sea level 
anomaly (FSLA), Nino4 SST index, observed 
HCNW (heat content averaged 15S-25S, 112E-
120E), and predicted HCNW at 6 month lead 
time.
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From Lavers et al, Page 33  Comparison of the potential skill of raw 
and downscaled GCM output for river flow forecasting: a UK case 
study

Figure 2: Flow duration curves for the River Dyfi at Dyfi Bridge 
for ERA-40 resolution 1.5 (a) and 2.5 (b) for 1991-2001, and the 
hydrographs for March 1997 - May 1997 are shown for ERA-40 
resolution 1.5 (c) and 2.5 (d) (PDM modelled flow from observations 
(red); modelled flow from the ERA-40 resolution 1.5 (blue, (a) and 
(c)); modelled flow from ERA-40 resolution 2.5 (green, (b) and (d)), 
and modelled flow from the downscaled rainfall series (grey)).

From Jones et al, page 34: DEMETER-driven prediction of epidemic 
malaria in AFrica: Initial results from a continental-scale study.

Figure 1 Tier-2 ROC skill scores (ROCSS, where a score above zero 
indicates skill relative to climatology) for above the median malaria 
event, DEMETER-driven LMM forecasts minus ROCSS for control 
run (where positive). Scores were calculated at tier-2 relative to ERA-
40 driven LMM malaria incidence for the same period. May forecast 
months 4-6 (left) and November forecast months 4-6 (right). (Results 
masked to show only grid points with CoV>0.5 for ERA-40 driven 
LMM malaria incidence)
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Figure 1:  Interannual variations of precipitation anomalies over the 
subtropical western Pacific (110°E-160°E, 10°N-20°N) in JJA  a) 
SMIP  b) HINDCAST. Thick line indicates CMAP anomalies. Thin 
line indicates ensemble mean anomalies. Cross indicates precipitation 
anomalies of individual members. All anomalies are the deviation from 
18-year (1984-2001) average.
with prescribed “observed” SSTs, called “SMIP”. These 
“observed” SSTs and sea ice concentrations were prepared for 
SMIP2 simulations as boundary conditions. The other simulation 
is prescribed by “predicted” SSTs, called “HINDCAST”. The 
“predicted” SSTs are assumed to be persistent from initial 
times during the forecast period as in the JMA operational 
system. Time integrations were approximately 3 months. Each 
simulation consists of 5 ensemble members. 
The DJF mean precipitation predictability over the tropics 
in SMIP is higher than that in the HINDCAST, as expected 
(not shown here). Interestingly, the predictability of JJA mean 
precipitation over the western tropical Pacific in SMIP (real 
SST anomaly case) is lower than that in HINDCAST (persistent 
SST anomaly case). This is shown in the inter-annual variations 
of precipitation anomalies over the tropical western Pacific 
(110°E-160°E, 10°N-20°N) in JJA in Figure 1. The predictability 
in HINDCAST (r=0.75) is higher than that in SMIP(r=0.33). 
The reason is associated with the lagged correlation between 
precipitation and local SST over the western tropical Pacific 
(110°E-160°E, 10°N-20°N) for the period from 1979 to 2001, as 
shown in Figure 2. The JJA mean precipitation is negatively 
correlated with JJA mean SSTs. The JJA mean precipitation 
has a weak positive lead correlation with SSTs in April-June 
(AMJ). The precipitation in early summer (May-July (MJJ)) has 
a positive correlation with SSTs in March-May (MAM). 
Wang et al (2004) indicate that the rainfall anomalies are 
positively correlated with SST anomalies in nearly all models 
(11 models) that participated in the Asian-Australian monsoon 
Panel AGCM Intercomparison Project. It is confirmed that this is 
the case for the JMA operational AGCM (Kobayashi et al., 2005). 
Furthermore, it is pointed out that the CGCMs realistically 
reproduce the correct air-sea interaction and improve the 
forecast skill of the Asian summer monsoon (Kobayashi et al., 
2005, Krishna Kumar et al. 2005).

Therefore, we suppose that the low (high) predictability of 
convective activities over the western tropical Pacific in SMIP 
(HINDCAST) is attributed to the combination of the lagged 
precipitation-SST relationship over the western tropical Pacific 
and the AGCM characteristics.
3. A new version of JMA coupled forecast system
A new atmosphere-ocean coupled model for the ENSO and 
seasonal prediction system (JMA/MRI-CGCM) has been 
developed at JMA/MRI. The atmosphere component is updated 
to a recent version of the JMA numerical forecast model. The 
resolution has been increased from T42L40 to TL95L40. 
The ocean component is the MRI Community Ocean Model 
(MRI.COM) which is a z-coordinate ocean general circulation 
model developed at MRI. The horizontal resolution has been 
also increased from 2.5o in longitude and 0.5-2o in latitude to 1.0o 
in longitude and 0.3-1.0o in latitude, and the vertical resolution is 
increased from 20 to 50 levels (24 levels in the upper 200m).
The data assimilation system used to create initial conditions 
for ocean is the Multivariate Ocean Variational Estimation 
(MOVE) System developed at MRI (MOVE/MRI.COM; Usui 
et al. 2006). The analysis method of the MOVE System is a 
Three-Dimensional Variational (3DVAR) method with coupled 
temperature-salinity empirical orthogonal function (EOF) 
modes. The flux adjustments for heat and momentum in the 
new system are generally smaller than those in the current 
operational system.
We carried out the 5-member ensemble hindcast with the new 
forecast system (JMA/MRI-CGCM) initiated at the end of 
January, April, July and October from 1979 to 2006, as a part 
of the TFSP retrospective seasonal forecast experiment. It was 
found that the anomaly correlation of monthly mean SST for 
the Nino3.4 region is 0.75 at a lead time of 6 months, which is 
better than the results of the JMA operational ENSO forecast 
model. The new model also provides an important advance in 
predicting SST in the western tropical Pacific (0°-15°N, 130°E-
150°E).

Figure 2: Lagged correlation between precipitation in CMAP and 
NCEP SST over the subtropical western Pacific (110°E-160°E, 10°N-
20°N).  Contour interval is 0.2. Dark shaded regions indicate a negative 
correlation coefficient area of less than -0.4. Light shaded regions indicate 
a positive correlation coefficient area of more than 0.4.
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4. Asian Summer Monsoon Prediction
In recent years, it has been pointed out that prediction with 
coupled models improves the prediction skill in the Asian 
summer monsoon region (Krishna Kumar et al. 2005). Here we 
compare the 4-month-lead prediction results of the new system 
with those of the JMA 2-tiered operational seasonal prediction 
model (GSM0703C) based on the 5-member ensemble hindcast 
experiments. 
Figure 3 (page 21) shows anomaly correlation maps between 
CMAP and 4-month-lead forecast rainfall for June-August. The 
progress in the JMA/MRI-CGCM is evident over almost all 
regions from the Indian Ocean to the western tropical Pacific. 
The summer climate in Japan is influenced by the Southeast 
Asian Monsoon (SEAM) condition through the teleconnection 
pattern known as the PJ pattern (Nitta 1987). Interannual 
variability of the circulation index (DU2 index), which is closely 
related to the PJ pattern, defined by the difference of zonal wind 
anomaly at 850 hPa between the area (5°N-15°N, 90°E-130°E) 
and the area (22.5°N-32.5°N, 110°E-140°E) is shown in Figure 
4. The JMA/MRI-CGCM significantly improves the 4-month-
lead prediction skill of the SEAM variability compared with 
the JMA 2-tiered operational forecast model. 
The south Asian monsoon represented by Webster-Yang index 
(W-Y index; Webster and Yang 1992) is also much improved 
with increased temporal correlation coefficients from 0.35 to 
0.59.
5. Summary
The predictability of  western tropical Pacific precipitation 
is the key for seasonal forecasts in East Asia. It is shown 
why the AGCM two-tiered system gives good one-month-
lead JJA seasonal forecasts of the western tropical Pacific 
precipitation. 
The realistic relationship between SST and rainfall is not 
reproduced in the AGCM but is in the CGCM through its 
physically correct air-sea interactions. The Asian summer 
monsoon is well predicted by the new forecast system (JMA/
MRI-CGCM) at a lead time of 4 months in addition to much 

progress on the prediction skill of SST in ENSO.  This version 
of the coupled forecast system will replace the current JMA 
operational ENSO forecast system in 2008. We continue to 
develop a next version of the seasonal forecast system to 
replace the JMA operational seasonal prediction system in a 
few years.
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Figure.4  Time series of the DU2-index (right panel) and its scatter plots (left panel) from the 4-month-lead prediction by JMA/MRI-CGCM 
(top) and the JMA 2-tiered operational model (GSM0703C: bottom). The closed circles and closed squares show the indices calculated from 
reanalysis (JRA-25) and models, respectively. Open squares show the results of the individual members.
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1.  Introduction
Tropical rainfall is often concentrated during a well-defined 
rainy season whose amplitude, length and onset vary by 
location. Interannual variability is known to be strongly 
influenced by the El Niño Southern Oscillation (ENSO) in 
many cases, but seasonal forecasts are still largely restricted to 
3-month averaged rainfall amount at the GCM grid-point scale 
of about 300km  (for example, http://iri.columbia.edu).
It is still not well established how this seasonally-averaged 
predictable signal is disaggregated at smaller spatial and 
temporal scales. We investigate here the seasonal predictability 
of the onset date of the rainy season across the Philippines. 
Onset date is particularly critical for agricultural activities and 
the estimate of its potential predictability is especially sensitive 
in the tropics where a significant part of the Gross National 
Product is often derived from a small number of crops. The 
mean onset of boreal summer monsoon in Southeast (SE) Asia 
and especially around the Philippines has been previously 
described as a sharp transition between two different states at 
large-scale (i.e. Akasaka et al., 2007), suggesting a potentially 
predictable component. We examine this issue using a well-
sampled 77-station network over the Philippines provided by 
PAGASA (1977-2004), together with ensembles of retrospective 
forecasts from three seasonal prediction models (both one-tier 
and two-tier) initialized on April 1st. 
 2.  Mean annual cycle and monsoon onset date
The Philippines combine a complex topography with islands of 
different sizes surrounded by warm sea surface temperatures 
(SSTs). The multi-scale mixing of processes is particularly 
challenging for the detection of any spatially-coherent regional-
scale signal, for example related to ENSO (Lyon et al., 2006). 
We firstly examine the mean annual cycle of station rainfall and 
its spatial characteristics. Figure 1 shows the classification of 
mean annual cycle of rainfall at the 77 stations using a standard 
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k-means classification on the mean probability of occurrence of 
wet days > 1 mm, low-pass filtered < 1/30 cycle-per-day. Use 
of the low-pass filtered mean daily rainfall amount leads to a 
similar pattern (not shown). The major spatial differentiation 
is between the eastern and western Philippines. The eastern 
part has no real dry season with two rainy peaks in November-
December and late June-early July (Figure 1c), while the western 
part displays a sharp increase between a dry season till April 
and a wet season peaking around July-August (Figure 1b); we 
focus henceforth on the latter, defined by cluster 1.
Rainy-season onset date is usually defined using thresholds for 
estimating the first wet spell of the season (i.e. Dodd and Jolliffe, 
2001). Restriction to large rainfall amounts and/or long wet 
spells help to reduce the small-scale noise associated with the 
convective nature of tropical rainfall. The onset date is defined 
here as the first wet day of a 5-day sequence receiving at least 
40 mm without any following dry spells of 15 consecutive days 
receiving less than 5 mm, within a month from the onset. Figure 
2a shows the mean onset dates for the 38 western Philippines 
stations (i.e. white squares on Figure 1a); the onset combines a 
regional-scale signal centred around mid-May with local-scale 
variations, even between nearby stations. These local variations 
could be associated with topographic  features that tend to 
enhance local rainfall intensities and thus slightly modify the 
phase of the rainy season. Figure 2b shows the standardized 
anomalies of the 38 stations together with the average, i.e. the 
standardized anomaly index (SAI ; Moron et al., 2007a). There 
are some deviations amongst the stations but the SAI exhibits 
a significant common signal (common variance amongst the 
stations = 25.4%), suggesting potential predictability at the 
station scale. Note that SAI is correlated > 0.97 with the leading 
EOF computed over the 38 stations, that accounts for 31.5% of 
the total variance.
3.  Downscaled GCM hindcasts of the SAI of onset date
We next estimate seasonal hindcast skill of the SAI of onset 
date from three seasonal prediction models – the  24 runs of 
ECHAM4.5/constructed analog SST two-tier system of IRI (Li 
and Goddard, 2005), the 7 runs of ECHAM4.5-MOM3 coupled 
GCM (DeWitt, 2005), and the 15 runs of NCEP CFS model 

Figure 1 : Cluster analysis of the mean annual cycle of daily station 
rainfall (= daily average across the years of the frequency of occurrence 
of wet days > 1 mm low-pass filtered < 1/30 cycle-per-day) into two 
clusters using k-means. Panel (a) shows the resulting partition of the 
stations, with the mean seasonal evolution of rainfall at each station 
in the two sets of station plotted in panels (b) and (c). The bold line 
denotes the station average. 
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Figure 2 : (a) Mean onset date for stations in the western cluster in 
Fig 1a.  (b) Standardized interannual time series of onset date for each 
station (dots) with the spatial average (i.e. the Standardized Anomaly 
Index, SAI) (bold line with circles).
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Introduction
The South African Weather Service (SAWS: http://www.
weathersa.co.za) issues forecasts of rainfall and temperature at 
various time ranges, including forecasts on seasonal time scales. 
For this purpose, seasonal forecast maps and output data from 
a number of general circulation models (GCMs) are obtained 
from international centres (e.g., the International Research 
Institute for Climate and Society – IRI) and then subjectively 
combined with forecasts produced by the seasonal forecasting 
systems developed at the SAWS. These systems include rainfall-
sea-surface temperature (SST) empirical models (Landman and 
Mason, 1999) and ECHAM4.5 (Roeckner et al., 1996) forecasts 
that are additionally downscaled statistically to 963 rainfall 
stations evenly distributed across South Africa (Landman 
and Goddard, 2005). The SAWS is currently developing an 
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objective forecasting system that is based on a multi-model 
forecasting approach. Such a system will replace the current 
subjective forecasting system that relies heavily on forecasters’ 
interpretation of model output. In addition to removing 
the subjectivity of the current forecasting system, there are 
advantages in combining a number of GCMs into a multi-model 
ensemble since GCMs differ in their parameterizations and 
therefore differ in their performance under different conditions 
(Krishnamurti et al., 2000). Multi-model systems are nearly 
always better than any of the individual systems (Doblas-Reyes 
et al., 2000, Krishnamurti et al., 2000), but the multi-model 
approach is only beneficial if the individual systems produce 
independent skilful information (Graham et al. 2000). 
An association exists between South Africa’s summer 
seasonal rainfall and the equatorial Pacific Ocean. However, 

is required to explore potential improvements through multi-
model ensemble of GCMs and empirical models, to determine 
the most appropriate definitions of onset for applications in the 
Philippines, and to investigate any additional predictability of 
onset associated with intraseasonal oscillations.  
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(Saha et al., 2006), each initialized on April 1st. Downscaling 
to daily station rainfall is carried out stochastically using a 
2-tier resampling scheme  based on using gridded regional-
scale seasonal-average and daily winds at 850 and 200 hPa 
as predictors in a k-nearest neighbour algorithm (Moron et 
al., 2007b). Basically, the seasons are first sampled based on 
the similarity between each GCM run and ERA-40 used as a 
library (but the year to be forecast is systematically excluded 
from the library) and then days are stochastically resampled 
in the seasons pooled from the first step. Each run is processed 
independently at this step and 5 daily sequences at local scale 
are extracted for each of them. The onset is then recomputed 
on resampled sequences and the standardized observed 
and simulated SAI is shown in Figure 3a (page 21)  with the 
observed one. 
The hindcast skill in terms of anomaly correlation coefficient 
between observed and ensemble-mean hindcast SAIs equals 
0.84 (ECHAM-CA), 0.78 (CFS) and 0.70 (ECHAM-MOM). Fig. 
3b shows the ranked probability skills score (RPSS) for tercile 
categories using the whole distribution of 120 (ECHAM-CA), 
75 (CFS) and 35 (ECHAM-MOM) simulations of SAI.  Median 
RPSS equals respectively 60% (ECHAM-CA), 23% (CFS) and 
42% (ECHAM-MOM).
4.  Conclusion
Our results demonstrate substantial predictability in rainy 
season (monsoon) onset date over the western Philippines 
that is robust across retrospective forecasts made with three 
current seasonal prediction GCM systems, based on an 
agronomic definition of onset, averaged over 38 stations. If 
the more localized definition of onset used by PAGASA is 
used, based on 8 stations, then the ACC scores decrease to 
0.50-0.55. This decrease is likely to be a function of the station-
scale noise component evident in Fig. 2a, and highlights the 
importance of defining onset from some optimal combination 
of predictability and end-user perspectives, depending on the 
specific application.
Regarding the source of predictability, Fig. 3c shows the 
correlations between the SAI onset date and March SST (i.e., 
the month prior to initialization of the forecasts). The pattern 
exhibits strong correlations over the Tropical central and eastern 
Pacific typical of ENSO. However, the correlations are also 
very high (up to –0.8) over the northwestern Tropical Pacific, 
suggesting the role of regional processes as well.  Further work 
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Figure 2. Area-averaged cross-validation correlations of the best 
single- and best two multi-model systems, considering all of the 34 
years, El Niño together with La Niña years, only El Niño years, only 
La Niña years, and only neutral years.

this link is not always strong since the association in the 
middle to late austral summer season is higher than earlier 
in the summer rainy season (e.g., Tyson and Preston-Whyte, 
2000). Notwithstanding, in the mid-summer months South 
Africa tends to be anomalously dry during El Niño years and 
anomalously wet during La Niña years. Indian and Atlantic 
Ocean SST also have a statistically detectable influence on 
South African rainfall variability (e.g., Mason, 1995; Reason et 
al., 2006). Moreover, while the El Niño-Southern Oscillation 
(ENSO) has a control on rainfall variability over the southern 
African region, Indian Ocean SST anomalies, sometimes 
varying independently of ENSO, are important for atmospheric 
GCMs to simulate skilfully southern African seasonal rainfall 
(e.g., Washington and Preston, 2006). This paper aims to show 
the extent to which ENSO influences operational South African 
summer rainfall forecast skill of a state-of-the-art multi-model 
forecasting system. 
Data and method
The December-January-February (DJF) seasonal total rainfall 
for 963 SAWS stations evenly distributed over South Africa 
is the set of predictands in a model output statistics (MOS; 
Wilks, 2006) approach that uses a combination of large-scale 
total rainfall fields from a range of physical models as the set 
of predictors. The model fields used in the MOS are restricted 
over a domain that covers an area between 10°S and 40°S, 
Greenwich to 60°E. The physical forecast models’ output used 
here are from three coupled models from the DEMETER project 
(Palmer et al., 2004) (UKMO, ECMWF and Météo-France) and 
from one atmospheric model, the ECHAM4.5, obtained from 
the IRI. A canonical correlation analysis (CCA) model that uses 
near-global SSTs as predictor is considered as a fifth model in 
designing a multi-model seasonal rainfall forecasting system 
for South Africa. A one-month lead-time is imposed for each 
of the four models, i.e., forecasts made in November for a DJF 
rainfall forecast. 
MOS is subsequently applied to the total rainfall forecast 
fields of each of the four physical models. Using MOS to 
recalibrate GCM output produces improved forecast skill over 
southern Africa (Landman and Goddard, 2002). The individual 
performances of the MOS models and the rainfall-SST statistical 
model are tested using a 5-year-out cross-validation design over 
the 34-year period from 1968/69 to 2001/02. The most skilful of 
the five models is considered to be the one with the highest area-
averaged cross-validation correlation value and the least skilful 
the one with the lowest value. Area-averages are calculated 
using only those stations that get most of their rainfall during 
the austral summer (758 stations). The correlation values are 
adjusted using the Fischer Z transformation (Wilks, 2006).
A number of forecast combining algorithms exists. In this 
paper CCA is used for model combination. The Climate 
Predictability Tool (CPT) software developed at the IRI is used 
for this purpose. First, all the models’ output is combined in one 
predictor field for a five-model multi-model system. A multi-
model system of four models is considered next by discarding 
the model with the lowest skill. This backward elimination of 
the models is performed by each time discarding the model with 
the lowest skill until only two models are considered in a multi-
model system. In addition to these multi-model systems, each 
physical model’s forecasts are also individually combined with 
the forecasts of the rainfall-SST statistical model. Finally, the best 
two physical models are also combined with the rainfall-SST 
statistical model. Nine multi-model systems are subsequently 
considered. The performance of the multi-model systems is 
also tested using a 5-year-our cross-validation design over the 
34-year test period.

Results
The ECHAM4.5-MOS model is found to perform the best over 
the 34-year test period. In descending order of skill, the next 
four models are the Météo-France-MOS model, the UKMO-
MOS model, the rainfall-SST model and the ECMWF-MOS 
model. Figure 1 (page 22) shows the various multi-model 
cross-validated forecasts and the observed values in mm, both 
averaged over the summer rainfall stations. The correlation 
values between the area-averaged multi-model forecasts and 
the observed are also shown on the bottom right-hand side 
of the figure. MM3 (ECHAM4.5+Météo-France+UKMO) is 
associated with the highest correlation value (0.5902), followed 
by MM4 (ECHAM4.5+ Météo-France). Calculating the area-
averaged adjusted correlation values produces the same results, 
i.e., MM3 is the most skilful system. Figure 1 shows that the 
intensity of the El Niño related observed drought years of 
1972/73, 1982/83 and 1994/95 are well captured by the multi-
model forecasts, while the extremely wet conditions observed 
during the La Niña seasons of 1973/74, 1975/76, 1995/96 and 
1999/2000 are not captured by the forecasts (El Niño and La 
Niña years as defined by the Climate Prediction Centre). Figure 
2 shows the area-averaged adjusted correlation values of the 
best single model and the best two multi-model systems. For 
each multi-model system, the area-averaged correlations are 
separately recalculated for El Niño, La Niña, El Niño together 
with La Niña years, and neutral years. Skill levels associated 
with El Niño together with La Niña years are much higher 
than during only La Niña years and also neutral years. In fact, 
negative correlation values are found for both multi-model 
systems when only neutral years are considered.
Discussion
Multi-model forecasting systems have the potential to outscore 
seasonal rainfall forecasts over South Africa produced 
by individual models. However, multi- and single model 
verification results for the austral spring months of September-
October-November (SON) and the autumn months of March-
April-May (MAM) show no improvement of the multi-model 
systems over the single model forecasts (not presented here). 
Mid-summer is the season of highest rainfall predictability and 
the DJF skill levels presented here are found to be a function 
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Introduction
Dynamical seasonal prediction using coupled atmosphere-
ocean general circulation models (AOGCMs) is routinely 
performed at numerous national and international forecast 
and research centres. The foundation for predictions with 
such systems is the proven ability to predict the state of El 
Niño/Southern Oscillation (ENSO) at lead times up to about 12 
months. Regional predictive skill outside of the tropical Pacific 
is primarily associated with teleconnections to ENSO, which 
the coupled AOGCMs presumably faithfully simulate. Most 
of the focus for application of dynamical seasonal prediction 
has been on exploiting the ability to predict the atmospheric 
teleconnections associated with ENSO, for obvious reasons. 
This note addresses the potential for dynamical seasonal 
prediction of variations of the poleward flowing Leeuwin 
Current, which is perhaps the most predictable component of 
the atmosphere-ocean climate system outside of the tropical 
Pacific (due to its extremely tight coupling to ENSO) and which 
also is of enormous economic and ecologic importance. 
Leeuwin Current
Unlike the prominent equatorward flowing eastern boundary 
currents along the western coasts of the Americas and Africa, the 
Leeuwin Current flows poleward against the prevailing winds, 
transporting warm and fresh water south along the subtropical 
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west coast of Australia. As a result, sea surface temperatures 
(SSTs) and mean rainfall are higher than at similar subtropical 
latitudes off the west coasts of the Americas and Africa (e.g., 
Feng et al. 2003). The transport of relatively fresh tropical water 
south along the coast also results in the appearance of many 
aquatic species (plants and fish) at higher latitudes than would 
otherwise be the case. Interannual variations of the current have 
profound and predictable impacts on a number of important 
fisheries (e.g., Pearce and Phillips 1988). 
The Leeuwin Current is narrow (typical width <100 km) 
and displays pronounced mesoscale meanders and eddies 
(e.g., Legeckis and Cresswell 1981). The current is confined 
above about 300 m and is strongest at the surface. It exhibits 
a pronounced annual variation in strength, with peak volume 
transport ~ 5 Sv and peak velocity ~0.5 ms-1 occurring in 
winter when the equatorward component of the mean wind is 
weakest (Smith et al. 1991). The Leeuwin Current essentially 
exists because of the trade winds in the Pacific: warm, low 
density tropical Pacific water “leaks” into the Indian Ocean 
via the Indonesian Throughflow. As a result, a south-north 
pressure gradient in the south eastern Indian Ocean is 
maintained. This south-north pressure gradient drives an 
eastward, onshore geostrophic transport that overcomes the 
locally-driven offshore Ekman transport and downwells on the 

of the state of the equatorial Pacific Ocean, and in particular 
whether or not an El Niño event is occurring. Limited skill in 
predicting DJF rainfall is found during La Niña years and even 
lower skill during years associated with neutral conditions in 
the equatorial Pacific Ocean. Notwithstanding, seasonal rainfall 
forecasts during El Niño together with La Niña years are the 
most skilful. Take note that the model skill levels presented are 
only for deterministic forecasts based on the ensemble mean of 
the various individual models. However, when considering the 
full ensemble (9 members) of each of the DEMETER physical 
models used here, the models are very confident (most of the 
ensemble members) in predicting drought conditions over 
South African during the DJF season of El Niño years, and also 
with some confidence in predicting wet conditions during La 
Niña years. Therefore, since the multi-models produce the best 
results during El Niño and La Niña years (particularly during 
El Niño years), and that they are very (fairly) confident in their 
forecasts of drought (wet conditions) during El Niño (La Niña) 
years, this suggests that the state-of-the-art forecasting systems 
considered here are to a large extent dictated by the models’ 
response to the equatorial Pacific Ocean.
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coast. The Leeuwin Current is in geostrophic balance with the 
resulting near-shore west-east pressure gradient (e.g., Godfrey 
and Ridgway 1985). Variations of the current on annual to 
interannual time scales are coastally trapped, with variations 
of current strength being well captured by a linear relationship 
with sea level deviation on the inshore side of the current at 
Fremantle (Feng et al. 2003). 
The interannual variation of the current is dominated by 
ENSO (weak in El Niño years and strong in La Niña years; e.g., 
Pearce and Phillips 1988; Feng et al. 2003). This relationship is 
demonstrated in Figure 1 (page 22), which shows the monthly 
time series of the Niño4 SST index together with the observed 
sea level anomaly (smoothed with a running 3-month mean) at 
Fremantle (FSLA; which we take as an index of the strength of 
the Leeuwin Current following Feng et al. 2003). The correlation 
between them is ~0.75 at zero lag. This tight coupling with 
ENSO stems from the transmission of the sea level anomaly 
in the western Pacific (high during La Niña and low during 
El Niño) through the throughflow and southward along the 
Australian coast as a coastally trapped wave (e.g., Clarke and 
Liu 1994). 
This mechanism of variability stemming from ENSO is 
demonstrated in Figure 2a, which shows the simultaneous 
correlation of FSLA with upper ocean heat content anomaly 
(defined here as the temperature averaged in the upper 300 m; 
which we use as representative  of  the large-scale geopotential 
or steric height anomaly) from the Australian Bureau of 
Meteorology POAMA (Predictive Ocean Atmosphere Model 
for Australia) ocean assimilation. High FSLA is associated 
with an east-west dipole anomaly of heat content across the 
Pacific that is reminiscent of the mature phase of La Niña. 
Positive anomalies on either side of the Equator in the west 
Pacific are indicative of the westward propagating Rossby 
waves that have encountered the western boundary and which 

appear to be transmitted through the Indonesian throughflow 
and southward onto the Australian coast. The heat content 
anomalies in the tropical Indian Ocean away from the coast in 
Figure 2a are interpreted as additional remote effects of ENSO 
(stemming both from atmospheric and oceanic teleconnections; 
e.g., Wiffels and Meyers 2003), rather than as a cause of 
variations of sea level at Fremantle.
The impact of interannual variations of the Leeuwin Current 
on local SST along the west coast of Australia is demonstrated 
by the correlation of FSLA with SST (Figure 3). The region 
of strong positive SST correlation along the subtropical west 
coast of Australia nicely delineates the geographic domain 
and regional impact of the Leeuwin Current: An anomalously 
strong current, which originates ~30o longitude off shore of the 
North West Cape and intensifies and contracts onto the coast 
to the south, is associated with anomalous poleward advection 
of  the mean south-to-north SST gradient .  The tight coupling 
of FSLA with ENSO is also reflected by the La Niña-pattern of 
SST correlation in the Pacific. 
Dynamic Seasonal Prediction
The ability to predict seasonal variations of the strength of the 
Leeuwin Current is tantamount to the ability to predict the 
heat content anomalies on the northwest shelf of Australia 
that evolve during ENSO. Ideally, ocean (and atmosphere) 
models would have sufficient resolution and physics to allow 
direct prediction of the current variations to the south but the 
modest resolution of the models used for seasonal prediction 
is far below that required to resolve the detailed dynamics that 
govern the Leeuwin Current (e.g., Reason et al. 1999).  Hence, 
we focus on prediction of the large scale heat content anomaly 
on the northwest shelf that is the primary driver of the current’s 
variations. The utility of using heat content averaged on the 
northwest shelf (15oS-25oS, 112oE-120oE; hereafter HCNW) as a 
proxy for Leeuwin Current variations is demonstrated in Figure 
1.  The correlation of HCNW with FLSA exceeds 0.8.  
The skill of predicting HCNW is assessed using the POAMA 
seasonal forecast system (http://poama.bom.gov.au).  POAMA 
consists of a moderate resolution AGCM (T47/L17) coupled 
to the ACOM2 ocean model (2o x 0.5o resolution), which is a 
derivative of MOM-2. When run as a climate model, POAMA 
faithfully captures the evolution of heat content associated 
with ENSO, including the transmission through the Indonesian 
throughflow and onto the west Australian coast (Zhong et al. 
2005). The analysis here is based on a 10 member hindcast set of 
9 month forecasts that are initialized on the first of each month 
for the period 1982-2003. Ocean initial conditions on the first of 
each month are derived from the POAMA ocean assimilation 
system and atmospheric/land initial conditions are derived 
from ALI (Atmosphere-Land Initialization), which nudges the 

Fig. 2 Correlation of a) the monthly time series of FSLA with observed heat content from the POAMA assimilation and b) the monthly time 
series of observed HCNW with ensemble mean predicted heat content at 6 month lead time for period 1982-2003. Correlation is presented in 
percentage and drawn from ±20% with interval 10%. Zero contour is thick line

Fig. 3 Correlation of the monthly time series of FSLA with Reynolds 
OIv2 SST (obtained from http://www.cdc.noaa.gov/cdc/data.noaa.oisst.
v2.html) for period 1982-2003. Colour scale is the same as in Fig. 2.
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atmosphere-land models to the ERA-40 reanalysis. Perturbed 
atmospheric initial conditions are obtained by taking the 
nudged analysis from earlier and later 3 hour periods around 
the first of each month. 
The POAMA system exhibits high skill (anomaly correlation 
exceeding 0.7) for predicting heat content anomaly throughout 
the equatorial central and east Pacific at lead times beyond 6 
months (not shown), which is reflective of the ability of the 
POAMA system to predict ENSO. High skill is also evident off 
of the equator in the far west Pacific (presumably associated 
with the slow westward propagating Rossby waves generated 
during ENSO) and on the northwest shelf of Australia. This 
high skill on the northwest shelf reflects the ability to predict 
the oceanic teleconnection of ENSO from the Pacific, through 
the Indonesian throughflow. This is demonstrated in Figure 
2b, which shows the correlation of the observed HCNW 
with the predicted heat content over the tropical Pacific and 
Indian Oceans at a 6 month lead time. The resemblance with 
the observed heat content anomaly that is associated with 
Fremantle sea level variation (Figure 2a) is outstanding. 
Skill of predicting HCNW and the Niño4 SST index is 
summarized in Figure 4. Except at short lead time, the skill is 
essentially identical for both Niño4 and HCNW. The anomaly 
correlation for both remains high (>0.75) to 9 month lead time 
and readily beats persistence. In light of the tight coupling 
between HCNW and FLSA, skilful seasonal prediction of the 
Leeuwin Current appears to be as feasible as prediction of 
ENSO.
Concluding Remarks
This study is part of an ongoing investigation into seasonal 
predictability of the marine environment of Western Australia. 
Future work will include downscaling of the dynamical model 
predictions of heat content to direct prediction of Leeuwin 
Current strength, evaluation of the value added by prediction 
of heat content on the northwest shelf over that of simply 
predicting ENSO in the Pacific, and investigation of the role 
of coupled processes in the Indian Ocean for contributing to 
variability and predictability of the Leeuwin Current.
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Introduction
On seasonal to interannual timescales, it is generally assumed 
that the ocean’s role in modulating mid-latitude precipitation 
is minor relative to internal atmospheric variability.  This is in 
contrast to the well-established view that air-sea coupling is 
of paramount importance in the tropics.  In this study, we use 
atmospheric general circulation model (AGCM) simulations to 
assess the way in which Indian Ocean SST anomalies modulate 
mid-latitude precipitation across western regions of Australia.  
Our study represents an extension of previous work by England 
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et al. (2006) who find that, in the observed record, extremes in 
southwest Western Australia (SWWA) rainfall are associated 
with characteristic SST patterns and changes in the large-scale 
atmospheric circulation across the Indian Ocean.  Here, we 
show that these SST composite patterns can significantly affect 
SWWA and Western Australia precipitation in ensemble sets 
of AGCM simulations.  We also propose a mechanism for the 
observed rainfall shifts due to changes in the large-scale general 
circulation (Ummenhofer et al., 2007).

Fig. 4 Anomaly correlation for Nino4 SST index (grey) and HCNW 
(black) as a function of forecast lead time. Persistence (in dashed lines) 
is shown for reference. Correlation is computed using ensemble mean 
of forecasts for the period 1982-2003.
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Model and experimental setup
A set of ensemble experiments is conducted with the NCAR 
Community System Model, version 3 (CCSM3; Collins et 
al., 2006), run in uncoupled atmosphere-only mode.  The 
atmospheric component of CCSM3, the Community Atmosphere 
Model (CAM3;  Hurrell et al., 2006) uses a spectral dynamical 
core, T42 horizontal resolution (~2.8° latitude/longitude), and 
26 vertical levels.  Ummenhofer et al. (2007) assess the model’s 
performance over the Indian Ocean and Australian region on 
seasonal to interannual timescales and demonstrate the model’s 
suitability for the present study.
An 80-year integration forced by a 12-month SST climatology 
(Hurrell et al., 2006) represents the control experiment (CNTRL).  
Two sets of perturbation experiments are carried out where 
anomalous SST patterns are superimposed onto the climatology.  
These perturbations are derived from composites of observed 
average monthly SST anomalies for years defined as being 
anomalously dry/wet over SWWA (30°-35°S, 115°-120°E) by 

England et al. (2006), i.e. exceeding ±1 standard deviation 
in their rainfall time-series.  The resulting monthly-varying 
SST anomalies are scaled by a factor of three in an attempt 
to excite a clearer atmospheric response from the inherently 
noisy atmosphere.  Despite this scaling the applied magnitude 
of SST perturbations is not unrealistic, with certain years 
showing similar SST anomaly magnitudes (for further details 
see Ummenhofer et al., 2007).  All of the “dry-year” (PDRY) and 
“wet-year” (PWET) perturbation runs start from early January 
from a variety of years spanning the control run.  The ensemble 
sets consist of 60 one-year integrations for each of the PDRY 
and PWET scenarios.
Rainfall shifts
The impact of the modified SST is assessed for precipitation 
across western regions of Australia.  Fig. 1 shows the rainfall 
frequency distribution across the ensemble members in 
PDRY and PWET relative to the CNTRL.  The total annual 
precipitation is spatially averaged over the region of Western 
Australia (WA; 21°-35°S, 115°-130°E).  This area excludes the 
tropical north of the state dominated by monsoonal rainfall 
and integrates across coastal regions with predominant winter 
rainfall and dry regions farther inland with a more uniform 
annual rainfall distribution.  The model results indicate a shift 
in the distribution towards lower (higher) rainfall amounts 
in the PDRY (PWET) case relative to the CNTRL (Fig. 1a, b;  
significant at the 99% confidence level).
The model distinguishes between large-scale and convective 
components of precipitation, providing a first insight into 
the likely causes for the simulated rainfall shifts.  Over WA, 
these components reinforce each other and are of opposite 
sign for PDRY and PWET  (Fig. 1a, b).  This contrasts with the 
rainfall breakdown for the smaller area of SWWA (30°-35°S, 
115°-120°E), where the two components are not necessarily 
of the same sign.  As a result, large-scale and convective 
components are presented separately over the predominant 
SWWA rainfall season May-September (Fig. 1c-f).  The large-
scale rainfall distribution is shifted towards low (high) rainfall 
amounts for PDRY (PWET) relative to the CNTRL (Fig. 1c, d).  A 
disproportionate decrease (increase) in the number of ensemble 
members receiving in excess of 100 mm (summed for May-
September) is observed for PDRY (PWET).  Only 5% of winters 
(May-September) in the PDRY case receive >100 mm, while this 
occurs in 13% of winters in the CNTRL and 22% in the PWET 
case.  The frequency distribution for convective precipitation 
over SWWA shows less consistent shifts (Fig. 1e, f).  Significantly 
more ensemble members receive high convective precipitation 
for PDRY relative to the CNTRL, while no significant change 
is recorded for PWET.
Atmospheric dynamics
To understand the mechanisms responsible for the observed 
shifts in precipitation, we investigate changes in the atmospheric 
general circulation induced by the SST perturbations.  We focus 
on the May-September period, as most of the SWWA rain falls 
during these months (~70% of annual total) and the anomalies 
of various atmospheric variables are particularly strong during 
the winter season (Ummenhofer et al., 2007).
The SST anomalies during dry/wet years form a characteristic 
dipole pattern which is distinct in location and temporal 
evolution from previous definitions of dipoles in the Indian 
Ocean (e.g., Saji et al., 1999; Behera and Yamagata, 2001).  A 
pole of cold (warm) SST anomalies develops in the eastern 
Indian Ocean over the northwest shelf of Australia (named 
P1) at the same time as warm (cold) anomalies form in the 
central subtropical Indian Ocean (named P2) for PDRY (PWET), 

Figure 1.  Frequency distribution of (a, b) total rainfall spatially 
averaged across WA;  (c, d) large-scale and (e, f) convective rainfall 
spatially averaged across SWWA;  cumulative rainfall amount (in 
mm) summed over the months indicated for PDRY (left) and PWET 
(right) cases.  The shaded gray rainfall distribution represents the 
CNTRL (normalized to the number of ensemble members in PDRY/
PWET), while PDRY and PWET are indicated with black outlines.  
The following significance levels hold, as determined by a Mann-
Whitney test: (a) 99%, (b) 99%, (c) 99%, (d) 95%, (e) 99%.  (adapted 
from Ummenhofer et al., 2007).
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reaching maximum magnitudes in late winter/early spring (Fig. 
2a, b).  Atmospheric thickness anomalies (1000-500 hPa) of the 
same sign and position as the underlying SST anomalies at P1 
and P2 develop in the perturbation experiments, intensifying 
towards late winter and extending across southern regions of 
Australia (Fig. 2c, d).  This leads to a weakening (intensification) 
of the meridional thickness gradient and the subtropical jet 
during the winter in PDRY (PWET), with a coincident easterly 
(westerly) anomaly in the thermal wind over southern regions 
of Australia.  The offshore (onshore) wind anomalies over 
SWWA (Fig. 2e, f) thus contribute to the reduction (increase) 
in large-scale rainfall.  In observations, Ansell et al. (2000) 
similarly associate variations (and trends) in SWWA rainfall 
with modulations in the subtropical high pressure belt and a 
shift of the circumpolar trough.  However in their study, links 
with Indian and Pacific Ocean SST are weak compared to the 
variability of the large-scale atmospheric circulation, while we 
demonstrate that the reorganization in the general atmospheric 
circulation can arise as a result of the changed SST fields over 
the Indian Ocean.
A measure of the baroclinic stability in the atmosphere, 
and hence its disposition towards developing rain-bearing 
low pressure systems, is provided by the Eady growth 
rate.  A reduction (increase) in the Eady growth rate (Fig. 
2g, h) indicates a lower (higher) formation rate of baroclinic 
instabilities over southern and western regions of Australia 
during PDRY (PWET), consistent with the large-scale rainfall 
changes.  Hope et al. (2006) also link trends in baroclinicity 
and reduced frequency of passing troughs across the region 
with the observed rainfall decrease over SWWA.  Here, we 
demonstrate that such changes can be driven by anomalous 
SST patterns over the Indian Ocean.  The vertical thermal 
structure overlying warm SST anomalies at P2 in the central 
subtropical Indian Ocean in PDRY favors localized increases in 
convective activity, as seen in the increase in convective rainfall 
over SWWA and the reduction in large-scale rainfall.  The 
asymmetry in convective rainfall response does not manifest 
itself in the rainfall distribution for WA, most likely due to 
the fact that with increasing distance inland, the impact of the 
warm SST at P2 giving rise to localized convective upward 
motion and enhanced convective rainfall in SWWA during 
PDRY is averaged away.  On the other hand, both the circulation 
and thermal anomalies in PWET enhance widespread ascent 
of moist air masses associated with frontal movement, as 
evidenced by increases in large-scale precipitation in that 
ensemble set for both the SWWA and WA regions.
In summary, we have demonstrated that the Indian Ocean 
SST anomalies associated with dry/wet years over WA can 
themselves force significant anomalies in rainfall over the 
region.  The SST anomaly fields involve both tropical and 
subtropical perturbations, combining to drive changes in 
atmospheric thickness, thermal winds, baroclinicity, and 
moisture advection onto the Western Australian coast.  Future 
work will assess the relative roles of the tropical and subtropical 
SST anomalies in driving these rainfall changes and the lead 
times of predictability that may be involved.
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Figure 2.  (a, b) SST perturbation (in °C), (c, d) thickness anomalies 
(in m for 1000-500 hPa), (e, f) wind anomalies at 500 hPa (in m s-1), 
and (g, h) anomalies in Eady growth rate (in day-1) averaged over 
the May-September period for the PDRY (left) and PWET (right) 
case, relative to the CNTRL.  Dashed lines in (c, d, g, h) and black 
arrows in (e, f) indicate significant anomalies at the 90% confidence 
level as estimated by a two-tailed t-test.  (adapted from Ummenhofer 
et al., 2007).
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Hydrologic extremes (floods and droughts) are expected 
to become more commonplace under changing climatic 
conditions (Kundzewicz et al. 2007). These extremes can be 
very costly economically and to society as a whole. Skilful 
hydrological forecasts at a seasonal time-scale, defined here as 
1 to 6 months, could potentially mitigate these harmful effects 
through advanced warning. This could aid water management 
decision making and increase human preparedness for extreme 
conditions. The need of research on the seasonal forecasting 
of river flows is becoming more apparent in the UK after the 
drought experienced in 2004-06, and the summer 2007 floods. 
The aim of the work described here is to define a benchmark (or 
upper limit) in the potential skill of forecasting river flow using 
Global Climate Seasonal forecasts. The research is twofold: (1) 
Global Circulation Model (GCM) outputs are used directly in the 
form of re-analysis data, and (2) downscaled GCM precipitation 
is used to drive a hydrological model. The research focuses on 
the River Dyfi at Dyfi Bridge in West Wales, UK, a temperate 
basin of relatively small area (471.3 km2) (Figure 1). The basin 
was chosen as it is near natural which implies that the climate-
flow signal should be stronger than one with human influences. 
The Probability Distributed Model (PDM) was used to model 
the Dyfi river flows. PDM converts rainfall and potential 
evaporation (PE) to river flow at the basin outlet (Moore, 2007). 
Daily basin-averaged rainfall and PE and daily river flow data 
were used to calibrate (01/05/1980 to 30/04/1990) and evaluate 
(01/05/1991 to 30/04/2001) the PDM. 
The input GCM data used are taken from ERA-40, which is a 
45 year re-analysis of meteorological observations produced 
by the European Centre for Medium-Range Weather Forecasts 
(ECMWF) (Uppala et al. 2005). The ERA-40 data was available 
at 2.5 ̊ x 2.5 ̊ and at a reduced 1.5 ̊ x 1.5 ̊ grid resolution. The 
re-analysis data at the closest land-based grid point to the 
Dyfi basin were extracted (52.5 ̊N 357 ̊E and 52.5 ̊N 357.5 ̊E 
for 1.5 ̊ and 2.5 ̊ resolution respectively). The stratiform and 
convective precipitation and snowfall were summed daily for 
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the grid points, and run through the PDM, whilst the PE data 
was left unchanged from the model calibration data set.
Owing to the coarser resolution of the ERA-40 data in 
comparison with the spatial scale of the river basin, the 
Statistical Downscaling Model (SDSM, Wilby et al. 2002) Version 
4.1 was utilised to produce rainfall at the basin scale. Multiple 
linear regression models (one per month) were used to link 
large-scale atmospheric (ERA-40) predictors with basin scale 
rainfall (observed), and then a stochastic weather generator 
produced 10 downscaled daily rainfall series. The predictors 
were normalised prior to SDSM calibration over 01/05/1980 to 
31/01/2002. Three predictor variables explained best the basin-
scale rainfall at the two ERA-40 grid resolutions: geopotential 
(Z) at 500 hPa, zonal velocity (u) at 850 hPa and meridional 
velocity (v) at 850 hPa for 1.5 ̊ resolution, and Z at 500 hPa, u 
at 500 hPa and v at 850 hPa for 2.5 ̊ resolution. 
The ability of GCM and downscaled GCM rainfall time series to 
reproduce river flow was assessed partially through the percent 
exceedance flow (QN). For example the Q5 value is the river 
flow which is equalled or exceeded 5 % of the time (high flow 
index), and the Q95 value is the river flow which is equalled or 
exceeded 95 % of the time (low flow index). The flow duration 
curves illustrating this information are shown in Figure 2 (page 
22) (a) and (b). The simulated river flows driven by ERA-40 
precipitation underestimate the simulated (from observed) 
flows. Input data at 1.5 ̊ resolution has slightly more accurate 
river flow estimates compared with 2.5 ̊  resolution, and this is 
also shown in the R2 values between observed and modelled 
flows (-0.143 and -0.238 for 1.5 ̊ and 2.5 ̊ resolutions) and the 
bias (-76.9 % and -82.0 % for Q95, and -72.6 % and -76.9 % for 
Q5 for resolutions 1.5 ̊ and 2.5 ̊ respectively). The negative 
bias stresses the underestimation of river flow using ERA-40 
precipitation as direct input to the hydrological model, to be 
linked with the underestimated daily precipitation intensity by 
the GCMs. A possible explanation for the better representation 
by the 1.5 ̊  grid point is its closeness to the Dyfi basin compared 
with the 2.5 ̊ point. 
The downscaling process on average increases the R2 value 
to 0.407 and 0.366 for resolutions 1.5 ̊ and 2.5 ̊ respectively.  
The flow duration curves show that the modelled river flow 
using downscaled rainfall series is closer to the evaluated flow 
(modelled flow from observations during the evaluation period, 
Figure 2 (a) and (b)). Average biases are -54.1 % and -49.8 % for 
Q95, and -25.9 % and -19.0 % for Q5 for 1.5 ̊  and 2.5 ̊  resolution 
respectively, which is a marked improvement compared with 
the earlier direct input of ERA-40 precipitation to the PDM. 
The work aimed to define benchmark values for the potential 
skill of GCM seasonal forecasts for hydrological applications 
through the direct and downscaled use of GCM re-analysis 
data. The results at two spatial resolutions highlight that by 
using ERA-40 precipitation data as direct input to the PDM 
rainfall-runoff model, the simulated river flow substantially 
underestimates the observed river flow in the Dyfi basin. This is 
likely to be due to the inability of the ERA-40 assimilating model 
to resolve basin-scale (or GCM sub-grid scale) atmospheric 
processes such as orographic enhancement of rainfall over the 
Welsh Mountains, and precludes a direct operational use. With 
the help of a statistical downscaling technique (here SDSM), 

Figure 1: A map showing the south of England and Wales and the 
case study basin, the Dyfi at Dyfi Bridge (heavy line).   
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skills in river flow estimation are significantly improved for 
both the high and low flows. This pioneering work in Europe 
of river flow estimation from GCM outputs must be continued 
in comparing these benchmark results with seasonal GCM 
forecasts, such as those of the DEMETER multi-model ensemble 
climate data set as input to the PDM, and by the investigation 
of the use of different downscaling techniques.
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Background
Epidemics of malaria occur when the disease attacks vulnerable 
populations with low immunity and are responsible for 
155,000 to 310,000 deaths per year in Africa (Worrall et al., 
2004). Epidemics may be triggered in areas of normally 
low transmission by a range of factors including abnormal 
meteorological conditions, changes in anti-malarial programs, 
population movement, and environmental changes (Nájera et 
al., 1998). As part of their global strategic plan for 2005-2015, Roll 
Back Malaria Partnership (RBM) includes the establishment and 
maintenance of early warning systems for malaria epidemics, 
in order to meet the target of 60% detected within two weeks 
and 60% responded to within two weeks of detection (RBM, 
2005). As part of such a system, seasonal climate forecasts, 
when coupled with models of the disease, have the potential to 
enable malaria early warning with lead times of several months. 
Seasonal ensemble prediction system (EPS) forecasts of climate 
are skilful in some epidemic-prone African regions and the 
DEMETER seasonal EPS (Palmer et al., 2004) has previously 
been used successfully to drive a statistical rainfall-driven 
model for malaria prediction in Botswana (Thomson et al., 2006). 
As part of the AMMA (http://www.amma-international.org) 
and ENSEMBLES (http://www.ensembles-eu.org) projects, 
a process-based model of malaria, Liverpool Malaria Model 
(LMM, Hoshen and Morse, 2004), which simulates the complex 
relationship of the disease with climate, has now been coupled 
with the DEMETER multi-model seasonal ensemble forecasts. 
By employing a tier-2 approach (Morse et al., 2005) in which 
DEMETER-driven malaria model predictions are validated 
against ERA-40-driven model simulations, the requirement for 
observed malaria data is removed, enabling broad assessment 
of the potential of the seasonal forecasts for epidemic malaria 
prediction across Africa.
Coupling a process-based malaria model with a seasonal 
EPS
The practicalities of coupling a malaria model with a multi-
model EPS on a continental scale are not straightforward. Health 
models are not generally designed for use over many locations 
or with multiple inputs and handling of many large EPS output 
files outside the proprietary visualisation and analysis software 
used by modelling centres can be cumbersome. A number 
of software tools have been created for data conversion and 
processing, running of the malaria model, and analysis of 
results, incorporating the facility of the University of Liverpool’s 
state-of-the-art “MAP2” Beowulf cluster with the potential to 
make use of up to 900 nodes simultaneously (http://www.
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liv.ac.uk/physics/hep/Infrastructure/Computing.html). The 
software tools developed here are not restricted to malaria 
modelling and may be useful more generally for the coupling 
of EPS forecasts with application models.
The DEMETER multi-model reforecasts (Palmer et al., 2004) 
consist of output from a multi-model ensemble of seven 
different coupled AOGCMs each run with nine different sets of 
initial conditions. The full multi-model forecasts are available 
for four forecast start dates per year from 1980-2001 and extend 
to six months lead time. The ERA-40 reanalysis (Uppala et al., 
2005) consists of 44 years of in-situ and remotely sensed data 
assimilated into a numerical weather prediction model to form 
a set of global analyses. In order to drive the malaria model 
with these datasets, temperature and precipitation fields from 
DEMETER and ERA-40 have been extracted from the ECMWF 
MARS data archive on a 2.5 degree grid consisting of 30 by 30 
grid points from 37.5°N to 35.0°S and 20.0°W to 52.5°E, for the 
22 years for which the full seven models are available from 
DEMETER (1980-2001). 
DEMETER-driven ensemble malaria predictions are created 
by running the malaria model with each of the 63 DEMETER 
ensemble members as input. ERA-40 data are used to intialise 
the malaria model. Probabilistic malaria forecasts have been 
created in this initial assessment by equal weighting of the 
ensemble members. For each grid point, the ERA-40-driven 
and DEMETER-driven malaria simulations can be used to 
define low and high malaria events for the 22–year period 
(lower tercile, above the median and upper tercile) for three 
month windows (months 2-4 and 4-6) within each forecast 
integration period. 
In order to assess the performance of DEMETER for malaria 
prediction, skill scores have been calculated for the DEMETER-
driven malaria model forecasts using the ERA-40-driven 
forecasts as reference. Because the modelled process of malaria 
transmission exhibits a lag of between one and three months 
between rainfall and disease peaks, it is important to take into 
account any skill apparent in the DEMETER-driven forecasts 
which is in fact due to driving rainfall occurring during the 
initialisation period (i.e. the ERA-40 observations used as input 
before the start of the DEMETER forecast). This is an issue of 
concern for locations where the rainy season starts before the 
DEMETER forecast origin. Since the timing of the rains varies 
across the continent a general approach is required. This 
has been achieved by creating ERA-40-only malaria model 
forecasts, using the correct ERA-40 driver for the initialisation 
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period followed by one of the 21 incorrect ERA-40 years for the 
forecast period. This process is repeated for each of the incorrect 
years as input in turn, generating a 21-member ensemble control 
forecast against which the performance of the DEMETER-
driven forecasts are measured.
Skill of DEMETER-driven malaria simulations
Figure 1 (page 22) shows the increase in skill as measured by 
the ROC skill score (ROCSS) for the above the median event, 
relative to the skill obtained using the control run forecast. The 
scores are shown for the May forecast months 4-6 and November 
forecast months 4-6, corresponding approximately to the peak 
months for modelled malaria transmission in epidemic-prone 
regions of West and southern Africa respectively. A high 
variability condition on the ERA-40-driven malaria predictions 
(CoV>0.5) has been used to mask out grid points for which 
interannual variability is low and therefore attempt to focus 
on epidemic-prone areas, where interannual variability in 
transmission is high. 
One issue that becomes clear when attempting to explain 
the skill or lack of skill shown in the plots is the need to 
understand the details of the transmission characteristics for 
any particular region. For example, there are very few skilful 
grid points apparent in West Africa for these two forecasts. 
Further investigation has revealed this is partially due to the 
positioning of the epidemic (high variability) fringe, which 
is further south by 2.5 to 5 degrees of latitude in the ERA-40 
-driven malaria simulations compared to what is observed in 
other climate-derived maps (e.g. Craig et al., 1999) and to what 
is obtained with DEMETER. 
In southern Africa DEMETER and ERA-40 patterns of 
variability are in closer agreement and the results shown in 
Figure 1 are more promising, especially for northern Zambia 
where some of the most skilful grid points lie. This is a region 
where temperatures are low enough to have a significant impact 
on malaria transmission, and where, as a result, a process-based 
model such as LMM has the potential to be particularly useful 
in capturing the non-linear climate-malaria relationship, and 
take advantage of the skill present in seasonal forecasts of 
temperature, which tends to be higher than the skill of rainfall 
predictions. 
The results presented here need to be treated with some caution, 
however. A somewhat arbitrary condition has been applied 
to select high variability or “epidemic” areas and based on a 
climate-driven model, not on observed malaria variability. The 
malaria model employed here does not incorporate immunity 
and therefore is not suitable for use in high transmission 
(endemic) areas where immunity can be built up by the 
population and affect the dynamics of disease transmission. 
As a result any skill shown in Figure 1 cannot immediately 
be taken to represent skill in predicting real world malaria in 
these locations, but instead an indicator of potential skill of 
DEMETER in this region given a particular climate-malaria 
relationship.
Conclusions
Integration of application models with seasonal ensemble 
prediction systems is a complex process and one in which 
a cycle of implementation, assessment and improvement 
needs to be continually repeated. These initial results indicate 
the potential skill of the DEMETER forecasts for epidemic 
prediction areas of southern Africa, whilst also highlighting 
the difficulty in verification for West Africa against forecasts 
from a reference dataset which itself has not been extensively 
validated. Ongoing work will include thorough validation of 
ERA-40 against alternative gridded datasets for Africa, further 

refinement of pre- and post-processing techniques employed 
on the ensemble forecasts, and extension of the assessment to 
reforecast output from the ENSEMBLES project (http://www.
ensembles-eu.org).
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The importance of the Southern Ocean to the global climate 
system and the uniqueness of its ecosystems are well known. 
The region is remote and logistically difficult to access and 
thus is one of the least sampled regions on the planet. Design 
and implementation of an observing system that encompasses 
physical, biogeochemical and ecological processes is therefore 
a formidable challenge.
Building on an initial Southern Ocean Observing System 
(SOOS) meeting in Hobart last year, a follow up meeting was 
held in Bremen this October (see: http://www.clivar.org/
organization/southern/expertgroup/SOOS_workshop.htm). 
The aim of this meeting was to more fully develop the plans 
for such an observing system. 
Thirty-two participants from backgrounds as diverse as physical 
oceanography, ecosystem studies and the tourist industry 
discussed various aspects of the observing system during the 
three days. The first day of the meeting consisted of a series of 

summary lectures and discussion about the SOOS structure. 
The second and third days saw attendees split into various 
groups to tackle different (though interconnected) aspects of 
the SOOS, for example (i) physics of ocean and atmosphere, 
(ii) ecosystems/biology, (iii) biogeochemisty/carbon and (iv) 
cryosphere and sea ice. During this time they looked at the 
main science questions that any hypothetical observing system 
should aim to answer and the types of measurements that 
would be needed in order to do so. The state of the observing 
system and gaps were also examined. Cross group interaction 
was actively encouraged and each group reported back on 
progress at regular intervals. 
A plan for production of a SOOS document, with lead authors 
identified as responsible for writing sections, and identifying 
others to do so, was drawn up. This will be worked on over the 
next few months, with the idea that a near final draft document 
will be openly discussed at the SCAR/IASC Open Science 
Conference being held in St Petersburg in July 2008. 

The Southern Ocean Observing System (SOOS)
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The fourth session of the CLIVAR/GOOS Indian Ocean Panel 
(IOP) took place on 23-25 April 2007, kindly hosted by the 
South Africa Weather Service (SAWS), in Pretoria, South Africa. 
The SAWS issues rainfall and temperature forecasts at various 
time ranges, including the seasonal-to-interannual time scale. 
SAWS has recently started to issue probabilistic forecasts of 
extremely dry/wet and hot/cold conditions. It was successful 
in predicting high probabilities of dry and hot conditions 
over South Africa during the 2006/07 austral summer season. 
This season coincided with an El Niño event, and the various 
models used by the SAWS to compile a seasonal forecast were 
in strong agreement that the main summer season would in 
all likelihood be dry. 
The IOP took the opportunity to review the impacts of Indian 
Ocean variability on African climate systems, recognizing 
strong connections between precipitation anomalies over the 
continent and the modes of interannual SST variability of the 
Indian Ocean, such as the Indian Ocean Dipole (IOD) and 
the subtropical dipole mode. Several science talks, given by 
African scientists, focused on the well known impact of the 
Indian Ocean dipole on the short rains (Oct/Nov/Dec) over 
equatorial East Africa and the less well known (and weaker) 
opposite signed rainfall impact over subtropical south-eastern 
Africa. For Madagascar, the 2006-7 summer season was one of 
the most devastating over the last decade in terms of losses in 
lives and impacts on infrastructures and agriculture. During 
this period positive SST anomalies were observed in the Indian 
Ocean northeast of the island, in the Mozambique Channel 
and to the south of Madagascar. The influence of these climate 
modes on African rainfall variability are an important issue to 
be understood in cooperation with the CLIVAR Variability of 
the African Climate System (VACS) panel.
The IOP reviewed the development of the sustained observing 
system in the Indian Ocean, called IndOOS (Indian Ocean 
Observing System). The key new component of IndOOS is 
the tropical moored buoy array and its integration with other 

observational platforms, including Argo floats, Volunteer 
Observing Ship XBT/XCTD sections, surface drifting buoys, 
and the tide gauge network, as well as satellite observations. 
An IndOOS Data Portal site has been set up at http://www.
incois.gov.in/Incois/iogoos/home_indoos.jsp. All the available 
in situ observation data for IndOOS are listed with the link to 
data providers. Satellite derived gridded variables are also 
available through the live access server. Up to April 2007, 
15 sites in the tropical mooring array have been occupied, 
representing 32% of the total 47 sites in the proposed array. 
The numbers of deployed Argo and surface drifting buoys in 
the Indian Ocean are closely reaching the planned coverage 
density, although a commitment to maintain coverage in the 
long term remains to be developed. During the next few years, 
JAMSTEC (Japan) will maintain two TRITON moorings and an 
ADCP near the equator at 90-95°E. NOAA (USA) will maintain 
eight ATLAS moorings at 1.5°N, 0°, and 1.5°S along 80.5°E; 8°N, 
4°N, 1.5°N and 0° along 90°E; 8°S at 67°E, and an ADCP near 
0°, 80°E. In addition, NOAA (USA) will expand from 8 to 12 
ATLAS moorings in the eastern Indian Ocean and will deploy 
a subsurface ADCP moored array south of Sri Lanka in the 
coming year through international partnerships. MoES (India) 
will maintain three moorings on the equator at 77°, 83° and 
93°E and will expand the ADCP array to the north and south 
(1.5°N/S) at 77 and 93°E. FIO (China) and AMFR (Indonesia) 
will deploy a new ADCP mooring near 8.5°S, 160.75°E. Fishing 
vandalism continues to be a strong concern for the moored buoy 
array. Data return for ATLAS and TRITON moorings combined 
was 68% for the period October 2004 to March 2007, and it is 
expected that the value will diminish with time because there 
are several moorings presently not transmitting data. Ship time 
also remains a concern since there is no systematic framework 
for planning cruises on a regular basis, not only for the mooring 
array but also for Argo and surface drifter buoys. The Panel 
recognizes the necessity of establishing a “resource board” for 
the Indian Ocean to provide resources such as ship time for 
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further development of IndOOS, especially for the mooring 
array development. The Panel has asked the Indian Ocean 
GOOS Regional Alliance to convene a second high level review 
of IndOOS at its next annual meeting in December 2007 to assess 
progress since the first review in 2005. The review panel will be 
asked to consider formation of the resource board.
The panel reviewed the outcomes of two recent research 
vessel based process studies in the area: Vasco-Cirene and 
MISMO.  These had both been successfully completed to 
provide a significant amount of in situ observational data, 
which are now being extensively analyzed among the scientists 
involved. The Vasco-Cirene experiment in January/February 
2007 was conducted to provide in situ observations of oceanic 
and atmospheric variability, as well as air-sea fluxes, over 
the thermocline ridge between 5oS and 10oS in the western 
Indian Ocean. Although a strong intraseasonal disturbance 
was not observed during the experiment, invaluable data on 
cyclogenesis were obtained by a new observation platform, 
called Aeroclipper. The MISMO experiment during October 
to December 2006 took place in the central/eastern equatorial 
Indian Ocean to capture the atmospheric and oceanic variations 
associated with MJO initiation and passage. The observations 
captured development of MJO convection and eastward 
movement of large-scale cloud systems. Ocean variability at 
the intraseasonal time-scale demonstrated the strong upwelling 
(>10m/day) and associated variations in the chlorophyll 
concentration in the thermocline level. The scientific leaders of 
Vasco-Cirene and MISMO were invited speakers at the IUGG 
Symposium on Dynamics of Convectively-Coupled Equatorial 
Waves and the Madden-Julian Oscillation (Italy, 2007) and 22 
talks were presented on the preliminary cruise results
The Panel reviewed a white paper on “monitoring the Agulhas 
Current” by L.Beal et al. and recognized that the western 
subtropical region is the weak link of IndOOS. The scientific 
rationale for long term measurement of the Agulhas is to 
improve understanding and modelling of its dynamics and 
its role in inter-ocean exchange (Indian to Atlantic) as it relates 
to the global overturning circulation. The attractive aspect of 
the proposal set out in the white paper is the staged approach, 
building up the monitoring effort through a series of process 
studies with coordination of resources across three projects 
involving international collaboration. At the present time there 
are not many Argo floats in this region, the repeat hydrographic 
sections are insufficient, and satellite data do not provide 
vertical structure directly, leaving the Agulhas Current the least 
known of all the western boundary currents. The proposed 
measurements will, in the first stage, address connectivity of 
the Agulhas in the region where it is strongest to major currents 
at lower latitudes and the eddy field. Generally, the Agulhas 
measurements will provide very useful in situ data, which 
can also be used for model evaluation and improvement. The 

Panel strongly recommended that the proposed pilot studies 
should go forward.
Finally the panel discussed possible future research directions 
IOP should take. Considering the rapid growth of IndOOS, 
quantitative analyses using observed data will be a key research 
area:
• Intraseasonal oscillations (ISOs). The CLIVAR Asian-Australian 

Monsoon Panel (AAMP) has noted on many occasions that 
ISOs form the building block of the monsoons and are 
potentially a key to improved seasonal climate prediction. 
The tropical mooring array developed by the IOP provides a 
new stream of data that not only reveals the role of the ocean 
in this phenomenon, and potentially improves modelling of 
the ISO, but also improves the weather observing system in 
the region. The moorings will be extremely valuable to data 
assimilation for weather forecasting and reanalysis efforts. 
At present there are few such measurements in the Indian 
Ocean and this lack of information prevents accurate initial 
condition determination of weather forecasts and limits 
reanalysis efforts.

• Mixed-layer heat budgets. A few examples of quantitative 
mixed layer temperature (MLT) analysis in the Indian 
Ocean highlighted the difference in the regime of seasonal 
heat balance in the southeast Indian Ocean and the effect 
of the barrier layer.  On-going work on the Indian-Ocean 
MLT budget using an ECCO assimilation product shows 
that the point-wise balance near the eastern node of the 
IOZM/IOD is different for the 1994 and 1997 events in 
terms of the role of surface heat flux, zonal advection, and 
vertical diffusion.  The balance at 4.8oS, 101oE has some 
substantial differences from that at 0oN, 97oE.  The utility 
of data assimilation products to analyze MLT balance can 
be extended to the analysis of upper-ocean heat budget in 
general, and for longer time scales, e.g., to address questions 
related to the multi-decadal warming of the upper Indian 
Ocean.

• Validation of air-sea fluxes. SST in the Indian Ocean has been 
rising in recent decades. Air-sea fluxes of momentum, heat, 
and freshwater, being intimately coupled to SST, have 
also shown long-term trends. It is found, however, that 
a reliable quantification of the magnitude of the trends is 
difficult to obtain due to large uncertainties in climate flux 
datasets. Though only available at limited locations and for 
limited periods, the flux buoy time series obtained from the 
integrated Indian Ocean Observing System (IndOOS), have 
already demonstrated their value in identifying biases in 
flux data products, analyzing upper ocean heat budgets at 
intraseasonal, seasonal,  and now to internnual timescales, 
and improving the understanding of key air-sea coupling 
issues in the Indian Ocean.

• Predictability/prediction studies of the significant climate modes 
in the Indian Ocean, such as IOD. Experimental seasonal 
predictability/prediction studies are ongoing at several 
institutions using coupled GCMs. How ENSO and IOD 
climate modes interact with each other and/or how they 
influence the other phenomenon are key issues to be 
understood for better seasonal prediction not only within 
the Indian Ocean but also for the global climate system. 
This provides strong rationale for IndOOS. IOP and AAMP 
are discussing the possibility of a coordinated study and 
intercomparison of the predictions of the 2006 and 2007 
IOD events by the FRCGC (JAMSTEC), GFDL (NOAA) 
and BMRC (Australia) coupled models. These years are 
interesting because all models agree in predicting the 
strong positive event in 2006 and they disagree markedly 

Attendees at the recent IOP4 meeting
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in predictions for 2007. A case study of the successes and 
differences can lead to model improvement. 

• Detection and understanding of the decadal and inter-decadal 
time-scale variability. In addition to substantial and socially-
relevant intraseasonal to interannual variability, the Indian 
Ocean exhibits – in models and observations – changes on 
longer timescales, from decadal to climate change. The 
decadal and inter-decadal timescale variability remains 
to be fully documented and understood, and the extent to 
which it acts to modulate variability on shorter timescales 
is still an open research question. Further, the detection of 
radiatively-forced trends is limited by the presence of this 
decadal variability. Finally, the potential predictability of 
these decadal variations has begun to be explored using 
coupled modelling experiments. The IOP has a vision of 
sustained observing in this region, and based on recent 
studies of decadal and longer term variation of the Indian 
Ocean, the panel is convinced that an important societal 
benefit of IndOOS will emerge from future studies of climate 
change. Recent papers on long term variations by panel 
members and collaborators include:

Schoenefeldt, R., and F.A. Schott, 2006: Decadal variability 
of the Indian Ocean cross-equatorial exchange in SODA. 
Geophysical Research Letters 33 (8): Art. No. L08602 APR 20 
2006. 

Chang P, T. Yamagata, P. Schopf, et al., 2006: Climate fluctuations 
of tropical coupled systems - The role of ocean dynamics 
JOURNAL OF CLIMATE 19 (20): 5122-5174 OCT 15 2006.

Alory, G., S. Wijffels, and G. Meyers G, 2007: Observed 
temperature trends in the Indian Ocean over 1960-1999 and 
associated mechanisms Geophysical Research Letters 34 (2): 
Art. No. L02606 JAN 20 2007. 

Yu, L-S.. and R.A. Weller, 2007: Objectively analyzed air-sea heat 
fluxes for the global ice-free oceans. Bulletin of the American 
Meteorological Society 88 (4): 527-+ APR 2007

Lee, T. and M.J. McPhaden, 2007: Decadal Phase Change in 
Large-scale Sea Level and Winds in the Indo-Pacific Region 
at the end of the 20^th Century. Submitted to Geophysical 
Research Letters.

More information on the activities of the CLIVAR/GOOS 
Indian Ocean Panel can be found at: http://www.clivar.org/
organization/indian/indian.php

The 11th session of WGSIP took place on 7-8 June 2007, 
immediately after the WCRP Workshop on Seasonal Prediction 
held at the World Trade Centre in Barcelona, Spain. This had 
several advantages, notably the presence of several distinguished 
visitors on the first afternoon to provide perspectives from 
WCRP, the JSC and the CLIVAR SSG, and the necessity to 
deal with matters concisely, so as to fit the meeting within the 
scheduled 1.5 days. We would like to acknowledge our hosts 
from the Meteorological Service of Catalonia, who generously 
provided facilities for the WGSIP meeting in addition to their 
support for the Seasonal Prediction Workshop itself.
The following is a summary of the topics discussed at the 
meeting, covering both current and future WGSIP activities:
WCRP Workshop on Seasonal Prediction
The Workshop (see Kirtman & Pirani, in this issue for 
an overview and recommendations resulting from the 
Workshop) was held on 4-7 June 2007 hosted by the Catalonian 
Meteorological Service.  It was organised by the WCRP Task 
Force on Seasonal Prediction (TFSP) in collaboration with 
the core programs of the WCRP (CLIVAR, CliC, SPARC and 
GEWEX) and the WMO World Climate Programme (WCP). The 
Workshop was also co-sponsored by the Climate Information 
and Prediction Services (CLIPS) Project of the WMO WCP, the 
European Science Foundation (ESF), the Spanish Ministry of 
Science, the School of Physics of the University of Barcelona, 
the Catalan Water Agency, US CLIVAR, the US National Science 
Foundation (NSF), the US National Aeronautics and Space 
Administration (NASA) and the US National Oceanic and 
Atmospheric Administration (NOAA). Attendance was very 
high and the Workshop was hailed a success, with around 180 
people coming from over 30 countries.
The WCRP Task Force on Seasonal Prediction (TFSP)
The planned two year life time of the TFSP came to an end 
with the Barcelona Workshop and its mandate will continue to 
function through the WGSIP. The TFSP, which drew on expertise 
from all the WCRP core projects (CLIVAR, CliC, SPARC, and 
GEWEX), WGNE and WGCM, together with the Sea Level Task 
Team, pioneered the WCRP coordinated strategy initiated in 
2005. The TFSP provided a mechanism that did not previously 

Summary of the 11th Session of the Working Group on Seasonal to Interannual Prediction (WGSIP)
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exist to evaluate potential predictability in the cryosphere, 
biosphere, stratosphere and the rest of the fully coupled climate 
system, while also delivering focus on the value to society of 
seasonal prediction.
WGSIP has assumed the leadership of the TFSP Experiment 
(see www.clivar.org/organization/wgsip/tfps.php for more 
details). The TFSP Seasonal Prediction Workshop sessions 
organised by the different WCRP Projects gave an overview of 
what is currently known on the potential predictability to be 
gained from including more Earth system coupled processes in 
seasonal forecasting. An outcome of the Workshop was that, in 
addition to the baseline TFSP Experiment design, there is plenty 
of scope for further sensitivity studies addressing stratospheric, 
land surface and cryospheric processes.
WCRP Decadal Prediction Cross-Cutting Activity
WGSIP discussed the new decadal prediction cross-cutting 
activity that was endorsed by the 28th Session of the WCRP 
JSC. WGSIP agreed to take co-leadership of this activity with 
WGCM, as recommended by the JSC. As an initial step the 
technical aspects of decadal prediction experiments, such as 
the best initialisation of an ocean model from analyses, will 
be addressed. Climate change is inextricably part of seasonal 
forecast calibration and the problem of recovering observed 
trends. Processes, for example aerosols, that are mainstream in 
the climate community need to be incorporated into seasonal 
prediction. The concept of testing climate change models in 
seasonal prediction mode has been endorsed by the climate 
community (see next section). Given the large number of 
overlapping issues, it was clear that WGSIP and WGCM 
need to work more closely together. One suggestion to be 
explored is the possibility of a joint mini-workshop on decadal 
prediction. The CLIVAR basin panels and the Global Synthesis 
and Observations (GSOP) Panel also need to be involved in the 
ocean initialisation problem.
Climate Model Validation
WGISP reviewed the value of testing “climate change” models 
using seasonal integrations. There are two aspects to this, 
the first related to model biases. Coupled integrations that 
are initialised as close to reality as possible can be evaluated 
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CLIVAR Exchanges solicits articles for the January 2008 
edition that highlights issues associated with using ocean and 
ocean-ice models for global climate studies and observational 
reanalysis. Of special interest will be articles that discuss the 
use of ocean and ocean-ice models for understanding the 
ocean climate system, including the experimental design of the 
simulations, such as boundary conditions, initial conditions, 
forcing datasets, bulk formulae, etc. Articles featuring recent 
numerical algorithm and physical parameterization issues 
especially relevant to the problems of running models for global 
simulations, are also solicited.
The guest editors will be Stephen Griffies (GFDL) and Helene 
Banks (Met Office Hadley Centre).   The closing date for 
submissions is Friday November 30th 2007.  
Please see  http://www.clivar.org/publications/exchanges/
guidel.php for guidlines for submitting articles. 

Exchanges 44:  Call for Submissions:  Theme: 
“Furthering the Science of Ocean Climate Modelling”

The CLIVAR project office at NOCS is about to issue the 
second volume (Pacific Ocean) of the  atlases describing the 
measurements made during the 1990-1997 World Ocean 
Circulation Experiment (WOCE).  The series of 4 volumes, 
(Southern Ocean (published in 2004), Indian and Atlantic 
still being prepared) contains vertical, trans-ocean sections, 
horizontal  maps and property-property plots of  up  to 15 
physical and chemical variables.

New ocean atlases - Volume 2 now readymore exactly against observations in terms of degree of model 
drift and the evolution of errors, than longer runs which are 
supposed to represent “mean climate”. Model integrations are 
needed only over the appropriate timescales: some biases are 
inherent in just the atmosphere model and develop within a few 
days, whilst other biases involving coupled feedbacks develop 
over a period of months to a year. Of course, there may be other 
biases related to slow processes in the climate system, which 
are not addressed by seasonal timescale integrations. A second 
aspect of testing climate models with seasonal integrations is 
to look at ENSO forecast skill (and perhaps seasonal forecast 
skill in general). The first aspect is particularly helpful in 
the development phase of climate models, since the modest 
integration time allows rapid turnaround of experiments. The 
second aspect may be helpful in deriving metrics to help judge 
the credibility of projected changes in ENSO and dynamically 
forced regional climate change. 
Several strategies for developing these ideas further were 
discussed. The first is to ensure that as many “IPCC” class 
models as possible take part in the TFSP experimentation. 
This was one of the original hopes behind the development 
of the TFSP plans, and WGSIP encourage as many groups as 
feel able to participate in this experiment. A separate strategy 
is the concept of developing some written guidance on simple 
but effective ways of initialising and testing coupled models 
in seasonal forecast mode. The guidance would be targeted in 
particular at those groups who do not have access to suitable 
ocean initial conditions, and might be particularly helpful 
during the development phase of models.
Seasonal Prediction Applications
The importance of data availability and accessibility for 
seasonal prediction applications users was discussed. Daily 
data would be of considerable use, or better still real time data, 
even if they could be provided only for a limited number of 
grid points in the public domain. If real time data cannot be 
released then a compromise is needed to show the range of 
forecast products that are available. If forecasts are provided 
to the user, they must also be provided with the model climate, 
the predictability, forecast quality, for example a reproducibility 
index, and the skill of the ensemble compared to the model 
climate. Feedback is, in turn, necessary from users to the 
forecasting community to develop tailored products, such as 
histograms of break cycles and the fact that users are generally 
more interested in intraseasonal variability instead of monthly 
totals. User development and capacity building is necessary 
and could be directed through the CLIVAR regional panels. A 
link needs to be made with decision makers, with information 
needing to be made more publicly available.
For more information on WGSIP activities refer to www.clivar.
org/organization/wgsip/wgsip.php

Attendees at the recent WGSIP meeting

The Pacific Atlas has been compiled by Prof. Lynne Talley of 
Scripps Institution of Oceanography.  Drs Mike Sparrow and 
John Gould formerly of the CLIVAR Project Office, are members 
of the editorial team (along with Dr Piers Chapman) that has 
produced the atlases. The printing of 800 copies that will be 
distributed worldwide was funded by a grant from BP.
Details of the atlases can be found at <http://www.woce.
org/atlas_webpage.
For further information contact John Gould (wjg@noc.soton.
ac.uk) or Mike Sparrow (mds68@cam.ac.uk)
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